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What is integer programming?



What is integer programming?

Integer Programming concerns the mathematical analysis of and design of algorithms for
optimisation problems of the following forms.

• (Linear) Integer Program:

max
x∈Rn

cTx

s.t. Ax ≤ b, (componentwise)

x ≥ 0, (componentwise)

x ∈ Zn,

where A ∈ Rm×n is a matrix and b ∈ Rm, c ∈ Rn are vectors with rational coefficients.
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• Binary (Linear) Integer Program:

max
x

cTx

s.t. Ax ≤ b

x ∈ Bn := {0, 1}n.

This is a special case of a linear integer program, as it can be reformulated as

max
x

cTx

s.t. Ax ≤ b

x ≤
[

1
...
1

]
x ≥ 0,

x ∈ Zn.
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• (Linear) Mixed Integer Program:

max
x,y

cTx + hTy

s.t. Ax + Gy ≤ b

x, y ≥ 0,

y ∈ Zp,

where G is a matrix and h a vector with rational coefficients.
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Introductory Examples



Introductory Examples

Example (The Assignment Problem)

• n people are to carry out n jobs,

• each person carries out exactly one job,

• assigning person i to job j incurs a cost cij,

• find assignment that minimises the total cost.
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Decision variables:

For (i, j ∈ [1, n] := {1, . . . , n}),

xij =

{
1 if person i assigned to carry out job j,

0 otherwise.
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Constraints:

• Each person does exactly one job:

n

∑
j=1

xij = 1 (i ∈ [1, n])

• Each job is done by exactly one person:

n

∑
i=1

xij = 1 (j ∈ [1, n])

• Variables are binary:
xij ∈ B := {0, 1}, (i, j ∈ [1, n]).
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Objective function: the total cost ∑n
i=1 ∑n

j=1 cijxij.

Model:

min
x∈Rn×n

n

∑
i=1

n

∑
j=1

cijxij

s.t.
n

∑
j=1

xij = 1 for i = 1, . . . , n,

n

∑
i=1

xij = 1 for j = 1, . . . , n,

xij ∈ B for i, j = 1, . . . , n.
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Example (The 0-1 Knapsack Problem)

• A knapsack of volume b has to be packed with a selection of n items,

• item i has volume ai and value ci,

• pack the knapsack with a set of items of maximal total value.
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Knapsack model:

max
n

∑
i=1

cixi

s.t.
n

∑
i=1

aixi ≤ b,

x ∈ Bn,

with decision variables are defined as follows,

xi =

{
1 if item i is selected,

0 otherwise.
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Example (The Integer Knapsack Problem)
The same as Example 2, but multiple copies of each type of item are available.
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Integer knapsack model:

max
n

∑
i=1

cixi

s.t.
n

∑
i=1

aixi ≤ b,

x ≥ 0,

x ∈ Zn,
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Linear Programming



Linear Programming

An important special case of an integer programming problem is one without integrality
constraints, e.g.,

max
x

cTx

s.t. Ax ≤ b,

x ≥ 0.

Such problems are called linear programming problems (or LPs).

We will see that LPs play an important role in algorithms designed to solve general IPs
through the concept of of LP relaxation:
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Consider the IP problem

(IP) z∗ = max
x

cTx

s.t. Ax ≤ b,

x ∈ Zn
+.

If we give up on the integrality constraints xi ∈ Z, we obtain an LP,

(LP) z̄ = max
x

cTx

s.t. Ax ≤ b,

x ≥ 0.
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Giving up on the integrality constraints has two effects on the feasible set F (the set of
decision vectors x that satisfy the constraints of the problem)

• F becomes larger,

• F becomes convex.

15



Proposition
The consequence of the first effect is that z̄ ≥ z∗.

Proof.
If the optimal objective value z∗ of (IP) is achieved at the point x∗, then x∗ is feasible for
(IP), and hence it is also feasible for (LP). Therefore,

z̄ ≥ cTx = z∗.

As we shall learn, the consequence of the second effect is that it is much easier to solve the
problem (LP) than (IP).

16



A first idea for solving IPs is to solve the LP relaxation and round the optimal values of
the decision variables to the nearest feasible integer valued feasible solution.

While this occasionally works, it is not always a good idea:

• Rounding may be non-trivial, e.g., when the LP relaxation of a binary program takes
an optimal solution x∗ with many values near 0.5.

• The rounded solution may be far from optimal.

• The rounded solution may be infeasible.
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The Simplex Algorithm



The Simplex Algorithm in Dictionary Form

We will now discuss an algorithm for solving general linear programming problems.
Example
Consider the LP instance

z = max
x

5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.
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Preliminary step I: introduce slack variables x4, x5, x6 ≥ 0 to reformulate inequality
constraints as a system of linear equations,

z = max 5x1 + 4x2 + 3x3 + 0x4 + 0x5 + 0x6

s.t. 2x1 + 3x2 + x3 + x4 = 5

4x1 + x2 + 2x3 + x5 = 11

3x1 + 4x2 + 2x3 + x6 = 8

x1, x2, x3, x4, x5, x6 ≥ 0.
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Preliminary step II: express in dictionary form

max z s.t. x1, . . . , x6 ≥ 0,

and where the variables are linked via the linear system

x4 = 5− 2x1 − 3x2 − x3

x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3.

Step 0: x1, x2, x3 = 0, x4 = 5, x5 = 11, x6 = 8 is an initial feasible solution. x1, x2, x3 are
called the nonbasic variables and x4, x5, x6 basic variables.

Note that basic variables are expressed in terms of nonbasic ones!
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x4 = 5− 2x1 − 3x2 − x3

x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3.

Step 1: We note that as long as x1 is increased by at most

5
2
= min

(5
2

,
11
4

,
8
3
)
,

all xi remain nonnegative, but z increases.

Setting x1 = 5/2 and substituting into the dictionary, we find x2, x3, x4 = 0, x5 = 1,
x6 = 1/2, z = 25/2 as an improved feasible solution.

We call x1 the pivot of the iteration. 21



x4 = 5− 2x1 − 3x2 − x3

x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3.

We can now express the variables x1, x5, x6, z in terms of the new nonbasic variables x2, x3, x4

(those currently set to zero) to obtain a new dictionary.

To do this, use line 1 of the dictionary to express x1 in terms of x2, x3, x4,

x1 =
1
2
(
5− 3x2 − x3 − x4

)
and substitute the right hand side for x1 in the remaining equations.
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The new dictionary then looks as follows,

x1 =
5
2
− 3

2
x2 −

1
2

x3 −
1
2

x4 (1)

x5 = 1 + 5x2 + 2x4 (2)

x6 =
1
2
+

1
2

x2 −
1
2

x3 +
3
2

x4 (3)

z =
25
2
− 7

2
x2 +

1
2

x3 −
5
2

x4. (4)

Of course, we are still solving

max z s.t. x1, . . . , x6 ≥ 0,

subject to the relationships (1)–(4) holding between the variables, and the new LP instance
is equivalent to the old one.

However, a better feasible solution can be read off the new dictionary by setting the
nonbasic variables to zero! 23



x1 =
5
2
− 3

2
x2 −

1
2

x3 −
1
2

x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2
+

1
2

x2 −
1
2

x3 +
3
2

x4

z =
25
2
− 7

2
x2 +

1
2

x3 −
5
2

x4.

Step 2: We continue in the same vein: increasing the value of x2 or x4 is useless, as this
would decrease the objective value z.

Thus, x3 is our pivot, and we can increase its value up to

1 = min
(
5,+∞, 1),

leading to the improved solution x2, x4, x6 = 0, x1 = 2, x3 = 1, x5 = 1, z = 13 and the
dictionary corresponding to x2, x4, x6 as nonbasic variables: 24



x3 = 1 + x2 + 3x4 − 2x6

x1 = 2− 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

z = 13− 3x2 − x4 − x6.

At this point we can stop the algorithm for the following reasons:

• from the last line of the dictionary we see that for any strictly positive value of x2, x4

or x6 the objective value z is necessarily strictly smaller than 13,

• and from the other lines of the dictionary we see that as soon as the values of x2, x4

and x6 are fixed, the values of x3, x1 and x5 are fixed too.

• Thus, the last dictionary yields a certificate of optimality for the identified solution.
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Direct Computation of Dictionaries

Let us now try to understand how the dictionary

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2− 2x2 − 2x4 + x6 (5)

x5 = 1 + 5x2 + 2x4

z = 13− 3x2 − x4 − x6,

(which was obtained after two pivoting steps) could have been obtained directly from the input data
of the original LP instance

(LPI) max 5x1 + 4x2 + 3x3 + 0x4 + 0x5 + 0x6

s.t. 2x1 + 3x2 + x3 + x4 = 5

4x1 + x2 + 2x3 + x5 = 11

3x1 + 4x2 + 2x3 + x6 = 8

x1, x2, x3, x4, x5, x6 ≥ 0
26



The constraints of (LPI) imply a functional dependence between the nonnegative decision
variables xi, expressed by the linear system

Ax = b, (6)

where

A =

2 3 1 1 0 0
4 1 2 0 1 0
3 4 2 0 0 1

 , b =

 5
11
8

 .

The basic variables of dictionary (5) are x3, x1, x5. Writing

xB :=
[
x3 x1 x5

]T
, xN :=

[
x2 x4 x6

]T

AB :=

1 2 0
2 4 1
2 3 0

 , AN :=

3 1 0
1 0 0
4 0 1


(6) can be written as AB xB + AN xN = b. 27



AB xB + AN xN = b.

Solving for the basic variables xB, we obtain

xB = A−1
B (b−ANxN) . (7)

Likewise, the objective function can be written as

z = cT
B xB + cT

N xN ,

where
cB =

[
3 5 0

]T
, cN =

[
4 0 0

]T
,

and substituting from (7), we find

z = cT
BA−1

B b +
(

cT
N − cT

BA−1
B AN

)
xN .

Dictionary (5) is now just the system of equations

xB = A−1
B b−A−1

B ANxN , z = cT
BA−1

B b +
(

cT
N − cT

BA−1
B AN

)
xN . 28



Definition

A dictionary of the LP problem (P) maxx{cTx : Ax = b, x ≥ 0} is a system of equations

xB = A−1
B b−A−1

B ANxN ,

z = cT
BA−1

B b +
(

cT
N − cT

BA−1
B AN

)
xN ,

equivalent to

Ax = b,

z = cTx,

where up to column perturbation A = [ AB AN ] and x = [ xT
B xT

N ]
T is a block decomposition such that

AB is nonsingular.

A dictionary is called feasible if A−1
B b ≥ 0, so that x = (xB, xN) = (A−1

B b, 0) is a feasible (but
generally suboptimal) solution. (xB, xN) is then called a basic feasible solution.
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Linear Programming Duality



LP Duality

Let us again consider the LP instance we studied previously,

(P) max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.

We saw that the optimal value is 13.

In integer programming, instead of solving an LP relaxation to optimality one is often interested in
finding merely upper and lower bounds on the optimal value.

A lower bound is provided by any feasible solution. For example, x1, x2 = 1, x3 = 0 is feasible with
objective value 9.
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How can we obtain upper bounds?

Multiplying the first constraint by 3 we obtain

6x1 + 9x2 + 3x3 ≤ 15,

and since x1, x2, x3 ≥ 0, this yields an upper bound on the objective function:

z = 5x1 + 4x2 + 3x3 ≤ 6x1 + 9x2 + 3x3 ≤ 15,

Likewise, taking the sum of the first two constraints yields the valid upper bound

z = 5x1 + 4x2 + 3x3 ≤ 6x1 + 4x2 + 3x3 ≤ 16.
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More generally, such bounds can be obtained from any sum of positive multiples of the
constraints for which the resulting coefficients are no smaller than the corresponding
coefficients of the objective function:

[
5 4 3

]
≤
[
y1 y2 y3

] 2 3 1
4 1 2
3 4 2

 , y1, y2, y3 ≥ 0

⇒ z ≤
[
y1 y2 y3

]  5
11
8

 .
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The best such upper bound is obtained by solving the LP instance

(D) min
y

5y1 + 11y2 + 8y3

s.t. 2y1 + 4y2 + 3y3 ≥ 5,

3y1 + y2 + 4y3 ≥ 4,

y1 + 2y2 + 2y3 ≥ 3,

y1, y2, y3 ≥ 0.

This is called the dual of the LP instance (P), the latter being called the primal.
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More generally, an LP of the form

(P) z∗ = max
(x,s)

cTx + dTs

s.t. Ax + Cs ≤ a,

Bx + Ds = b,

x ≥ 0,

s arbitrary

is associated with a dual

(D) w∗ = min
(y,t)

aTy + bTt

s.t. ATy + BTt ≥ c

CTy + DTt = d

y ≥ 0,

t arbitrary.
34



(D) has itself a dual: casting (D) in primal form,

(D’) max
(y,t)

− aTy− bTt

s.t. −ATy− BTt ≤ −c

− CTy−DTt = −d

y ≥ 0,

the bi-dual is found to be

(P’) min
(x,s)

− cTx− dTs

s.t. −Ax− Cs ≥ −a,

− Bx−Ds = −b,

x ≥ 0,

which is just the primal cast in dual form.
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Duality Theorems

To analyse the relationship between the primal-dual pair (P), (D), we will henceforth consider LPs in
the following standard form into which any LP may be cast under an appropriate reformulation,

(P) max
x

n

∑
j=1

cjxj

s.t.
n

∑
j=1

aijxj ≤ bi, (i = 1, . . . , m),

(D) min
y

m

∑
i=1

yibi

s.t.
m

∑
i=1

yiaij = cj, (j = 1, . . . , n)

yi ≥ 0, (i = 1, . . . , m).
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Theorem (Weak Duality Theorem)

i) If x is primal feasible and y is dual feasible (feasible for (P), (D) respectively), then

n

∑
j=1

cjxj ≤
m

∑
i=1

yibi. (8)

ii) If equality holds in (8), then x is primal optimal and y is dual optimal.

iii) If either (P) or (D) is unbounded, then the other programme is infeasible (has no feasible
solutions).
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Theorem (Strong Duality Theorem)

i) If (P) and (D) both have feasible solutions, then they have optimal solutions x and y such that
∑n

j=1 cjxj = ∑m
i=1 yibi.

ii) If either (P) or (D) is infeasible, then the other programme either unbounded or infeasible.
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Polyhedra and Polytopes



Polyhedra and Polytopes

Definition
A polyhedron is a set P ⊂ Rn described as an intersection of finitely many affine half spaces

P =

x ∈ Rn :
n

∑
j=1

aijxj ≤ bi, (i = 1, . . . , m)

 ,

for some A = (aij) ∈ Rm×n and b ∈ Rm.
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Definition
A polytope is a set P ′ ⊂ Rn described as the convex hull of finitely many points

P ′ = conv
{

xk : k ∈ [1, p]
}

:=

{
p

∑
k=1

λkxk :
p

∑
k=1

λk = 1, λk ≥ 0, ∀k

}

for some x1, . . . , xp ∈ Rn.
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Definition
Let C ⊂ Rn be a convex set. A point x ∈ C is an extreme point of C if x is not a convex combination
of two points in C distinct from x

6 ∃ x1, x2 ∈ C \ {x}, λ ∈ (0, 1) s.t. x = λx1 + (1− λ)x2.
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Theorem (Minkowski’s Theorem)
If P ⊂ Rn is a polyhedron and bounded, then P is a polytope, that is, P has a finite set X of extreme points,
and P = conv(X).
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Example of Branch & Bound in
Action



Example of Branch & Bound in Action

from page 5 of

http://www.inf.u-szeged.hu/~london/Linprog/linprog4handout.pdf
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