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Abstract

A new multisection technique in interval methods for global optimization is investigated, and nu-
merical tests demonstrate that the efficiency of the underlying global optimization method can be
improved substantially. The heuristic rule is based on experiences that suggest the subdivision of the
current subinterval into a larger number of pieces only if it is located in the neighbourhood of a
minimizer point. An estimator of the proximity of a subinterval to the region of attraction to a
minimizer point is utilized. According to the numerical study made, the new multisection strategies
seem to be indispensable, and can improve both the computational and the memory complexity
substantially.

AMS Subject Classifications: 65K05, 90C30.
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1. Introduction

This paper investigates new multisection variants of a branch-and-bound algo-
rithm [5, 8] for solving the box constrained global optimization problem [4, 8]:

minf (x), (1)

xeX

where the n-dimensional interval X CR" is the search region, and
f(x) : X C R" — R is the objective function. The global minimum value of 1 is
denoted by f*, and the set of global minimizer points of f on X by X*.

Herein real numbers are denoted by x, y, ..., and real bounded and closed interval
vectors by X = [X,X]|,Y =[Y,Y],..., where X; = minX; and X; = maxJX; for
i=1,2,...,n. The set of compact intervals is denoted by

0 :={[a,b]la < b,a,b € R} and the set of n-dimensional interval vectors (also
called boxes) by 1”. A function F : 1" — [ is called inclusion function of f in
X CR"— R, if x € X implies f(x) € F(X). In other words, f(X) C F(X), where
f(X) is the range of the function f on X. It is assumed in the present study that
the inclusion function of the objective function is available (possibly given by
interval arithmetic [5, 8]).
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The width of the interval X is defined by w(X)=X - X, if X €, and
w(X) = max’_, w(X;), if X € 1. The midpoint of the interval X is defined by
mX) = (X +X)/2,if X €1, and m(X) = (m(X)),m(X2),...,m(X,))",if X e ". F
is said to be an inclusion isotone function over X if VY, Z € I"(X) Y C Z implies
F(Y) C F(Z). F is called an order « (or a-convergent) inclusion function of /" over
X if VY e I"(X) w(F(Y)) —w(f(Y)) < Cw(Y)”, where C and o are some positive
constants. We study the basic algorithm described in [3] but only the Cut-Off tests
is used as the accelerating devices (Algorithm 1).

Algorithm 1. Basic B&B algorithm with midpoint and CutOff tests for Global
Optimization. The notation ““+” is used for entering and “—" for discarding
elements in the tree.

1 proc GlobalOptimize(X,f, F,e,T,Q) =

2 0={} Final Tree
3 T:=(X,Fy) Work Tree
4 f=Fyx Upper bound for f*
5 while(T #{})

6 (X, Ey) :={(X,Ex) € T|Ey = min{Fy },V(X;, Fx) € T}

7
8
9

T:=T-(X,Fy) Remove (X,Fy) from T
£ =min{f,f(X)} Improve upper bound for *
Subdivide(X,U", ..., U)

10 fori:=1tos

11 Fy:=F(U")

12 if (f <Ey)

13 then next;

14 if (w(U') <)

15 then Q0 := Q0+ (U',F)) Store U’ and Fin Q

16 else 7:=T+ (U',Fy) Store U’ and Fin T

17 T := CutOff Test(T, f) Y(X,Fy)€eT,f <Fy= remove (X,Fy) from 7|
19 end

2. Multisection in Global Optimization

Now we investigate the following ways of box subdivision. The first one (a) is the
traditional bisection by the widest interval component [8]. According to new
studies [1, 3, 5, 7], multisection may improve the efficiency of such branch-and-
bound techniques. The second way of subdivision, (b) provides 2" subintervals by
halving all interval components. The subdivision techniques (c) and (d) result in 3"
and 4" subintervals, respectively. The new subdivision method will use three
parameters, P, P, and pf and depending on the relative value of these parameters
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the current box will be subdivided using methods (a), (b) or (d). We have con-
sidered as an indicator parameter

fopy - —EX)

P =55 = o € 01

which gives us the relative position of the value f (see line 8 in Algorithm 1) in the
F(X) interval. According to our experiments, X subintervals with bigger pf X)
values are closer to minimizer points. In [2] this parameter has been successfully
used as a predictor of the computational cost of a particular subinterval.

P and P, (0 < P, < P, < 1) are two values considered as thresholds. Depending
on the values of P, P, and pf(X), X will be divided by a different strategy. Boxes
with pf < P, will be subdivided according to rule (a); boxes with P, < pf < P, will
be cut according to (b); boxes with pf > P, according to (d). Now we investigate
to what extent pf, this easy to obtain information can be utilized.

Theorem 1. There exist optimization problems (1) for which the inclusion func-
tion F(X) of f(x) is isotone and o-convergent, and the following statements are
true:

1. For an arbitrary large number N(> 0) of consecutive actual intervals of
Algorithm 1 have the properties that: neither of these processed intervals
contains a global minimizer point, and the related pf values are larger than a
preset P, < 1,

2. there exists a subsequence of the actual intervals converging to a global
minimizer point, for which pf < P, (for a fixed 0 < P}).

Proof: Consider an arbitrary optimization problem (1) that has two separate
global minimizer points, x*,x' (f(x*) = f* = f(¥), x* #x and x*, ¥ € X), and
which has also a nonoptimal point: £ € X : f(X) > f(x*). A suitable inclusion
function will be constructed on the basis of the naive interval arithmetic that
provides an isotone and a-convergent inclusion function F(X) (with o = 1) [8].

1. Consider a point x € X with f (%) > f*. For the set {Xl-}ﬁvzf)l of actual intervals
generated by subdivision for which x € X;, we define the inclusion function as:

G(2) = [E(Z) — Dw(2)". f],

where / is a value greater than or equal to F (X). It is easy to see that for a given
suitable /, and for any N > 0 one can find a large enough D in such a way that
the resulting inclusion function values will imply the first statement of Theorem
1. Thus for the first N iterations the current best upper bound on the global
minimum will be / = £, and the lower bound of the inclusion function G(X)
will be minimal for the first N members of the interval sequence {X;}. This is
why the first N actual intervals will be {X;}\,' (selected in Step 6 of Algorithm
1). By construction, the pf values will be equal to one, and hence greater than

P < 1.
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The inclusion isotonicity property obviously holds for the set {X,«}fg)], and for
all intervals related to these ones both the isotonicity and the a-convergence can
be established (for most cases e.g. simply by switching back to the inclusion
function F).

2. We define the inclusion function for intervals containing one of the global
minimizer points x" as
G(2) = [f(Z) — Cw(Z)",F(Z)),

where f(Z) is the lower bound of the range of /" on the argument interval, i.e.
f*. Also, the values of C and o are identical with those valid for the a-con-
vergence of the underlying F(X) inclusion function. For intervals containing
the minimizer point x* the inclusion function is given as

G(2) = [f(2) — Cw(2)", E],

where the upper bound E is determined in such a way that the p/ value be smaller
than the preset P; > 0 parameter for a fixed > 1 real number close to one:

E=Gz)+0/=ED
P

The sequence of actual intervals have N subintervals that belong to the subsequence
containing the point x according to the first part of the proof. Then, after a possible
transition period, all the actual intervals will contain either x/, or x* due to the a-
convergence of the inclusion function. In this phase, the actual intervals will contain
in rotation x” and x*, since the interval selection rule chooses that subinterval which
has the smallest lower bound on the global minimum value, and this lower bound is
a function of the width of the given subinterval. It is why f will converge to /*, and
without this construction for intervals containing x* it could not be established.

The constructed inclusion function will be obviously inclusion isotone. The
a-convergence property holds for the interval sequence converging to x’ with the
same C and o parameters as for F(X). For the interval sequence converging to x*,
the width of the inclusion function value will be 6(f — G(Z))/P;, whichis 6/P times
more than the neighbouring interval in the sequence of actual intervals containing
X, i.e. the a-convergence is proven with 6C/P; and with the same o parameter.

Since only those interval sequences converging to x* and x' are infinite, the
a-convergence property can be obviously proven for all cases. Now fixing the
inclusion functions defined in step 2, the earlier inclusion function values for those
intervals containing x* or x’ but not discussed in step 2 of the proof can be
enlarged to meet the inclusion isotonicity property. Finally, the f value is defined
as the largest upper bound for the subintervals. []

The consequence of Theorem 1 is that even with an isotone and a-convergent in-
clusion function, the generated sequence of investigated subintervals can be dis-
tracted for an arbitrarily long time (N iterations) from the global minimizer points.
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3. Numerical Results

The numerical tests were carried out on a Pentium II PC (233 Mhz, 64 Mbyte
RAM) running under Linux operating system. The programs were coded in C.
The interval arithmetic was implemented via the BIAS routines [6]. We used seven
standard global optimization test problems: the Six-Hump-Camel-Back, Gold-
stein-Price, Hartman-3, Levy-3, Shekel-5, Shekel-7 and Shekel-10 with the usual
search regions [4, 8]. The stopping criterion was that for all remained boxes
w(X) < &. Each time an actual box X is selected for subdivision from the list, we
evaluate f(m(X)) to improve f. The number of such real function evaluations is
the same as the number of iterations.

The two new strategies were: PA: P; and P, are optimized for all functions (same P
and P,) parameter for all problems); and P: P; and P, are optimized specially for each
single function. The optimal P, and P, parameters (constant during a B&B run) were
determined by a simple stochastic global optimization algorithm SASS (Single
Agent Stochastic Search) [9]. The objective function used was f (P, Py) = 3.5%
IE(Py, P,) + fE(P;, P»), where f (P, P») is calculated by the number of interval and
real function evaluations of the B&B Algorithm 1 using the P subdivision scheme.

The numerical results on the test set are comprised in Table 1. Data are displayed
for e =10"!, 1072 and 1073 to enable implications on the efficiency on different
complexity problems. Here the average values and the relative efficiency figures
compared to those achieved by the algorithm variant (a) are listed. The conse-
quences are:

Regarding IE values, the multisection procedures (c) and (d) are definitely worse
than the basic (a) method, while (b) resulted in better efficiency. The latter im-
provement grows with decreasing ¢ (with more difficult to solve problems). The
improvement of the (b) multisection method (s =4 in the algorithm) is in ac-
cordance with the results on similar multisection algorithms [7]. Both new variants
(P4 and P) performed even better, and the customized P was always the best (up
to 39% better than (a)).

The number of real function evaluations improved with all the studied new al-
gorithm variants. The P method does not give the smallest fE for ¢ = 10~! and
1073, This is in accordance with the merit function of the optimization gave the P,
and P, values: the compound computational cost of 3.5 x IE 4 fE was minimized.
The improvements for the P4 and P methods were between 52 and 81%, and
between 69 and 84%, respectively. With decreasing stopping criterion parameter ¢
the saving is improving.

The required CPU time, in contrast to /E and fE, can also describe the anticipated
overhead. Its value correlated the most with the /E value in the present study.
Thus the algorithm variant P was again always the best. The improvements for PA
and P were between 14 and 38%, and between 24 and 45%, respectively.

Regarding memory complexity (ML), the important question is whether a given
problem is to be solved within the available memory capacity. Although swapping
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Table 1. Summary of the numerical results

CPU IE fE ML
& subd. aver. /(a) % aver. /(@) % aver. /(@) % aver. /(a) %
107! (a) 0.0784 1294 646 182
(b) 0.0661 84 1090 84 250 39 210 115
(c) 0.1867 238 2644 204 252 39 256 141
(d) 0.1657 211 2639 204 129 20 349 192
PA 0.0676 86 1027 79 310 48 211 116
P 0.0599 76 943 73 199 31 184 101
1072 (a) 0.4147 10572 5286 1011
(b) 0.3143 76 8038 76 1786 34 867 86
(©) 0.6866 166 17102 162 1396 26 998 99
(d) 0.9677 233 26380 250 1199 23 1053 104
PA 0.3033 73 7595 72 1563 30 841 83
P 0.2734 66 6696 63 1141 22 652 64
1073 (a) 5.5214 104666 52332 9455
(b) 3.6571 66 75839 72 13578 26 7625 81
(c) 12.5427 227 256041 245 13268 25 10074 107
(d) 7.2420 131 159114 152 5693 11 4284 45
PA 3.4066 62 68367 65 9823 19 5009 53
P 3.0634 55 64183 61 8512 16 4444 47

The averages (abbreviated as aver.) of the data on the test runs are summarized together with the
relative values compared to the average values obtained by the (a) subdivision type. The notation used
for column headers: CPU: execution time in seconds; /E: number of Interval function Evaluations (as
F(X)); fE: number of real function Evaluations (as f(x)); ML: Maximum number of nodes in the
working List necessary for the actual solution

can be a solution in some cases, its price, in enlarged CPU time, can be very high.
The new multisection strategies decreased the memory requirements for ¢ = 1072
and ¢ = 1073, and the improvements for P4 and P were 17 and 47%, and 36 and
53%, respectively.

Summing up the results of the numerical tests, it can be concluded that if the
customizing of the P; and P, algorithm parameters is possible, then the P method
is the best choice. Otherwise the P; and P, values obtained for the P4 algorithm
variant, can be used as good choices. As in the case of subdivision direction
selection [1, 3], we expect that our results on the improved efficiency for the
underlying optimization algorithm remain valid for a wider class of interval op-
timization procedures with different sets of accelerating devices and other algo-
rithmic changes e.g. those discussed in [1, 3, 7].
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