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Artificial Neural Networks

Input Layer
The input layer of a neural network is composed of artificial input
neurons, and brings the initial data into the system for further
processing by subsequent layers of artificial neurons.

Hidden Layer(s)

The hidden layers’ job is to transform the inputs into something
that the output layer can use.

Output Layer
The output layer the last layer of neurons that produces the
outputs/decisions. The output layer neurons may be observed,
given that they are the last “actor” nodes in the network.
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Multiclass learning

One neuron can only separate 2 classes
If we want to separate more than 2 classes we need more
neurons in the outpu layer (one for each class)
The class assosiated with the most active output neuron will
be predicted
The expected output (label) in this case is either the index of
the class, or a one-hot vector (4 vs 00001000)
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Multiclass learning

As mentioned before, we have one output neuron for each class
It would be good if output neurons could predict the p(ci |x)
To achieve this, we need to change the activation function of
the ouptut neurons

Softmax activation

Softmax(zi ) =
ezi∑
j(e

zj )

Using this function, we can view the output vector as a probability
vector.
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Cross-entropy loss function

The MSE loss function is better suited for regression learning
In case of classification, we need a different loss function that
takes into account that we want to learn class probabilities

Cross-entropy

CE (θ, y) = − 1
N

∑
n≤N

∑
d≤D

ynd ln(ond),

where θ holds the parameters of the network, y is the correct label
vector, o is the output vector, N is the number of examples and D
is the dimension of the output layer.
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The mathematical form of a neural network

To understand the training algorithm, we need to formulate
the neural network
The whole network could be viewed as a function, applying
matrix multiplications and the activation functions:

The parameters/weights of the ith layer will be denoted by Wi

The input for a hidden layer is either the input (X ) or the
output of a previous hidden layer
Fi denotes the activation function of the ith layer

Mathematical form of a NN with two hidden layer

NN(X ) = F2(W2 ∗ F1(W1 ∗ F0(W0 ∗ X )))
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Backpropagation algorithm

We can use the simple gradient descent algorithm to optimize
the weights of the network
Using the cross-entropy loss we can calculate the gradients of
the output layer
What about the hidden layers?

By derivating the NN function wrt. some parameters we can
calculate the gradients of hidden neurons too (using the chain
rule)
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Backpropagation algorithm

1 Calculate the output (feedforward phase)
2 Error of the output layer: oi − yi

3 Backpropagation step: propagate the output error back layer
by layer in the NN, each neurons distributes their error to their
input neurons proportionately to the weights between them.

4 Calculate the gradients, assuming sigmoid hidden activation:
5 Update the parameters
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Stochastic backpropagation algorithm

Sometimes we have to much data (memory is limited)
Using only batches of data to update the network is a solution
to this problem
This means that we minimize different loss functions as the
input data changes
In practice this approach works quite well (even better than
training on all data at once)
Stochastic gradient descent (SGD) is the dominant method
used to train deep learning models
If the batchsize==1, then its called online learning, for small
batchsizes (≤1000) its called minibatch training
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Input data

To help the optimizer it is usually necesery to rescale the input,
especcialy if the features have different ranges

Normalization
Simply force all features into a predefined range ([0,1] or [-1,1])

To achieve this we need to calculate the minimal and maximal
value of each feature

Standardization
Outliers could hurt normalization, in this case we shift and rescale
the features to have the same mean and deviation.
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The learning rate

Learning rate is a hyper-parameter that controls how much we are
adjusting the weights of our network with respect the loss gradient.
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Tips and tricks

Use a validation/development set to finetune the
hyperparameters (learning rate, number of epochs)
Avoid overfitting and peeking
More data is allways usefull
Shuffling the data is helpfull for SGD
Avoid large networks
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Practice

Python tutorial: practice_04.ipynb


