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Total Unimodular Matrices
TUM



Linear algebra

» Determinant of matrix A: det(A)

» It is a scalar value that can be computed from the elements of a square matrix and
encodes certain properties of the linear transformation described by the matrix.

» Geometrically, it is the signed volume of the n-dimensional parallelepiped spanned by
the column or row vectors of the matrix.

» The determinant is positive or negative according to whether the linear transformation
preserves or reverses the orientation of a real vector space.



Linear algebra
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TUM

» Definition. A square matrix U is unimodular if det(U) = +1

» Definition. A matrix M € R"*" is called totally unimodular if every square non-singular
submatrix of M has is unimodular.

Put it differently: all submatrix U of M has det(U) € {0,1, —1}.



TUM - properties

» All elements of M are either O or 1 or —1.
» —M and M7 is also TU

» [M I]isalso TU
Proof (incomplete)
Lete; = (0,0,...1,0,...,0)T. We are going to show that [M e,] is TU.

Choose a k x k submatrix U from M (k rows and k columns).

—In case we have the last column and the ith row included then det(U) = +1 det(M*),
where M* is a submatrix of M

—In case we do not have the ith row included then det(U) = 0.

— In case we do not select the last column then we have all the columns selected from

M, which is OK.



TUM - integer solution of LP

» Theorem. Let M € R"*" (where m < n) be full row-rank and totally unimodular. Let
b € Z" and c € R".
Then the LP:

min ¢’ x

subjectto: Mx=Db
x>0

has integer x* € Z" solution.

This is important result as we can use any LP solver to get integer solution.
Time of solving LP: polynomial, whereas solving ILP: exponential.



TUM

» Proof. An optimal solution of an LP is a possible basis (extreme point of the polyhedron
P = {Mx =b,x > 0}). We are going to show that these extreme points are integers.

A vector x is called possible basis if
e Mx = b,x > 0 which means that x is feasible.

¢ x has at most m non-zero elements.
Let B(x) C {1,...,n} be those indices which correspond to the non-zero elements
of x.

e The submatrix A of M which is selected by the indicies B(x) is non-singular, i.e.,
det(A) # 0. In this case the system of linear equations AX = b can be solved,
where X is a sub-vector of x which is selected by B(x).



TUM

» (repeated from the previous slide):

The submatrix A of M which is selected by the indicies B(x) is non-singular, i.e.,
det(A) # 0. In this case the system of linear equations AX = b can be solved,
where X is a sub-vector of x which is selected by B(x).

Apply Cramer’s rule:
% — det(Ai)
' det(A)’
where matrix A; is obtained by changing the ith column in A into b.
We know that b is integer.
det(A) = %1 for sure since matrix A is non-singular and it is a sub-matrix of M.
det(A;) needs to be integer.

= X; is integer too = x* is integer.



Graphs and TUMs
» Let G = (V,E) be a directed graph.

» Let B the incidence matrix of G.
» Bhas dimension |V| x |E| and by definition
—1 ifnodeiis the tail of edge j,

bij=<¢1 if node i is the head of edge j,

0 otherwise.

» Example.



Graphs and TUMs
» Theorem. Matrix B is TU.

» Proof. By induction.
e Assume that the theorem holds for all sub-matrices of B of size (k — 1) x (k —1).
¢ Take a sub-matrix U of size k x k.
¢ There are 3 possibilities.
1) U has all-zero column. = det(U) = 0.
2) U has a column which contains a non-zero element.

det(U) = £1 - det(U*), where U* is a sub-matrix of size (k — 1) x (k—1).
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Graphs and TUMs

3) All columns of U has 2 non-zero elements.
Within a column, one of them is +1 and the other one is —1.
Hence, the sums of the columns are all equal to 0.

In this case, the rows of the matrix are linearly dependent.
= det(U) = 0.
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Graphs and TUMs

= Sufficient conditions: Let A = [a;;] be a matrix such that
i) a;; € {+1,—1,0} foralli,j.

ii) Each column contains at most two nonzero coefficients,

i\azﬂ <2 (je[1,n]).

iii) The set M of rows can be partitioned into (Mj, M) such that each column j
containing fwo nonzero coefficients satisfies

>, aij— ) aij=0.

ieM; ieMy

Then A is totally unimodular.
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Bipartite graphs and TUMs

» Theorem. Let G be a bipartite graph and B™ its unsigned incidence matrix.
Then B* is TU.

» Proof. Each column of BT contains exactly two nonzero components, a 1 for some

v e Vy,and a1l for some w € V5.

Therefore, the sufficient criterion of the above theorem applies for the choice M; = Vj,
My, = V5.
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TUM - example 01

» Shortest path in directed graph G

» decision variable

1 ifedge (i,]) is part of the shortest path,
Xij =
! 0 otherwise.

(from s to t)
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s LP modell:

subject to

(Bx)i =

Matrix B is the incidence matrix of G.

-1
1
0

ifi=s,
ifi=t,
otherwise.
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TUM - example 01

= Another notation:

min17x
subjectto Bx = (—1,0,0,...,0,1)T
x > 0.

= We do not need to prove that x;; € {0,1} as it gets automatically fulfilled.
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TUM - example 02
» Maximal pairing in bipartite graphs
» decision variable:
1 ifedge (i,j) is included in the pairing,
= {O otherwise.
» LP model

max 17x

subjectto  Btx <1,

where BT is the unsigned incidence matrix of the bipartite graph.
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» Since B is TU, it is enough to have

as x;; € {0,1} holds automatically.

» The meaning of constraint Btx <1:
in case we have edges as

then either the top one or the bottom one is chosen, but never together.
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TUM - example 03

s Minimum s — f cut
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