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Linear algebra

Determinant of matrix A: det(A)

It is a scalar value that can be computed from the elements of a square matrix and
encodes certain properties of the linear transformation described by the matrix.

Geometrically, it is the signed volume of the n-dimensional parallelepiped spanned by
the column or row vectors of the matrix.

The determinant is positive or negative according to whether the linear transformation
preserves or reverses the orientation of a real vector space.
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Linear algebra
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TUM

Definition. A square matrix U is unimodular if det(U) = ±1

Definition. A matrix M ∈ Rm×n is called totally unimodular if every square non-singular
submatrix of M has is unimodular.

Put it differently: all submatrix U of M has det(U) ∈ {0, 1,−1}.
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TUM - properties

All elements of M are either 0 or 1 or −1.

−M and MT is also TU

[M I] is also TU
Proof (incomplete)
Let ei = (0, 0, . . . 1, 0, . . . , 0)T. We are going to show that [M ei] is TU.

Choose a k× k submatrix U from M (k rows and k columns).
– In case we have the last column and the ith row included then det(U) = ±1 det(M∗),
where M∗ is a submatrix of M
– In case we do not have the ith row included then det(U) = 0.
– In case we do not select the last column then we have all the columns selected from
M, which is OK.
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TUM - integer solution of LP

Theorem. Let M ∈ Rm×n (where m < n) be full row-rank and totally unimodular. Let
b ∈ Zm and c ∈ Rn.
Then the LP:

min cTx

subject to: Mx = b

x ≥ 0

has integer x∗ ∈ Zn solution.

This is important result as we can use any LP solver to get integer solution.
Time of solving LP: polynomial, whereas solving ILP: exponential.
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TUM

Proof. An optimal solution of an LP is a possible basis (extreme point of the polyhedron
P = {Mx = b, x ≥ 0}). We are going to show that these extreme points are integers.

A vector x is called possible basis if

• Mx = b, x ≥ 0 which means that x is feasible.

• x has at most m non-zero elements.
Let B(x) ⊂ {1, . . . , n} be those indices which correspond to the non-zero elements
of x.

• The submatrix A of M which is selected by the indicies B(x) is non-singular, i.e.,
det(A) 6= 0. In this case the system of linear equations Ax̂ = b can be solved,
where x̂ is a sub-vector of x which is selected by B(x).
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TUM

(repeated from the previous slide):

• The submatrix A of M which is selected by the indicies B(x) is non-singular, i.e.,
det(A) 6= 0. In this case the system of linear equations Ax̂ = b can be solved,
where x̂ is a sub-vector of x which is selected by B(x).

Apply Cramer’s rule:

x̂i =
det(Ai)

det(A)
,

where matrix Ai is obtained by changing the ith column in A into b.
We know that b is integer.
det(A) = ±1 for sure since matrix A is non-singular and it is a sub-matrix of M.
det(Ai) needs to be integer.
⇒ x̂i is integer too⇒ x∗ is integer.
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Graphs and TUMs

Let G = (V, E) be a directed graph.

Let B the incidence matrix of G.

B has dimension |V| × |E| and by definition

bij =


−1 if node i is the tail of edge j,

1 if node i is the head of edge j,

0 otherwise.

Example.
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Graphs and TUMs

Theorem. Matrix B is TU.

Proof. By induction.

• Assume that the theorem holds for all sub-matrices of B of size (k− 1)× (k− 1).

• Take a sub-matrix U of size k× k.

• There are 3 possibilities.

1) U has all-zero column. ⇒ det(U) = 0.

2) U has a column which contains a non-zero element.
det(U) = ±1 · det(U∗), where U∗ is a sub-matrix of size (k− 1)× (k− 1).
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Graphs and TUMs

3) All columns of U has 2 non-zero elements.
Within a column, one of them is +1 and the other one is −1.
Hence, the sums of the columns are all equal to 0.
In this case, the rows of the matrix are linearly dependent.
⇒ det(U) = 0.
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Graphs and TUMs

Sufficient conditions: Let A = [aij] be a matrix such that

i) aij ∈ {+1,−1, 0} for all i, j.

ii) Each column contains at most two nonzero coefficients,
m

∑
i=1
|aij| ≤ 2 (j ∈ [1, n]).

iii) The set M of rows can be partitioned into (M1, M2) such that each column j
containing two nonzero coefficients satisfies

∑
i∈M1

aij − ∑
i∈M2

aij = 0.

Then A is totally unimodular.
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Bipartite graphs and TUMs

Theorem. Let G be a bipartite graph and B+ its unsigned incidence matrix.
Then B+ is TU.

Proof. Each column of B+ contains exactly two nonzero components, a 1 for some
v ∈ V1, and a 1 for some w ∈ V2.

Therefore, the sufficient criterion of the above theorem applies for the choice M1 = V1,
M2 = V2.
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TUM - example 01

Shortest path in directed graph G (from s to t)

decision variable

xij =

1 if edge (i, j) is part of the shortest path,

0 otherwise.
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LP modell:

min ∑
(i,j)∈E

xi,j

subject to

(Bx)i =


−1 if i = s,

1 if i = t,

0 otherwise.

Matrix B is the incidence matrix of G.
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TUM - example 01

Another notation:

min 1Tx

subject to Bx = (−1, 0, 0, . . . , 0, 1)T

x ≥ 0.

We do not need to prove that xi,j ∈ {0, 1} as it gets automatically fulfilled.
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TUM - example 02

Maximal pairing in bipartite graphs

decision variable:

xij =

1 if edge (i, j) is included in the pairing,

0 otherwise.

LP model

max 1Tx

subject to B+x ≤ 1,

where B+ is the unsigned incidence matrix of the bipartite graph.
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Since B+ is TU, it is enough to have

x ≥ 0

as xij ∈ {0, 1} holds automatically.

The meaning of constraint B+x ≤ 1:
in case we have edges as

then either the top one or the bottom one is chosen, but never together.
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TUM - example 03

Minimum s− t cut
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