
THE 14TH CONFERENCE OF PHD
STUDENTS IN

COMPUTER SCIENCE

Volume of short papers

CS2

Organized by the Institute of Informatics of the University of Szeged

July 3 – 5, 2024
Szeged, Hungary

Scientific Committee:

Organizing Committee:

Judit Jász, Balázs Bánhelyi, Tamás Gergely, Zoltán Kincses

Address of the Organizing Committee

c/o. Judit Jász
University of Szeged, Institute of Informatics
H-6701 Szeged, P.O. Box 652, Hungary
Phone: +36 62 546 728, Fax: +36 62 546 397
E-mail: cscs@inf.u-szeged.hu
URL: http://www.inf.u-szeged.hu/∼cscs/

Sponsors

University of Szeged,
Institute of Informatics

Preface

This conference is the 14th in a series. The organizers aimed to bring together PhD students
working on any field of computer science and its applications to help them publishing one of
their first papers, and provide an opportunity to hold a scientific talk. As far as we know, this
is one of the few such conferences. The aims of the scientific meeting were determined on the
council meeting of the Hungarian PhD Schools in Informatics: it should

• provide a forum for PhD students in computer science to discuss their ideas and research
results;

• give a possibility to have constructive criticism before they present the results at profes-
sional conferences;

• promote the publication of their results in the form of fully refereed journal articles; and
finally,

• promote hopefully fruitful research collaboration among the participants.

The papers emerging from the presented talks will be invited to be considered for full paper
publication the Acta Cybernetica journal.

Szeged, July 2024 Judit Jász
Balázs Bánhelyi
Tamás Gergely
Zoltán Kincses

i

Contents

Preface i

Contents ii

Program iii

Plenary talks 1
Gábor Péter Nagy: Graphs, Groups, and Geometry . 1
Márk Jelasity: Adversarial Robustness of Deep Neural Networks 2

Short papers 3
Tarlan Ahadli, Hajder Levente: Drone Localization using Stereo Vision and YOLOv7 3
Arafat Md Easin, Orosz Tamás: Enhancing SAP Ecosystem: Harmonizing Open-Source Tech-

nologies for Integration and Innovation . 7
Georgina Asuah, Arafat Md Easin, Orosz Tamás: Optimizing SAP Machine Learning-based

Solutions through Custom API Integration . 11
Zsófia Ádám, Bertalan Zoltán Péter, Zoltán Micskei, Imre Kocsis: Smart Contract in the Loop:

Fault Impact Assessment for Distributed Ledger Technologies 15
Zsófia Erdei, Melinda Tóth and István Bozó: Selecting Execution Path for Replaying Errors . 20
Martin Farkas, Bertalan Zoltán Péter, Zoltán Micskei, Imre Kocsis: Design Space Exploration

of Verifiable Credential Schemas using Partial Graph Modeling 24
Daniel Ferenczi, Melinda Tóth: Towards Correct Dependency Orders in Erlang Upgrades . . 28
Imre Gera and András London: Clustering and Community Detection in Nested Graphs . . 32
Emília Heinc and Balázs Bánhelyi: Effective Heuristics for Accelerated Branch and Bound

Solver of Process Network Synthesis Problems . 36
A. H. M. Sajedul Hoque, Gergő Bognár, Sándor Fridli: Quantitative Radiomics Analysis of

Lung CT Images Using Radial Harmonic Fourier Moments 39
Damaris Jepkurui Kangogo, Imre Kocsis: Design of Hyperledger Fabric Private Data Collec-

tions with Formal Concept Analysis . 43
Smiljana Knežev, István Bozó and Melinda Tóth: Identifying security issues in Elixir web

applications . 47
Imre Munkácsi, Márta Alexy Angyalné, Tamás Gábor Orosz: Optimizing SAP S/4HANA

On-Premise with Cloud-Ready Extensions: a Clean-Core system 51
Zoltán Ságodi, István Siket: State-of-the-Art Business Intelligence Applications: A Journey

Through Time and Technology . 56
Mátyás Sebők: Multi Model Recursion for Hungarian Electricity Load Forecasting 60
Wilson Valdez Solis: Convergence of Fog Computing, Blockchain, and Federated Learning for

Advancing New Generation Networks . 64
Patrik Péter Süli, Judit Knoll and Dr. Zoltán Porkoláb: Multithreading Atomicity Static

Analysis Checkers in Java . 69
Attila Szász and Balázs Bánhelyi: New interval-based training technique to parameter robust-

ness . 73
Norbert Vándor: Evaluating GPT-4 on a real Python bug dataset 76
Ronglin Zuo, Bálint Molnár: Knowledge Graph Powered LSTM in Stock Investment Decision

Making . 80

List of Authors 83

ii

Program

Wednesday, July 3

09:00 – 09:40 Registration

09:40 – 09:50 Opening

09:50 – 10:50 Talks – Image Processing (2x30 min.)

10:50 – 11:00 Break

11:00 – 12:00 Plenary Talk

12:00 – 13:30 Lunch Break

13:30 – 15:00 Talks – Security (3x30 min.)

15:00 – 15:30 Break

15:30 – 17:00 Talks – Blockchain (3x30 min.)

17:00 – 19:00 Free program

19:00 – Welcome Party

Thursday, July 4

09:00 – 10:30 Talks – Testing (3x30 min.)

10:30 – 11:00 Break

11:00 – 12:00 Plenary Talk

12:00 – 13:30 Lunch Break

13:30 – 15:30 Talks – Computation (4x30 min.)

15:30 – 16:20 Free program

16:20 – 18:00 Social event

18:00 – 19:00 Free program

19:00 – Wine & Cheese

iii

Friday, July 5

09:00 – 10:30 Talks – Development 1 (3x30 min.)

10:30 – 11:00 Break

11:00 – 12:00 Talks – Development 2 (2x30 min.)

12:00 – 12:15 Closing

12:15 – Lunch

iv

Detailed program
Wednesday, July 3

09:00 Registration

09:40 Opening

Session 1 Image Processing - Session chair: Kálmán Palágyi
09:50

A. H. M. Sajedul Hoque, Gergő Bognár and Fridli Sándor:

Quantitative Radiomics Analysis of Lung CT Images Using Radial Harmonic Fourier Mo-
ments

10:20
Tarlan Ahadli and Hajder Levente:

Drone Localization using Stereo Vision and YOLOv7

10:50 Break

11:00 Plenary Talk - Gábor Péter Nagy:

Graphs, Groups, and Geometry

12:00 Lunch Break

Session 2 Security - Session chair: Ákos Kiss
13:30

Martin Farkas, Imre Kocsis and Bertalan Zoltán Péter:

Design Space Exploration of Verifiable Credential Schemas using Partial Graph Modeling

14:00
Smiljana Knezev, Melinda Tóth and István Bozó:

Identifying security issues in Elixir web applications

14:30
Attila Szász and Balázs Bánhelyi:

New interval-based training technique to parameter robustness

15:00 Break

v

Session 3 Blockchain - Session chair: Tamás Pflanzner
15:30

Zsófia Ádám, Bertalan Zoltán Péter, Zoltán Micskei and Imre Kocsis:

Smart Contract in the Loop: Fault Impact Assessment for Distributed Ledger Technologies

16:00
Damaris Kangogo and Imre Kocsis:

Design of Hyperledger Fabric Private Data Collections with Formal Concept Analysis

16:30
Wilson Valdez:

Convergence of Fog Computing, Blockchain, and Federated Learning for Advancing New
Generation Networks

17:00 Free program

19:00 Welcome Party

vi

Thursday, July 4

Session 4 Testing - Session chair: Attila Szatmári
09:00

Patrik P. Süli, Judit Knoll and Zoltán Porkoláb:

Multithreading Atomicity Static Analysis checkers in Java

09:30
Zsófia Erdei, Melinda Tóth and István Bozó:

Selecting Execution Path for Replaying Errors

10:00
Norbert Vándor:

Evaluating GPT-4 on a real Python bug dataset

10:30 Break

11:00 Plenary Talk

Márk Jelasity:

Adversarial Robustness of Deep Neural Networks

12:00 Lunch Break

Session 5 Computation - Session chair: Richárd Farkas
14:00

Emília Heinc and Balázs Bánhelyi:

Effective heuristics for accelerated branch and bound solver of process network synthesis
problems

14:20
Mátyás Sebők:

Multi Model Recursion for Hungarian electricity load forecasting

14:40
Imre Gera and András London:

Clustering and Community Detection in Nested Graphs

15:00
Ronglin Zuo and Bálint Molnár:

Knowledge Graph Powered LSTM in Stock Investment Decision Making

15:30 Free program

16:20 Social event

18:00 Free program

19:00 Wine & Cheese

vii

Friday, July 5

Session 6 Development 1 - Session chair: József Dániel Dombi
09:00

Md. Easin Arafat and Tamás Orosz:

Enhancing SAP Ecosystem: Harmonizing Open-Source Technologies for Integration and
Innovation

09:30
Zoltán Ságodi, István Siket:

State-of-the-Art Business Intelligence Applications: A Journey Through Time and Technol-
ogy

10:00
Daniel Ferenczi and Melinda Tóth:

Towards correct dependency orders in Erlang upgrades

10:30 Break

Session 7 Develpment 2 - Session chair: András Erik Csallner
11:00

Imre Munkácsi, Márta Alexy Angyalné and Tamás Gábor Orosz:

Optimizing SAP S/4HANA On-Premise with Cloud-Ready Extensions: a Clean-Core sys-
tem

11:30
Georgina Asuah, Md Easin Arafat and Orosz Tamas:

Optimizing SAP Machine Learning-based Solutions through Custom API Integration

12:00 Closing

12:15 Lunch

viii

PLENARY TALKS

Graphs, Groups, and Geometry

Gábor Péter Nagy
University of Szeged, Szeged, Hungary

A graph is said to be k-regular if every vertex is incident to exactly k edges, implying that
each vertex has k neighbors. A strongly regular graph, on the other hand, is a k-regular graph
with an additional property: for any two vertices, the number of common neighbors can only
assume two distinct values, denoted by λ and µ, depending on whether the two vertices are
adjacent or not.

Constructing strongly regular graphs with specified parameters (k, λ, µ) is not a trivial task.
Often, these constructions rely on various combinatorial structures or geometric objects defined
over finite fields, such as Latin squares, ellipsoids, or paraboloids in higher-dimensional spaces.

Graphs that exhibit numerous symmetries among strongly regular graphs are of particular
interest to us. A prime example of such a graph is the Petersen graph on 10 vertices. In my
presentation, I will discuss several general construction methods that highlight the captivating
interplay between finite groups and finite geometries.

1

PLENARY TALKS

Adversarial Robustness of Deep Neural Networks

Márk Jelasity
University of Szeged, Szeged, Hungary

Deep neural networks (DNNs) are the foundations of AI systems, yet they are known to
have several vulnerabilities that are unsolved to this day. A particularly interesting vulnerabil-
ity is that it is possible to construct inputs to these networks that are extremely close to natural
inputs (eg. invisible perturbations to images) yet result in completely unexpected behavior. In
the talk I will give several examples of this problem, and I will also present some of our own
results in the area. I will briefly touch on the formal verification of neural networks from the
point of view of adversarial robustness, and I will also discuss some applications like attacking
semantic image segmentation networks and attacking entire ensembles of models.

2

Drone Localization using Stereo Vision and YOLOv7

Tarlan Ahadli, Hajder Levente

Abstract: This study combines stereo vision and the YOLOv7 object detection model to de-
tect Unmanned Aerial Vehicles (UAVs), aiming to enhance drone monitoring and address as-
sociated security and privacy concerns. Employing a Gaussian Mixture Model (GMM) for
preprocessing, our approach improves detection and tracking efficiency for real-time applica-
tions. We introduce two datasets: one for general drone detection and another specifically for
drone localization with stereo cameras, supporting the training and validation of UAV detec-
tion models. Conducted experiments utilizing robust Python libraries demonstrate the sys-
tem’s effectiveness in real-time surveillance scenarios, marking a meaningful contribution to
drone management technology.

Keywords: UAV Detection, Stereo Vision, YOLOv7, Real-Time Tracking, Surveillance Systems

1 Introduction

Drones are increasingly utilized in fields like entertainment and delivery, offering efficiency
but also posing privacy and security risks, calling for improved monitoring solutions and up-
dated regulations [1, 2, 3]. Existing detection technologies, such as radar and acoustic systems,
struggle with object differentiation and operational conditions, whereas RF detection can miss
drones with low-signal emissions [4, 5, 6, 7, 8, 9].

Our research proposes a system combining stereo vision with the YOLOv7 model, refining
drone detection and simplifying the tracking process, sidestepping YOLOv7’s intensive com-
putations [10]. Drawing from VOT advancements, such as transformer applications in MS-
AOT [11, 12, 13], our method employs feature-based bounding box tracking and stereo vision
for precise drone localization.

Further, we present two tailored datasets for training machine learning algorithms and en-
hancing drone surveillance technology, compiled from public sources for comprehensive re-
search utility 1 2.

2 Methodology

Our approach to UAV monitoring integrates Detection, Tracking, and Localization, using
the YOLOv7 algorithm for its superior accuracy and processing speed in real-time applica-
tions [10]. This performance is attributed to an optimized CNN backbone and focal loss [14],
addressing class imbalance. Before detection, input frames are preprocessed with a GMM-
based Background Subtraction (GMM-BS) method [15], generating a binary mask M(x) to dis-
tinguish between foreground and background:

M(x) =

{
1 if p(x|GMM) > θ,

0 otherwise.
(1)

Post-processing refines this mask, and the YOLOv7 algorithm then processes the segmented
moving objects. For tracking, a feature-based algorithm tracks the drone’s trajectory using
spatial movement, aspect ratio, and color similarity metrics. The Euclidean distance deuclid =√
(x2 − x1)2 + (y2 − y1)2 is calculated between consecutive positions, aspect ratio consistency

1Drone Detection Dataset repository: https://github.com/tarlanahad/drone-detection-dataset
2Stereo Vision Drone Localization Dataset: https://github.com/tarlanahad/

stereo-vision-drone-localization-dataset

3

https://github.com/tarlanahad/drone-detection-dataset
https://github.com/tarlanahad/stereo-vision-drone-localization-dataset
https://github.com/tarlanahad/stereo-vision-drone-localization-dataset

Saspect = ARcurrent−ARprevious by the change in the drone’s bounding box, and color similarity
Scolor =

∑√
Hcurrent ×Hprevious using the Bhattacharyya coefficient for color histograms.

Localization employs a calibrated stereo camera system for 3D positioning using stereo-
vision triangulation techniques. The 3D world coordinates X correlate to image plane coordi-
nates U1 and U2 for the first and second cameras, represented as U1 ∼ P1X and U2 ∼ P2X ,
where P1 = K1[I | 0] and P2 = K2[R2 | t2] are the projection matrices. The drone’s 3D position
X is estimated using SVD or optimization techniques [16].

3 Implementation

System Architecture and Libraries. To construct an effective drone detection system, we
leveraged Python’s scientific computing libraries, integrating OpenCV for advanced image
processing, NumPy for numerical computations and matrix operations, TensorFlow for neu-
ral network model development, and Scikit-learn for additional machine learning capabili-
ties. The system’s performance and computational efficiency were optimized through a high-
performance Intel Core i7 workstation with 16GB RAM, facilitating the processing of large
datasets and complex algorithms.
Dataset Preparation and Model Training. We prepared a dataset of approximately 4300
images, labelled in YOLO format, divided into training, validation, and testing sets with a
60/20/20 split.

Training involved random data augmentation to enhance model generalization and was
conducted over 72 hours, adjusting the learning rate dynamically for efficiency. Checkpoints
were set every 5 epochs to monitor and optimize performance.

The GIoU loss, as shown in Figure 1a, demonstrates a decreasing trend, indicative of the
model’s improving capability in accurately identifying the position and scale of drones over
the training period.

(a) GIoU Loss trend
during the training process.

(b) Progression of mAP@0.5
throughout the training
epochs.

Figure 1: Performance metrics over the training epochs.

Subsequently, Figure 1b showcases the progression of the mAP@0.5 metric, reaching a high
score of 0.94 on the validation dataset. This underscores the model’s effectiveness in drone
detection, highlighting its precision and reliability.
Object Tracking and Camera Setup. Utilizing NumPy and OpenCV, we crafted an algorithm
for precise tracking, incorporating the GMM-BS algorithm and morphological operations for
heightened detection fidelity. The deployment of a stereo camera system, featuring MV-CA020-
20GM/GC cameras and SV-0614H lenses synchronized for time, was critical in acquiring high-
definition images for precise localization and calibration.

The selection of the DJI Tello drone for data gathering, owing to its diminutive stature, facili-
tated the emulation of authentic long-distance drone detection contexts. This apparatus proved
vital in curating a robust and varied dataset, encompassing 368 frames recorded at a rate of
5fps, featuring drones and pedestrians, thus amplifying the detection challenge’s complexity
and authenticity.

4

Figure 2: Stereo camera calibration with a checkerboard pattern.

Camera Calibration and Depth Perception. Once the checkerboard photos were taken, as
shown in Figure 2, a meticulous calibration of the stereo camera system was conducted using
MATLAB’s Stereo Camera Calibration module. This step is crucial for precise depth perception
and object localization in stereo images.

The calibration results were stored in a ’.mat’ file and integrated into our Python frame-
work, pivotal for the precision of our 3D localization methods and the efficacy of our drone
monitoring system.

4 Results

Our evaluation focused on the algorithm’s effectiveness with a stereo camera drone dataset,
demonstrating reliable drone tracking across frames and system robustness in real scenarios.

(a) Drone tracking using stereo cameras. (b) Drone trajectory esti-
mation.

Figure 3: Drone tracking and trajectory with stereo vision.

Initial GMM-BS adjustments were crucial for moving object identification, leading to suc-
cessful drone tracking post-calibration. Despite a simple Visual Object Tracking (VOT) ap-
proach, the system managed bounding box tracking in all frames, leveraging GMM-BS for
initial pixel distribution analysis.

Localization estimated the drone’s coordinates via triangulation, facing challenges in quan-
titative accuracy assessment due to dataset limitations. The algorithm’s trajectory visualization
in Figure 3 offers qualitative precision insights. Future work should incorporate high-accuracy
GPS for direct position comparison and enhanced localization accuracy.

The system delivered a detection rate of 3 FPS and a tracking rate of 7 FPS on a CPU setup,
indicating a viable balance for real-time UAV monitoring.

5 Conclusion

This study presents a stereo-vision-based system for drone detection, using machine learn-
ing to enhance drone localization, addressing security and privacy concerns. It suggests using
Kalman filtering for predicting drone movements, potentially increasing efficiency and accu-
racy. Key contributions include a new methodology for drone localization and two datasets:
one for training machine learning models using various public sources, and another for stereo
vision research in drone detection. Highlighting the growing importance of UAV surveillance

5

technology, this research lays the groundwork for future studies aimed at improving UAV mon-
itoring and exploring comprehensive UAV management for applications like urban surveil-
lance and environmental monitoring.

References

[1] Z. Dukowitz. Thieves use drone to steal almost $150,000 from atm. 2022.

[2] Drone carrying drugs, phones crashes outside ohio prison. 2015.

[3] H. Brandes. Drone carrying drugs, hacksaw blades crashes at oklahoma prison. 2015.

[4] J. Gong, J. Yan, D. Kong, and D. Li. Introduction to drone detection radar with emphasis on
automatic target recognition (atr) technology, 2023.

[5] C. Dumitrescu, M. Minea, I. M. Costea, C. I. Chiva, and A. Semenescu. Development of an acoustic
system for uav detection. 2020.

[6] Y. Sun, J. Li, L. Wang, et al. Deep learning-based drone acoustic event detection system for micro-
phone arrays. Multimedia Tools and Applications, 2023.

[7] M. M. Alaboudi, M. Abu Talib, and Q. Nasir. Radio frequency-based techniques of drone detection
and classification using machine learning. 2021.

[8] I. Nemer, T. Sheltami, I. Ahmad, A. U. Yasar, and M. A. R. Abdeen. Rf-based uav detection and
identification using hierarchical learning approach. 2021.

[9] S. Al-Emadi and F. Al-Senaid. Drone detection approach based on radio-frequency using convolu-
tional neural network. 2020.

[10] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7: Trainable bag-of-freebies sets new state-
of-the-art for real-time object detectors, 2022.

[11] Z. Yang, X. Wang, J. Miao, Y. Wei, W. Wang, and Y. Yang. Scalable video object segmentation with
identification mechanism, 2023.

[12] Z. Yang, Y. Wei, and Y. Yang. Associating objects with transformers for video object segmentation.
2021.

[13] Z. Yang, J. Zhang, W.-H. Wang, W. Han, Y. Yu, Y. Li, J. Wang, Y. Wei, Y. Sun, and Y. Yang. Towards
multi-object association from foreground-background integration. 2021.

[14] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection, 2018.

[15] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time tracking. 1999.

[16] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge Univer-
sity Press, ISBN: 0521540518, second edition, 2004.

6

Enhancing SAP Ecosystem: Harmonizing Open-Source Technologies
for Integration and Innovation

Arafat Md Easin, Orosz Tamás

Abstract: In today’s rapidly evolving digital landscape, organizations are increasingly turning
to open-source technologies to enhance their SAP systems. The concept of end-to-end integra-
tion of SAP Analytics Cloud (SAC) with Python-based technologies called Remote Function
Modules (RFC) and Business Application Programming Interface (BAPIs), aims to provide in-
sights into the benefits, challenges, and best practices. It explores a variety of open-source
frameworks and platforms that effectively integrate with SAC across domains like data sci-
ence, cloud computing, and DevOps. Through a comprehensive review of existing literature,
case studies, and real-world benchmarks, we highlight the advantages of incorporating new
open-source technologies within the SAP ecosystem, including improved flexibility, scalability,
and cost-effectiveness. We discuss key strategies for successful integration, focusing on data
interoperability, security, and performance optimization. By examining emerging trends and
future directions, this paper offers insights for organizations aiming to maximize the value of
integrating these technologies with SAC. Overall, this paper serves as a primer for researchers,
practitioners, and decision-makers interested in understanding and maximizing the value of
end-to-end integration and automation between SAP products and open-source technologies.

Keywords: SAP Analytics Cloud, Open-Source Technologies, End-to-end Integration

1 Introduction

The utilization of import data connections facilitates the process of integrating data from
multiple sources. Organizations rely on resilient and scalable data and analytics solutions in
the evolving landscape of data-driven decision-making. SAP’s continuous adaptation and in-
novation necessitate an analysis of the dynamic SAP data and analytics architecture [1]. SAP
Analytics Cloud (SAC) is another potent cloud-based solution for business intelligence and
analytics, transforming raw data into actionable insights. With its robust data management ca-
pabilities, SAC empowers organizations to harmoniously monitor, analyze, and visualize data
in real-time, offering a comprehensive platform for informed decision-making. The service
also offers analytics, data modeling, version control, Smart Discovery, time series forecasting,
R visualization, and Smart insights functionalities [2, 3].

In today’s analytics landscape, real-time data is crucial for success. This integration benefits
organizations by enabling proactive decision-making and enhancing responsiveness to oppor-
tunities and challenges. Achieving thorough and accurate data integration poses a common
challenge for businesses, especially in large-scale projects involving diverse data silos contain-
ing critical information [4]. Utilizing real-time and historical customer data enables businesses
to provide timely support, enhancing customer experience and revenues, and facilitating more
accurate customer demand forecasting. It also enables organizations to simplify operations,
leading to improved processes, reduced costs, and increased production across departments.
Additionally, accessing historical and real-time data facilitates more accurate and timely cus-
tomer demand forecasting.

In this continuum, SAC offers a range of integration options, allowing different integration
with existing landscapes or as a standalone platform [5]. Moreover, open-source technology
could emerge as a compelling alternative to proprietary software, offering a clear financial
benefit [6, 7]. In recent years, integrating such technology has become a more viable option
for enterprises seeking to enhance the security, quality, flexibility, and innovation potential of
SAC. Integrating open-source technology broadens SAC users’ access to diverse tools, enabling

7

refinement of analytics workflows and targeted resolution of specific business needs. This
introduction prepares us to find out how SAP Analytics Cloud and open-source technologies
interact, highlighting the benefits, challenges, and possibilities that arise from integrating them.

In this paper, our focus is to present the powerful potential of real-time live connections
through open-source technologies, as these data integration offers several advantages.:

• Firstly, the integration of Python-based open-source technologies and automation data
extraction from SAP by executing Analytics Cloud functions from Python scripts elimi-
nates the need for data replication, thereby avoiding data transfers from the source sys-
tem.

• Secondly, this integration ensures automatic updates with the latest data through OData
or REST API, facilitating the provision of real-time insights.

• Thirdly, SAC empowers users to create and analyse intricate models within the source
systems, enhancing analytical capabilities.

• Lastly, when leveraging SAP HANA Python Clients with the SAC Platform, confidential
data remains within the organization’s internal network, protected by robust firewalls,
while performing database operations and analytics directly on SAP HANA from Python.

2 Motivation

SAP Analytics Cloud (SAC) provides many ways to combine data, helping organizations
make the most of their information and enabling users to combine diverse datasets for compre-
hensive insights. SAC facilitates integration with all data sources through both live connections
and import connections. Live connections, also referred to as remote or online connections, pro-
vide direct access to tunnel connection data sources. This system allows us to import various
data connections through on-premise and cloud-based systems, including SAP HANA (High-
performance ANalytic Appliance), SAP Datasphere, SAP BW (Business Warehouse), SAP Uni-
verse, SAP SuccessFactors, SAP Integrated Business Planning, SAP Cloud for Customer, SAP
ERP (Enterprise Resource Planning), Google BigQuery, Google Drive, SharePoint Online, Sales-
force, SQL Database (including Azure Synapse), SAP Integration Suite Open Connectors, and
more.

Likewise, in the context of exporting models to files, various methods such as exporting
data to SAP Business Planning and Consolidation (BPC), OData Services (BW & BW/4HANA),
SAP S/4HANA, SAP Integrated Business Planning (IBP), and Data Export API are commonly
employed. Additionally, for establishing Live Data Connections, contemporary practices in-
clude utilizing SAP Datasphere, SAP HANA, SAP HANA Cloud, SAP S/4HANA, SAP BW
and BW/4HANA, SAP BPC Embedded, SAP Universes, Web Intelligence Documents, and
APOS Live Data Gateway [4, 8]. Through Live Data Connections, organizations gain direct
access to real-time data sources, empowering decision-makers with the latest information [9].
Moreover, Import Data Connections facilitate the integration of data from diverse sources, al-
lowing SAC to unify datasets from both connection types. Lastly, Export Data Connections
enable businesses to export and store data on external platforms seamlessly. Needless to say,
SAC not only transforms how organizations analyze data but also fuels innovation and drives
strategic decision-making in today’s dynamic landscape.

3 Proposed Approach

Setting up data connections correctly in SAP Analytics Cloud (SAC) is crucial, but it can be
tricky. If not done properly, it can lead to problems like data errors, system downtime, and

8

security risks. This can slow down operations, delay decision-making, and result in higher
costs for resolution.

This article primarily focuses on how to affect the open-sources integration procedures of
the SAP-based platform (shown in Figure 1). Therefore, some research questions are discussed
to identify the objectives of this paper. The study aims to find solutions by investigating the
advantages of implementing open-source technologies alongside the SAC. The listed questions
are as follows:

1. Which optimal Python-based open-source technologies best integrate with the SAC plat-
form, and why?

2. For current SAC infrastructure to be compatible and interoperable, how can enterprises
ensure efficient integration of innovative technologies with their current SAC infrastruc-
ture to achieve compatibility and interoperability?

3. What opportunities and difficulties come with using such open-source technologies
within the SAP ecosystem to drive innovation?

4. Which best practices and techniques should be used in SAC contexts to maximize the
benefits of these technologies and speed up the integration process?

SAP
Analytics

Cloud

Cloud Applications

File Server

Analytics Adapter

Custom Python Web Hook

Retrieve data from
Qualtrics and write to

HANA

ODATA API
SAP SuccessFactor

Hierarchies

REST API

SAP Cloud Platform

Direct Communication

CORE

Employee Management
Qualtrics

Smart Data Integration

Import Data Connection

Live Data Connection

Cloud Data Source

Figure 1: Integration of Open-Source Technologies with SAC Platform

The combination of such technologies with the SAC platform creates a technological foun-
dation for advanced data science applications. Thus, using Python libraries like pandas, scikit-
learn, TensorFlow, and PyTorch in the SAC environment allows for advanced data processing,
statistical analysis, and machine learning applications [10]. Additionally, machine learning can
be utilized to model existing visualization types and their associated user stories. This model
is then employed to predict recommended visualization types for new user stories, enhancing
data-driven decision-making.

Nowadays, Python has a vast modeling and predictive analytics toolbox, and this integra-
tion allows data scientists to easily access and leverage SAC’s analytics and data visualization
capabilities even more along with Matplotlib and Plotly. Organizations might accelerate the
development and implementation of data science solutions, enabling the investigation of com-
plicated datasets, the development of predictive models, and the production of useful insights,

9

employing this technological combination. To further investigate these issues and concepts, re-
searchers could essentially examine how open-source technologies are integrated into the SAP
ecosystem. This investigation aims to reveal information that can facilitate innovation, enhance
company procedures, and support decision-making.

4 Conclusion

The business environment is changing noticeably right now, and customers are expecting
more. No one can argue against the importance of data analysis in meeting consumer needs
and maximizing corporate success. Businesses rely heavily on predictive planning to help them
make well-informed decisions that provide more accurate and more effective results. Likewise,
organizations have the potential to benefit greatly from the integration of open-source solu-
tions based on analytics cloud with SAP systems. The smooth integration of SAP Analytics
Cloud (SAC) with RFC and BAPIs which are Python-based technologies has been talked about
in this article, along with its advantages, difficulties, and recommended practices. This study
not only provides valuable guidance for optimizing value from integration but also empha-
sizes the importance of predictive planning in helping organizations avoid costly mistakes and
seize opportunities. As a result, SAC meets contemporary business operations needs to gain a
competitive advantage in the data-driven era.

References

[1] Codorniz, R. SAP Analytics Cloud implementation-Step by step deployment. (2023)

[2] Gole, V., Shiralkar, S., Gole, V. & Shiralkar, S. Leverage SAC to Create "All-in-One" Analytics Plat-
form. Empower Decision Makers With SAP Analytics Cloud: Modernize BI With SAP’s Single Platform For
Analytics. pp. 79-122 (2020)

[3] Nazarov, D., Morozova, A. & Kokovikhin, A. SAP analytic cloud: A tool for the formation of pro-
fessional competencies of business analyst. CEUR Workshop Proceedings. 2570 pp. 1-4 (2020)

[4] Tran, D. Using SAP Analytics Cloud (SAC) for visualizing data and detecting problems. (2023)

[5] Sidiq, A. SAP Analytics Cloud. 2nd Edition. Boston: Rheinwerk Publishing, Inc. (2022)

[6] Olson, D., Johansson, B. & De Carvalho, R. Open source ERP business model framework. Robotics
And Computer-Integrated Manufacturing. 50 pp. 30-36 (2018)

[7] Mladenova, T. Open-source ERP systems: an overview. 2020 International Conference Automatics And
Informatics (ICAI). pp. 1-6 (2020)

[8] Wu. Unlock data integrations with SAP Analytics Cloud (SAC). Retrieved from
https://community.sap.com/t5/technology-blogs-by-sap/unlock-data-integrations-with-sap-
analytics-cloud-sac/ba-p/13578290 (Accessed on 23 March 2024).

[9] Arafat, ME., Georgina, A., Saha, S., & Orosz, T. Empowering Real-Time Insights through LLM,
LangChain, and SAP HANA Integration. Proceedings of 6th International Conference on Recent Innova-
tions in Computing, Springer Nature Singapore. Vol. 2 (2023)

[10] Xu, L. User Story based Information Visualization Type Recommendation System.. International
Journal Of Information Engineering & Electronic Business. 11 (2019)

10

Optimizing SAP Machine Learning-based Solutions through
Custom API Integration

Georgina Asuah, Arafat Md Easin, Orosz Tamás

Abstract: The business landscape is characterized by rapid changes, dynamic customer pref-
erences, and evolving market trends. SAP HANA, with its in-memory processing architecture
and robust foundation for real-time data analytics and processing, has emerged as a powerful
platform to meet this demand. In this paper, we present a comprehensive implementation and
deployment of an anomaly detection solution within the SAP HANA Fiori web application
using a custom Application Programming Interface (API).

Keywords: SAP Fiori, Machine Learning, API Integration

1 Introduction

In today’s world, where digital advancements and big data are everywhere, organizations
are always trying to get useful insights from their large amounts of data [1]. The business
environment is marked by swift transformations, ever-changing market trends, and dynamic
consumer preferences [2]. Real-time decision support has become not only a competitive ad-
vantage but a necessity for organizations across industries [3]. SAP HANA with its in-memory
computing architecture and robust foundation for real-time data analytics and processing, has
emerged as a powerful platform to meet this demand [4]. However, a smooth integration of
machine learning (ML) and artificial intelligence (AI) capabilities is necessary to fully utilize
SAP HANA’s potential [5]. With this connection, businesses can gain actionable insights from
their data and make informed decisions instantly.

Nowadays, ML algorithms utilize data analysis techniques to identify patterns and corre-
lations in historical data, enabling the extraction of valuable information and the creation of
algorithms [6]. Integrating custom APIs with standard SAP ML-based solutions can signifi-
cantly enhance their performance and capabilities. These APIs allow organizations to adapt
ML models to their specific needs and requirements, enabling them to address unique busi-
ness challenges effectively [7]. Moreover, the Predictive Analysis Library (PAL) in SAP HANA
emerged as a robust framework for creating unsupervised anomaly detection algorithms [8].
Nevertheless, this method has certain constraints as it does not provide the user with the ability
to personalize the algorithm’s parameters or incorporate domain knowledge into the anomaly
detection process. This necessitates the use of custom APIs to enhance the precision and effi-
ciency of anomaly detection.

2 Literature Review

Following the architecture of ML in SAP HANA, we can explore the relevant examples and
their results. [9] proposed a distributed and unified API service for machine learning models
that helps the ensemble of multiple models, resulting in better predictions and other benefits
such as wider availability, greater usability, and lesser resource constraints. The challenge of
creating ML APIs that are easy to learn and use, especially for novices was addressed by [10].
Their work focused on analyzing the use of scikit-learn, a widely used ML API, by the Kaggle
community. [11] in their paper presented a case study on integrating an SAP ERP system with
an external web service using API access, demonstrating the implementation of algorithms and
transactions in SAP ERP.

In a recent study by [8], the K-Means clustering algorithm, a widely used unsupervised
anomaly detection technique, was employed to detect fraudulent transactions in a dataset of

11

retail transactions. The K-Means technique divides the data into a predetermined number of
clusters, with each cluster representing a set of data points that exhibit similar features. By
analyzing the distribution of data points within these clusters, outliers or anomalies can be
identified as those points that lie far from the cluster centers. They demonstrated that the K-
Means algorithm effectively identified fraudulent transactions in the retail transaction dataset,
highlighting its potential as a valuable tool for fraud detection in the retail industry.

3 Research Methodology

The proposed solution is designed to leverage machine learning models from the renowned
scikit-learn (sklearn) library. Whereas, the K-Means clustering algorithm for unsupervised
anomaly detection is employed. K-Means partitions data into clusters, with anomalies iden-
tified as points distant from cluster centers. This method effectively detects anomalies in retail
transactions, showcasing its potential for fraud detection. This approach ensures robust and
well-established algorithms for data analysis and predictive modeling.

Afterward, the ML models are trained and validated, and scalable and accessible APIs are
created for predictive capabilities. To achieve this, the FastAPI framework is employed, pro-
viding a high-performance and easy-to-use platform for building RESTful APIs in Python. The
deployment of the API is orchestrated on the Azure cloud service provider, chosen for its ro-
bust infrastructure and seamless integration with FastAPI. The finalized API serves as a bridge
between the ML models and the SAP HANA Fiori web application. This integration enhances
the functionality of the web application by incorporating intelligent decision-making capabil-
ities based on the ML models’ predictions. The SAP HANA Fiori web application acts as the
user interface, facilitating a smooth interaction between end-users and the predictive models.

4 Results and Discussions

This work involves the creation of a REST API using Python to enhance SAP ML-based
solutions. The experimental results are shown and discussed below.

Figure 1: Overview of SAP HANA Fiori project configuration.

This application consumes OData API/Service and loads data from the system. The ap-
plication interface (shown in Figure 1) is configured to present the sample data and make the
external API call.

12

Figure 2: Comparison of different estimators for anomaly detection.

Sklearn estimators are examined and compared. Figure 2 compares Robust covariance, One-
Class SVM, One-Class SVM (SGD), Isolation Forest, and Local Outlier Factor (LOF) estimators.
The LOF was chosen for anomaly detection. It excels at identifying outliers in complex datasets
because it captures local density deviation. Its non-parametric nature lets it adapt to different
data distributions, making anomaly detection robust. LOF excels in cases where anomalies
deviate from the norm to varying degrees [12].

Figure 3: Plotting the local outlier factor using randomly generated data with outliers

Figure 3 illustrates the Local Outlier Factor of the trained model on the randomly generated
data with outliers. LOF measures the local density deviation of a data point with respect to
its neighbors, aiding in identifying anomalies. A prediction error of 8 indicates the model’s
accuracy in detecting outliers.

The proposed environment offers significant advantages by incorporating FastAPI for API
development and scikit-learn’s ML models to improve anomaly detection in the SAP HANA
Fiori web application. This integrated system utilizes powerful algorithms, offering immediate
insights for well-informed decision-making. Moreover, the adaptability of customized APIs
effectively overcomes the constraints of SAP HANA, guaranteeing the streamlined identifica-
tion of irregularities. Despite its advantages, it may encounter difficulties such as the intricate
integration of APIs, the additional costs and effort required for maintenance, and the potential
problems with scaling as the amount of data increases.

13

5 Conclusion

In summary, this paper introduces a comprehensive journey in implementing and deploying
an anomaly detection solution within the SAP HANA Fiori web application. The scikit-learn’s
ML models, particularly the LOF, addressed the limitations experienced with SAP HANA’s
PAL, offering a more versatile and robust anomaly detection methodology. Therefore, the in-
tegration of FastAPI for API development facilitated the creation of a high-performance and
efficient interface, enhancing the usability of the trained LOF model. The uninterrupted in-
tegration of the anomaly detection API into the SAP HANA Fiori web application represents
a pivotal advancement. The establishment of connections between disparate systems, from
scikit-learn models to FastAPI, Azure, and SAP HANA Fiori, culminates in a cohesive and
powerful predictive analytics system. Consequently, this comprehensive solution not only ad-
dresses the technical challenges inherent in anomaly detection but also underscores a strategic
approach to leveraging a diverse set of technologies.

References

[1] Shi, Z. & Wang, G. Integration of big-data ERP and business analytics (BA). The Journal Of High
Technology Management Research. 29, 141-150 (2018)

[2] Yang, K. Quality in the Era of Industry 4.0: Integrating Tradition and Innovation in the Age of Data
and AI. (John Wiley & Sons,2024)

[3] Kulkarni, S. Implementing SAP S/4HANA. (Springer, 2019)

[4] Arafat, ME., Georgina, A., Saha, S., & Orosz, T. Empowering Real-Time Insights through LLM,
LangChain, and SAP HANA Integration. Proceedings of 6th International Conference on Recent Innova-
tions in Computing, Springer Nature Singapore. Vol. 2 (2023)

[5] Kohli, M. Using machine learning algorithms on data residing in SAP ERP application to predict
equipment failures. International Journal Of Engineering & Technology. 7, 312-319 (2017)

[6] SC, S. & Raja, B. A Review of Machine Learning and It’s Method. (IJETIE,2019)

[7] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer,
P., Gramfort, A., Grobler, J. & Others API design for machine learning software: experiences from
the scikit-learn project. ArXiv Preprint ArXiv:1309.0238. (2013)

[8] Oliveira, J. & Sousa, R. Unsupervised anomaly detection of retail stores using predictive analysis
library on sap hana XS advanced. Procedia Computer Science. 181 pp. 882-889 (2021)

[9] Nandigramwar, H., Mittal, A., Bhatnagar, A. & Rashid, M. A distributed and unified API service for
machine learning models. 2021 2nd International Conference On Intelligent Engineering And Manage-
ment (ICIEM). pp. 480-485 (2021)

[10] Reimann, L. & Kniesel-Wünsche, G. Improving the learnability of machine learning APIs by semi-
automated API wrapping. Proceedings Of The ACM/IEEE 44th International Conference On Software
Engineering: New Ideas And Emerging Results. pp. 46-50 (2022)

[11] Peksa, J. Autonomous Data-Driven Integration into ERP Systems. Design, Simulation, Manufactur-
ing: The Innovation Exchange. pp. 223-232 (2021)

[12] Angiulli, F. CFOF: a concentration free measure for anomaly detection. ACM Transactions On Knowl-
edge Discovery From Data (TKDD). 14, 1-53 (2020)

14

Smart Contract in the Loop: Fault Impact Assessment
for Distributed Ledger Technologies

Zsófia Ádám, Bertalan Zoltán Péter, Zoltán Micskei, Imre Kocsis

Abstract: Due to their decentralized and trustless nature, blockchain and distributed ledger
technologies are increasingly used in several domains, including critical applications. The be-
havior of such blockchain-integrated systems is typically driven by smart contracts. However,
smart contracts are application-specific software and may, therefore, contain faults with severe
system-level impacts. This is especially true in the case of the extensively used Hyperledger
Fabric (HLF) platform, where smart contracts are written in general-purpose languages (Java,
among others), and applications can go far beyond handling virtual-currency-like assets. In
this work, we present a novel formal-verification-based approach to smart contract verification
and a high-level empirical model of a HLF platform. Our Smart Contract in the Loop (SCIL)
method uses a model checker (Java Pathfinder) to check whether specific error properties hold
for a given smart contract, while a predefined combination of platform-level fault modes is
active. We facilitate the checking of HLF smart contracts without modification and enable the
propagation or non-propagation of platform faults through the smart contracts to the system
failure level.

Keywords: distributed ledger technology, blockchain, formal verification, model checking, Java
Pathfinder, Hyperledger Fabric

1 Introduction

Distributed ledger technologies (DLTs) – especially blockchains – provide high-integrity dis-
tributed databases without requiring a trusted party. Initially developed with financial applica-
tions in mind and powering cryptocurrencies, blockchain technology now has a variety of use
cases, including supply chain management, healthcare, and telecommunication. Blockchains
have powerful properties, such as immutability, distribution, decentralization, and high se-
curity that make them fit for cross-organizational and possibly critical applications. Typically,
such use cases are backed by permissioned platforms, such as Hyperledger Fabric.

Hyperledger Fabric (HLF) [1] is a widely used, mature, enterprise-grade permissioned
blockchain platform maintained by the Hyperledger Foundation. It offers pluggable consensus
mechanisms, identity management, flexible “subnetting” features, and privacy mechanisms.
Fabric powers several projects in both development and production in various domains.

Smart contracts, which have been introduced with Ethereum [2], are akin to stored pro-
cedures and describe computations that are executed on the blockchain with effects that are
persisted on-chain. They extend the original accounting “ledger” functionality of permission-
less blockchains with rich, self-executing business logic. In HLF, the network must have smart
contracts (called “chaincode”) for any meaningful transactions to be able to occur.

However, smart contracts are software and thus susceptible to faults with potentially dev-
astating consequences. Because of these risks, the verification of smart contracts has been a
central research topic in the past years, bringing about a number of approaches for fault re-
moval and prevention. These are mostly design-time methods, such as static analysis, and
primarily target Ethereum and the Solidity programming language. There is significantly less
support for the verification of enterprise smart contracts.

Formal verification approaches can be employed to reliably verify smart contracts in both
public and consortial applications [3, 4]. However, to our knowledge, there is no tooling that
enables the impact assessment of platform-level faults given an unmodified smart contract
implementation, especially for enterprise platforms such as HLF.

15

In this work, we propose the application of model checking to show whether a smart con-
tract may develop errors in the presence of certain platform-level faults. To this end, we present
a simplified model of the HLF blockchain platform with its primary components and config-
urable fault modes. We demonstrate the viability of our approach with a Java-based prototype
capable of simulating network faults in a hypothetical safety-critical application context using
Java Pathfinder [5]. Our method provides the means for one to plug in their Java HLF smart
contract to the framework and determine whether a predefined property holds while select
platform-level faults are active. We dub this approach Smart Contract in the Loop (SCIL).

The rest of this paper is organized as follows. In the next section, we provide the motivation
and background for our research. Then, in Section 4, we present our prototype model of HLF
and demonstrate the applicability of our approach. Finally, we conclude in Section 5.

2 Motivation

When high integrity is key, blockchains are already widely applied, even in critical applica-
tions, e.g., in the nuclear [6] or the railway [7] industry. However, where other extra-functional
properties, such as timeliness, age-of-information, dependability, or availability are also mat-
ters of concern, the system-level analysis of critical applications is still largely an open chal-
lenge.

This is the primary motivation of our work; as soon as blockchains and DLTs are sought to be
integrated into a system design process with extra-functional requirements to meet, there will
be a need for a method to show that the system is compliant with the requirements. Especially
in the case of enterprise blockchain platforms (such as HLF), there is no known support and
tooling to argue about the safety of such applications.

Smart contract faults may result in the loss of financial assets in permissionless systems and
the cryptocurrency world, but the potential effects are arguably far more devastating in the
context of permissioned and especially critical applications. While smart contracts can be en-
hanced with various defenses (including runtime verification mechanisms or techniques such
as n-version programming), faults of the platform itself may still induce unintended behavior.
For example, in HLF, if a malicious ordering service intentionally reorders and selectively ac-
cepts (i.e., occasionally drops) transactions, ledger updates may not always reflect the expected
world state. Platform-level faults include:

• malicious orderer behavior (transaction dropping, reordering),
• network issues (e.g., traffic congestion),
• hosting issues (e.g., a peer becomes unavailable),
• incorrect configuration (e.g., unsuitable endorsement policies),
• other malicious or unintentional behavior (e.g., client issues).
In a correctly configured network, Fabric protects against some of the potential faults. For

example, endorsement policies can be designed to tolerate the downtime of some peers. How-
ever, due to the potential complexity of a HLF application, it is challenging to argue about the
system-level effects of these platform faults on the applications. The model-checking-based
approach presented in this paper can serve as a solution to this.

3 Verification Approach with a Smart Contract in the Loop

As discussed in Section 2, we focus mainly on system-level and smart contract faults. Even
with state-of-the-art verifiers, out-of-the-box model checking of a large project, such as the im-
plementation of HLF, is still not feasible due to numerous factors, such as scalability issues, li-
braries, and the distributed nature of the project.

Instead, we focus on a high-level model of a HLF network, into which we can add the

16

Figure 1: Verification Process

chaincode as is (hence the name SCIL) and the configuration of the network under verification
(e.g., number of network participants such as orderers and nodes). Figure 1 shows an overview
of our process.
Fault Modes and Error Property The faults discussed in Section 2 might enable errors in the
network, e.g., valid transactions might not make it into blocks due to networking issues or a
malicious orderer. Thus, we can derive error properties based on the smart contract – these are
the issues the chaincode developer will be interested in. We can then separately enable different
faults in the network by configuring fault modes and then check with a model checker whether
the given combination of fault modes and the error property holds.

High-Level Configurable Fabric Model The difficulty of this approach lies in the empirical
nature of modeling the network – verification outcomes are hard to trust on an abstract model
based on informal documentation and some code. We identified abstraction as a key point
regarding the quality of the model; i.e., finding the right abstraction to catch all relevant aspects
to the faults and the error property while keeping the model and its limitations clear.

4 High-Level Model of Fabric

We summarized our Fabric model on the currently used level of abstraction in Figure 2. This
high-level architecture serves as the basis of our model – it captures the main participants and
flow of information, but it considers them to be black box, as we do not want to reimplement the
underlying algorithms (e.g., Raft [8]). Thus, behavior is kept straightforward and declarative.

Figure 2: High-level overview of the Fabric architecture

The main components, as shown in Figure 2, are:

Organizations represent the participants of the network; i.e., members of the consortium using
the network. Application clients, smart contracts, and peers are mapped to organizations.

Ordering Service The ordering service is an abstraction formed by all ordering nodes in the
network and the consensus protocol among them. We did not model the individual or-

17

derers or the consensus protocol itself. Instead, the ordering service can have a selected
fault mode, such as occasionally dropping transactions.

Peers maintain the distributed ledgers for the channels they are in. Furthermore, peers may
receive and simulate client transaction requests and later validate published blocks.

Channels group a number of peers to form a “subnet” in the HLF network. Newly created
blocks are broadcast to the peers in the channel. If endorsement policies are also mod-
eled, they affect the behavior of the channels. Inappropriately chosen policies can have
significant system-level effects.

Application Clients submit transactions via the peers.
Smart Contracts can be installed on the peers in the network and define application-specific

business logic. The smart contract (chaincode) can be provided as is, without the need
for any modifications.

Transaction Flow. HLF’s transaction flow is part of the model: clients first submit transaction
requests to endorsing peers, who respond with their endorsements and corresponding
read/write sets. Then, the client sends the endorsed requests to the ordering service.
During message exchange, it is possible to consider network issues (e.g., traffic conges-
tion).

Prototype Implementation

Our prototype implementation of the above model in Java, along with further user documen-
tation, is open-source and available on GitHub1. The currently implemented, most interesting
fault modes are the realistic faulty behaviors of the ordering service (i.e., if it can reorder and
lose transactions). Network configurations can be defined via builder classes, and error prop-
erties can be added as assertions.

In our current example application, the Fabric network controls the state of a train crossing,
where an autonomous car decides whether to cross a railway based on the Fabric network. In
this illustrative use case, an invalid ledger state read by the car can lead to a collision between
the car and the train. Even on this simplified model, JPF’s counterexample traces can show
how an ordering service reordering or dropping messages can result in an undesired state
(i.e., a collision).

The implementation already demonstrates the viability of our approach, but there are some
key improvements currently left for future work, such as eliminating the need for implement-
ing contract-specific mock classes when plugging in new smart contracts and making the trans-
action sequence more configurable.

5 Conclusion

We proposed a SCIL verification approach for enterprise smart contracts using model check-
ing, which can show how platform-level behavior can impact service-level behavior through
the smart contracts. Then, we analyzed HLF and proposed a high-level model of Fabric net-
works, which capture the main participants and transaction flow on an abstraction level suf-
ficient for verification. Lastly, we implemented a prototype of this model, including a simple
smart contract, configurable network, and fault modes to show how a model checker can prove
the presence or absence of a given error property.

In the future, we would like to refine our model further and extend our prototype so that
it may become a tool that can handle arbitrary chaincode – possibly enhanced with runtime
defenses such as n-version programming – out-of-the-box and find its potential faults as well as
how it is affected by platform-level faulty behavior.

1github.com/AdamZsofi/hyperledger-java-model

18

github.com/AdamZsofi/hyperledger-java-model

Acknowledgments

The project supported by the Doctoral Excellence Fellowship Programme (DCEP) is funded by
the National Research Development and Innovation Fund of the Ministry of Culture and In-
novation and the Budapest University of Technology and Economics under a grant agreement
with the National Research, Development and Innovation Office.

The work of Zsófia Ádám was partially supported by the ÚNKP-23-3-I-BME-9 New Na-
tional Excellence Program of the Ministry for Culture and Innovation from the source of the
National Research, Development and Innovation Fund.

The work of Bertalan Zoltán Péter was partially created under, and financed through, the
Cooperation Agreement between the Hungarian National Bank (MNB) and the Budapest Uni-
versity of Technology and Economics (BME) in the Digitisation, artificial intelligence and data
age workgroup.

References

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick. Hyperledger Fabric: a
distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, New York, NY, USA, 2018. Association for Computing Machinery.

[2] V. Buterin. Ethereum: a next-generation smart contract and decentralized application platform.
2014.

[3] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet. A survey on formal verification for solidity smart
contracts. In Proceedings of the 2021 Australasian Computer Science Week Multiconference, ACSW ’21,
New York, NY, USA, 2021. Association for Computing Machinery.

[4] B. Beckert, M. Herda, M. Kirsten, and J. Schiffl. Formal specification and verification of hyper-
ledger fabric chaincode. In 3rd Symposium on Distributed Ledger Technology (SDLT-2018) co-located
with ICFEM 2018: the 20th International Conference on Formal Engineering Methods, Gold Coast, Aus-
tralia, November 12, 2018, pages 44–48. Institute for Integrated and Intelligent Systems, 2018.

[5] National Aeronautics and Space Administration (NASA). Java pathfinder, 2005.

[6] M. Díaz, E. Soler, L. Llopis, and J. Trillo. Integrating blockchain in safety-critical systems: An appli-
cation to the nuclear industry. IEEE Access, 8:190605–190619, 2020.

[7] M. Kuperberg, D. Kindler, and S. Jeschke. Are smart contracts and blockchains suitable for decen-
tralized railway control? Ledger, 5, 2020.

[8] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages 305–
320, USA, 2014. USENIX Association.

19

Selecting Execution Path for Replaying Errors

Zsófia Erdei, Melinda Tóth and István Bozó

Abstract: The identification of the sources of a runtime error is a common task for Erlang
developers. Dynamic and static tools can assist in this task. Our work aims to help Erlang
developers in debugging processes to reproduce a runtime error. We would like to use and
extend the static analyser framework of RefactorErl with new algorithms to support this fault
localisation process. In our previous paper, we presented a symbolic execution-based analysis
method to find the source of runtime errors. This paper extends that work with path selection
heuristics to improve the efficiency of the algorithm in the RefactorErl framework.

Keywords: static analysis, Erlang, symbolic execution, fault localization, path selection

1 Introduction

Fault localization is a process of identifying the locations of faults in a program. Static
source code analysis techniques may help programmers in various tasks: code comprehen-
sion, testing, debugging, etc. Although bugs in the software are usually discovered due to
faulty behaviour (e.g. a runtime error occurs), finding the origin of the fault is a non-trivial
task. Program analysis techniques with symbolic execution can help to solve this task.

In a concrete execution, a program is evaluated on a specific input, and a single control-
flow path is explored. Symbolic execution [1] uses unknown symbolic variables in evaluation,
allowing to simultaneously explore multiple paths that a program could take under different
inputs. The use of symbolic execution can help us in fault localization.

We have previously implemented our prototype algorithm using backtracking and demon-
strated how it finds an execution path to a given expression containing an error [2]. The algo-
rithm uses a combination of the control flow graph and the RefactorErl [3] frameworks graph
representation of the analysed code to determine an appropriate execution path that may lead
to a given runtime error in Erlang software.

Because of the path-explosion problem, it is infeasible for symbolic execution tools to ex-
plore all execution paths of any nontrivial programs. Therefore, search heuristics are required
elements of symbolic execution. Using a good search heuristic can maximize code coverage
and improve the effectiveness of the analysis in practice.

In this paper, we examine several path selection heuristics that can be used to improve the
efficiency of our algorithm to make our method feasible for error detection in larger software
bases.

2 Background and related work

Symbolic execution [4, 1] is a technique used by many program analysis and transformation
techniques, such as partial evaluation, test-case generation or model checking. It can be used
for fault detection by exploring different execution paths of a program with symbolic values
instead of concrete values. Symbolic values represent a range of possible values that can satisfy
certain constraints. Tools based on such techniques can find errors that are hard to detect with
conventional testing methods, such as buffer overflows, division by zero errors, etc.

Symbolic execution works by maintaining a symbolic state and a path condition for each ex-
ecution path. The symbolic state contains the symbolic values of variables. The path condition
contains the constraints on the symbolic values that are derived from branch conditions along
the path. Symbolic execution uses a constraint solver to check the feasibility of each path and
to generate concrete inputs that can trigger faults.

20

KLEE [5] uses two main search strategies: Random Path Selection and State-Based Search.
Random Path Selection maintains a binary tree recording the program path followed for all
active states, where the internal nodes are the ones where the execution has forked and the
leaves represent the current states. The states are selected by traversing this tree from the root
and randomly selecting the path to follow at branch points. During the symbolic execution
when an internal node is reached, all child nodes of the given node have an equal probability
to be selected by the algorithm regardless of the size of the subtrees. The biggest advantage of
this strategy is that it avoids starvation occurring in loops containing symbolic conditions and
resulting in quick new state creation.

While symbolic execution is not a new topic in the Erlang ecosystem, previously published
papers mostly focus on formal [6, 7] and informal [8] definitions with the aim of program
verification. In a previous paper [2], we present a symbolic execution technique for Erlang that
can support debugging processes of Erlang developers through the RefactorErl framework.
Our goal was not to verify Erlang programs but to support their debugging processes through
the RefactorErl framework. Other related works on symbolic execution in Erlang focused on
verification [6, 7] or used informal definitions [8].

Our proposed method was built on the RefactorErl [3] framework, which is a static code
analysis tool that can be used to analyze and refactor existing Erlang code bases. The algorithm
uses the control-flow graph of RefactorErl and applies backward symbolic execution to gather
the constraints of the execution. Backwards symbolic execution is a technique that starts from
the error location and works backwards to the input parameters of the function. This technique
generates a set of constraints that must be satisfied by the input parameters to reach the error
location.

The prototype algorithm uses the Z3 SMT solver to decide the reachability of a path and
calculate possible input values for real execution. The Z3 SMT solver is a tool for solving
logical formulas. The proposed method can be used to identify execution paths that may lead
to a runtime error. We have implemented the presented algorithm for a reasonable subset of
the Erlang language.

3 Path selection algorithms

The algorithm uses a kind of symbolic backward execution called call-chain backward sym-
bolic execution [9]. This is a type of symbolic execution that mixes forward and backward
symbolic execution. Inside each function, it explores the execution paths forward but it follows
the call chain backwards from the target point to the program’s entry point. Starting at the tar-
get expression, we search for a path from the entry point of the function containing the target
expression itself. This intraprocedural part of the algorithm uses the control-flow graph of the
function to look for possible paths to the target node.

Once a valid intraprocedural path is found, the next step is to determine the callers of the
function. Using RefactorErl we can collect all expressions that contain such a function call.
Now the expression containing the function call will be our target, and the new starting point
will be the new function containing that expression.

We can see that our algorithm has two points when path selection is needed, once in the
intraprocedural part and once in the interprocedural part. Using different strategies would
make sense in each of these cases.

3.1 Intraprocedural strategy

For the intraprocedural part of our algorithm, we search for a path from the entry point of
the function containing the target expression itself. Starting at the root of the control flow graph
of the selected function, we explore as far as possible along each branch before backtracking.

21

If a path to the target node is found, we check the conditions along the path with the help of
a constraint solver for feasibility. Depending on the result we either return the path or reject it
and continue the backtracking to find another one.

Given the branching structure of the control flow graph, checking every possible path would
not be feasible. To make our algorithm more efficient, we can use estimations in the intrapro-
cedural part to reduce the problem space. Using the RefactorErl, we can query the depth of the
target node in its intermediate source code representation, in the Semantic Program Graph. We
can use this metric to reduce the size of the tree by removing sections of the tree that are deeper
than our target.

Consider the simple example in Figure 1. This code snippet contains divisions, and if the
denominator C is zero, a division by zero error occurs. Suppose that the error occurred in line
12. We can use the algorithm to find a realizable path to the target expression from the entry
point of the program, and also determine a set of input values that may trigger the error. We
need to traverse the control flow graph to find the target expression, but to enumerate all paths
might be very expensive in larger functions. To reduce our search space we can cut branches
that are deeper in the tree then our target expression. The tree next to the code snippet shows
the path the algorithm traverses on the simple example function.

Figure 1: Example module and corresponding path selection

3.2 Interprocedural strategy

Random path selection maintains a binary tree that records the program paths that could be
followed by all active processes. In this tree, the leaves represent the current processes, and the
internal nodes correspond to places where execution forked. We traverse this tree from the root
and randomly choose the path to follow at branch points. As a result, when we reach a branch
point, the set of processes in each subtree has an equal probability of being selected, regardless
of their size.

This strategy has two important properties. First, it favours processes that are high in the
branch tree and therefore relatively unconstrained. Selecting these processes more frequently
is valuable because they have greater freedom to reach uncovered code. Second, and most
importantly, this strategy prevents starvation when some part of the program rapidly creates
new states (a phenomenon known as fork bombing). In our case, this could happen for example
at recursive function calls.

22

4 Conclusion

Our proposed method builds upon the RefactorErl framework, a static code analysis tool
designed for analyzing and refactoring existing Erlang codebases. Our prototype algorithm
utilizes call-chain backward symbolic execution, a combination of forward and backward sym-
bolic exploration. Within each function, it analyzes execution paths forward, while tracing the
call chain backwards from the target point to the program’s entry point. Starting at the target
expression, the algorithm seeks a path from the entry point of the function containing that ex-
pression. The intraprocedural phase uses the function’s control-flow graph to identify potential
paths to the target node.

Given the branching structure of the program graph, checking every possible path would
not be feasible. To make our prototype algorithm more efficient we use various path selection
strategies. We use backtracking within the functions, supplemented with improvements that
take advantage of the information that can be extracted from the graph of RefactorErl, reducing
the size of the graph to be traversed. In the case of the interprocedural part, we use random
path selection to prevent starvation when some part of the program rapidly creates new states.
Combining these strategies we can effectively identify execution paths that might lead to run-
time errors.

References

[1] Baldoni, R., Coppa, E., D’elia, D. C., Demetrescu, C., and Finocchi, I. A survey of symbolic execution
techniques. ACM Comput. Surv. 51, 3 (May 2018).

[2] Erdei, Z., Tóth, M., and Bozó, I. Supporting the debugging of Erlang programs by symbolic execu-
tion. Accepted to Acta Univ. Sapientiae, Informatica, (2024).

[3] Tóth, M., and Bozó, I. Static analysis of complex software systems implemented in erlang. Central
European Functional Programming Summer School – Fourth Summer School, CEFP 2011, Revisited
Selected Lectures, Lecture Notes in Computer Science (LNCS), Vol. 7241, pp. 451-514, Springer-
Verlag, ISSN: 0302-9743, 2012.

[4] King, J. C. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.

[5] Cadar, C., Dunbar, D., and Engler, D. Klee: Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (USA, 2008), OSDI’08, USENIX Association, pp. 209–224.

[6] Vidal, G. Towards symbolic execution in erlang. In Perspectives of System Informatics (Berlin, Heidel-
berg, 2015), A. Voronkov and I. Virbitskaite, Eds., Springer Berlin Heidelberg, pp. 351–360.

[7] Vidal, G. Towards erlang verification by term rewriting. In Logic-Based Program Synthesis and Trans-
formation (Cham, 2014), G. Gupta and R. Peña, Eds., Springer International Publishing, pp. 109–126.

[8] Earle, C. B. Symbolic program execution using the erlang verification tool. In 9th International
Workshop on Functional and Logic Programming, WFLP’2000, Benicassim, Spain, September 28-30, 2000
(2000), M. Alpuente, Ed., pp. 42–55.

[9] Ma, K.-K., Yit Phang, K., Foster, J. S., and Hicks, M. Directed symbolic execution. In Static Analysis
(Berlin, Heidelberg, 2011), E. Yahav, Ed., Springer Berlin Heidelberg, pp. 95–111.

23

Design Space Exploration of Verifiable Credential Schemas using
Partial Graph Modeling

Martin Farkas, Bertalan Zoltán Péter, Imre Kocsis

Abstract: With the advent of the use of standardized verifiable credentials, information veri-
fiers begin to face a design space exploration problem: what kinds and potential sets of veri-
fiable claims to request from persons and organizations to meet their verification needs, espe-
cially so that on the one hand, they have to maximize the trustworthiness of claim verification,
but on the other hand, also observe the principle of data minimization and the correlation
risk minimization needs of credential holders. We propose approaching this design problem
through partial graph modeling and generation. We demonstrate that partial graph modeling
can be amenable to express the potentially diverse information graph requirements of a verifi-
cation scenario and generate admissible templates for so-called verifiable presentation grapht.
This facilitates the application of established design space exploration approaches, including
the enumeration of options integrated with multi-aspect evaluation and rank ordering.

Keywords: verifiable credentials, information graph, partial graph modeling

1 Introduction

In recent years, verifiable credentials (VCs) [1, 2] have stirred the interest of not just re-
searchers but also legislators and corporations, as the European Union decided to adopt the
ESSIF framework [3]. They are a crucial part of a novel and proliferating identity model called
self-sovereign identity, which aims to offer its users more interoperability, privacy, and control
over their identity on the Internet. VCs represent claims, and as more and more interdepen-
dent ecosystems and policies utilize them and the complexity of the claims grows, their design
rapidly becomes non-trivial.

The following question arises: How do we maximize the expressive power of a related set of
verifiable credentials while maintaining their holder’s control over their claims by minimizing
the amount of data shared and the risk of correlation?

To provide an answer to this question, we propose a partial-graph-modeling-based design
space exploration workflow using the principles of model-driven architectures.

We aim to design a framework for systematically designing verifiable credential schemas
that satisfy complex requirements. To this end, we use partial graph modeling and graph
generation [4] to generate diverse VC architectures, as the verifiable credential data model can
be expressed as subject-property-value relationships, and thus verifiable credentials can be
modeled as information graphs. To help ensure interoperability, the generated designs follow
the model-driven architecture (MDA) approach [5].

After a brief introduction of verifiable credentials, we present our approach, its architecture,
and its benefits. Finally, we discuss our future aims regarding our method.

2 Preliminaries

Verifiable credentials (VCs), as defined by the W3C [1], are a digital form of credentials
with cryptographically verifiable authorship, making them more trustworthy and tamper-
evident than their physical counterparts. They represent claims about a subject backed by
their authors. These claims can be expressed as subject-property-value relationships, e.g.
"Tom"-"has"-"blue eyes".

It is important to note that verifying a VC does not directly imply the truth of the claims
encoded in it, only their authenticity and currency. Rather, after authenticity and currency

24

are established, a verifier may evaluate the claims based on their own policy and trust in the
author.

VCs can be presented as verifiable presentations (VPs), where multiple VCs are cryptograph-
ically linked together by the holder, meaning that not only the authenticity of the credentials
is ensured, but so is the authenticity of the entity presenting them. VPs can also contain addi-
tional arbitrary data, for which one use-case links the aligned entities between related VCs.

In this model, the W3C identifies five roles:
• The holder, who possesses and presents VCs;
• The issuer, who asserts claims about one or more subjects, and creates VCs;
• The subject, about which claims are made;
• The verifier, who receives and processes VCs presented to them;
• And the verifiable data register (VDR), which mediates the creation and verification of

publicly used data, such as identifiers, verifiable credential schemas, revocation registries,
and so on.

Verifiable credential schemas are data schemas that enforce a specific structure over data collec-
tion. Data verification schemas ensure that the structure and contents of a VC conform to a pub-
lished schema. Data encoding schemas are used to map the contents of a VC to an alternative
representation format.

VC schemas make establishing the structure of common claim sets easier; their design in-
fluences the privacy characteristics of a verifiable credential ecosystem. How the claims are
divided up between credentials plays a crucial role in how expressive a set of related VCs is
and how precisely a holder can control what they disclose when they present a VC or VP.

An important concept in this case is Entity Alignment, which is the process of identifying
nodes that represent the same entity across multiple ontologies. In our case, if two VCs contain
claims about the same subject, there needs to be a process that enables us to identify them and
thus enable us to reason over the joint information graph, as shown in Figure 1.

Reasoning over information graphs constructed from verifiable credentials allows us to
make inferences and evaluate policies over subjects in a privacy-preserving way. Although
many small examples have been demonstrated in existing research, a systematic design ap-
proach has yet to be proposed for VC shema sets, over which a policy may reason.

3 Approach

To provide a systematic method for designing credential schemas which contain claims from
a predefined ontology, i.e. which credential should contain which claim from an information
graph model, we propose a design space exploration (DSE) [6] process using partial graph mod-
eling [4], which produces templates for platform-specific verifiable credential schemas, over

Figure 1: Decomposition of an information graph into verifiable credential schemas

25

Figure 2: The architecture of model generation using Refinery [8]

which VCs can be issued, from which the required information graph can be constructed and
reasoned over.

These designs follow the MDA [5] approach, as we recognize that interoperability is de-
sirable between ontologies and diverse sets of VC schemas, as well as between platform-
independent and platform-specific VC schema models, on platforms such as Hyperledger
Anoncreds [7] and JSON-LD [2].

To generate our models, we use Refinery [8]1, a partial graph refinement and graph gen-
eration tool, which can generate diverse graphs based on a ruleset written in its own domain
specific language. It requires the following input:

• A metamodel, specifying nodes and edge types and how they can be connected;
• Predicates, which declaratively denote patterns in a given metamodel;
• Error predicates, which denote unwanted patterns, suitable for effectively shrinking the

design space;
• Instance models, which are specific model parts that are required to be present in the

generated model;
• and the model scope, which denotes the desired size range of the generated graph, with

the option of including some specific model elements.

We define a generic metamodel and predicate set2, which generates models that reflect the
core logic of MDA. The generated model can be divided into three subgraphs analogous to the
steps of MDA. Figure 2 provides an overview of the generated graphs.

The first is an information graph. This is the graph over which we want to later reason.
The relationships are then “partitioned” into claims within VCs in a traceable way, meaning

there is a one-to-one correspondence between the relationships in the information graph and
the claims they turned into within the credentials. This forms a set of related VCs.

Then, the abstract set of VCs is refined into credential-format-specific representations, from
which they can be directly implemented. This ensures interoperability with multiple VC frame-
works, making the final system design more versatile.

The model can be refined with use-case-specific metamodel elements, predicates, and an
instance model. This means we can extend the model to satisfy complex requirements that can
be stated as patterns on an information graph. Examples of such requirements include: the
information graph should be a specific graph instance; two relationships must go into separate
credentials; a credential must contain at most two claims; etc.

1Online version of the tool is available at https://refinery.services/
2Current assets are available on GitHub at https://github.com/BlackLight54/dse-vc-refinery

26

https://refinery.services/
https://github.com/BlackLight54/dse-vc-refinery

Through this approach, a designer can generate diverse verification requirement setups for
their specific use case, which satisfy complex requirements, and model an interoperable, po-
tentially provably privacy-preserving credential ecosystem.

4 Conclusion

In this paper, we proposed a novel method for systematically designing verifiable credential
ecosystems from information graphs. We presented our approach for generating diverse data
presentation requirement sets in the verifiable credential context, utilizing partial graph mod-
eling. Our approach follows MDA principles, facilitating not only systematic design but also
technical interoperability.

Based on our initial proof-of-concept models, we are working on elaborating the full graph
generation facilities required for handling representative, real-life scenarios. We also aim to
create the methodology and tooling for a complete design workflow.

Acknowledgments

This work was partially created under, and financed through, the Cooperation Agreement be-
tween the Hungarian National Bank (MNB) and the Budapest University of Technology and
Economics (BME) in the Digitisation, artificial intelligence and data age workgroup.

The work of Bertalan Zoltán Péter, partially supported by the Doctoral Excellence Fellow-
ship Programme (DCEP) is funded by the National Research Development and Innovation
Fund of the Ministry of Culture and Innovation and the Budapest University of Technology
and Economics under a grant agreement with the National Research, Development and Inno-
vation Office.

References

[1] D. C. Manu Sporny, Dave Longley. Verifiable credentials data model v2.0. https://www.w3.org/
TR/vc-data-model-2.0/.

[2] G. Cohen. Verifiable credentials json schema specification. https://www.w3.org/TR/
vc-json-schema/.

[3] Essif lab. https://essif-lab.eu/.

[4] M. Famelis, R. Salay, and M. Chechik. Partial models: Towards modeling and reasoning with un-
certainty. In 2012 34th International Conference on Software Engineering (ICSE), pages 573–583, 2012.

[5] S. J. Mellor, K. Scott, A. Uhl, and D. Weise. Model-driven architecture. In International conference on
object-oriented information systems, pages 290–297. Springer, 2002.

[6] E. Kang, E. Jackson, and W. Schulte. An approach for effective design space exploration. In Proceed-
ings of the 16th Monterey Conference on Foundations of Computer Software: Modeling, Development, and
Verification of Adaptive Systems, FOCS’10, pages 33–54, Berlin, Heidelberg, 2010. Springer-Verlag.

[7] S. Curran, H. Yildiz, and S. Curren. Anoncreds specification. https://hyperledger.github.
io/anoncreds-spec/, 2022.

[8] K. Marussy, A. Ficsor, O. Semeráth, and D. Varró. Refinery: Graph solver as a service. ICSE 2024
Demonstrations, 2024.

27

https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-json-schema/
https://www.w3.org/TR/vc-json-schema/
https://essif-lab.eu/
https://hyperledger.github.io/anoncreds-spec/
https://hyperledger.github.io/anoncreds-spec/

Towards Correct Dependency Orders in Erlang Upgrades

Daniel Ferenczi, Melinda Tóth

Abstract: Erlang tooling offers rich options to control the exact tasks to perform during an
upgrade. This control aims to allow for zero-downtime upgrades. Upgrades affecting multiple
dependant modules have to reflect the dependency order in the upgrade’s configuration, as an
erroneous configuration results in unintended behaviour, possibly even downtime. This paper
presents two static analysis-based checkers for verifying module-related aspects of upgrades.
In our first analysis, we compare the actual dependency order derived from the source code
with that expressed in the upgrade’s configuration. We also analyze the code to find cyclic
dependencies among its modules. These pose a problem during upgrades and are generally
good practices to avoid.

Keywords: Erlang; upgrades; static analysis; upgrade safety; dependency order; RefactorErl

1 Introduction

Ensuring continuous operation of IT services is considered the norm in today’s software en-
vironment. While decades ago this was typically a feature of safety-critical systems, today we
can encounter it in many customer-facing applications: retail, banking, and entertainment. The
need for this is reasonable considering the global nature of these services. These applications
not only operate around the clock but are changed in the meantime without any noticeable
impact on the end user. The state-of-the-art tooling based on containers, serverless services
and other features offered by hyperscalers standardizes some of the associated tasks. These
solutions however require additional effort from operational specialists, for example, load bal-
ancers and draining periods have to be configured and the application state has to be preserved.
These update schemes also work on a high granularity: even small code changes require the re-
placement of a unit typically composed of the whole application binary. As larger applications
contain multiple such units, upgrades with a broader scope will require care when determining
which unit to change at each upgrade step.

In our work, we researched this challenge in Erlang-based [1] software stacks. Erlang was
developed with built-in features for concurrency, fault tolerance and continuous operation.
This thins the software stack Erlang applications require. Consequently, developers maintain-
ing them can create zero-downtime upgrades by solely using the features of the language and
its runtime. With regards to upgrades, Erlang allows for live replacement of application mod-
ules and has upgrade-related tooling built-in into the language as well. Although modules are
smaller units than the upgradeable units we discussed previously, the problem of identifying
how they depend on each other inside a given application is still applicable. Module depen-
dency structure is also a good candidate for analysis: cyclic dependencies are best to avoid in
general, the Erlang release handling guidelines even advise against using them, as they might
make safe upgrades impossible. We also support the detection of these with our checker, which
will aid developers when structuring their code.

As the application modules’ code meant to be upgraded and the upgrade specification are
both expressed in Erlang, we based our work on existing static analysis tools to inspect the
dependencies in the code. This paper is structured as follows: in the next Section we briefly
present the Erlang language and the RefactorErl [2] static analyzer we base our work open.
In Section we present the problems our checker focuses on, and its Erlang-specific aspects in
more detail. In Section we present related research.

28

2 Erlang and RefactorErl

Erlang is a dynamically typed, functional programming language. It was developed at Eric-
sson for use in the telecommunications domain. Given its origins, it has been designed as a lan-
guage apt for implementing highly scalable, fault-tolerant, distributed systems. These features
are provided by the runtime and standard libraries that are included with Erlang distributions.
Bundled tooling includes software for defining and managing upgrades on a fine-grained level
to ensure disruption-free upgrades. These tools are used for defining applications, releases
(entities composed of multiple Erlang applications) and respective upgrade files, appup and
relup. These upgrade files are interpreted by the Erlang runtime’s Release Handler [3].

RefactorErl [2] is a static analyzer for Erlang that also supports code comprehension and
refactoring. It analyzes loaded code, generates its abstract syntax tree and enhances it with out-
put from different analyzers: function, data-flow, etc. The resulting Semantic Program Graph
(SPG) [4] allows for easy analysis of the loaded program through a query languageand the im-
plementation of new checkers. Given its features, we chose it as our tool to implement our code
checker.

3 Problem Statement

Discrepancy detection in upgrade definitions Erlang source files (modules) may contain ref-
erences to functions exported in other modules. The hierarchy upon which modules depend
on each other is important during a release’s upgrade cycle. As complex upgrades involve
changes in multiple modules, if these depend on each other, their dependency has to be re-
flected in the upgrade steps as well. For example, if module A depends on module B, we have
to load B’s new code and resume its process before we resume processes running module A.
The steps that implement an upgrade for an application are typically declared in a appup file
by the developer specific to the application being updated. As a release may consist of mul-
tiple applications, appup files are later combined into a relup file. Although relup files are
typically generated from the appup files with the help of the release-related tooling offered by
Erlang. Naturally, the relup file may also be written manually, so to account for both manual
and automated workflows we compare the dependencies derived from the source files with
those implicitly expressed in the relup files. An example of an appup and its derived relup
file can be seen in Figure 1.
In the example’s appup file we declared an upgrade from version 1.0 to 1.1 and a downgrade
from version 1.1 to 1.0 respectively at lines 3 and 7. Specifically, we tell the Release Han-
dler to load the newer version of depmod and update module servermod, which depends
on depmod. The dependency relation is declared in the lists in lines 5 and 9. If we look at
the list of instructions, both load_module and update atoms declare code changes. The dif-
ference lies in that update takes care of temporarily suspending processes running the target
module, and transforming the internal state of the running process if the new version requires
it. These additional operations allow for zero-downtime upgrades. servermod being a server
implementation requires update for its code upgrade. The generated relup file is on a simi-
lar structure: it contains first the upgrade and then the downgrade instruction but contains the
lower-level operations executed by Erlang’s Release Handler. Without going into detail, we can
observe how the dependency relation results in depmod being changed before the dependant
servermod module in lines 19 and 20 for the upgrade, and 26 and 27 for the downgrade. In
these files, we are looking for suspend, load and resume instructions to ensure that these
dependencies are updated before dependant modules. Our research aims to verify whether
the dependency order expressed in relup files is consistent with the actual dependency of the
modules. The actual dependencies of an application are present in the source files. For their
analysis, we rely on RefactorErl’s feature for graphing and analyzing module dependencies.

29

1 %% appup file for application release_tst
2 {"1.1",
3 [{"1.0", [
4 {load_module, depmod},
5 {update, servermod, [depmod]}
6]}],
7 [{"1.0", [
8 {load_module, depmod},
9 {update, servermod, [depmod]}

10]}]
11 }.
12

13 %% relup file for release consisting of app release_tst
14 {"1.1",
15 [{"1.0",[],
16 [{load_object_code,{release_tst,"1.1",[servermod,depmod]}},
17 point_of_no_return,
18 {suspend,[servermod]},
19 {load,{depmod,brutal_purge,brutal_purge}},
20 {load,{servermod,brutal_purge,brutal_purge}},
21 {resume,[servermod]}]}],
22 [{"1.0",[],
23 [{load_object_code,{release_tst,"1.0",[servermod,depmod]}},
24 point_of_no_return,
25 {suspend,[servermod]},
26 {load,{servermod,brutal_purge,brutal_purge}},
27 {load,{depmod,brutal_purge,brutal_purge}},
28 {resume,[servermod]}]}]}.

Figure 1: Example of appup and relup files

Cyclical dependency detection Cyclical dependencies amongst modules may also put up-
grades at risk. The difficulties in determining the correct order for defining an upgrade are
noted in the Release Handling Section of the Erlang manual. In most cases, it is best to avoid
them altogether for code meant to be upgraded. As their presence is safe for modules that
are not updated in a given relup, we aim to only detect cyclic dependencies amongst mod-
ules configured for an upgrade. For this checker, we also rely on the graph analysis feature of
RefactorErl. For the analysis, the dependency structure will be modelled as a graph, where the
modules will be the nodes and dependency relations the edges. Our task will be to determine
if such a graph, excluding modules not being subject to an upgrade has a topological ordering.

4 Related work

Previous research [5] has analyzed the issue of cyclical dependencies in Erlang. The main
difference lies in the problem domain: while the author’s work focuses on clean code and refac-
toring, our present work concentrates on supporting safe, disruption-free upgrades. Upgrade
safety has been researched emphasizing runtime facets typically unrelated to an application’s
implementation language, like connection migration [6] between application versions or tools
to support schema changes in backing databases [7, 8]. Erlang is singular in this regard, as its

30

runtime provides facilities for handling state. Upgrade safety of Erlang [9] has been researched
with RefactorErl with a focus on detecting references in the source code that might become
invalid as the application is upgraded. Researching different unsafe patterns and a generic
approach to support upgrade safety are further areas worth exploring.

5 Conclusions

Erlang offers the tools necessary to create application releases with fine-grained instructions
to ensure disruption-free upgrades of modules. To achieve this, code has to be structured in an
upgradeable manner, and the release’s descriptor file should also reflect this structure correctly.
Our research demonstrates our initial steps to implement checkers based on the static analysis
tool RefactorErl, to aid developers in creating safe upgrades.

References

[1] Cesarini, F. & Thompson, S. Erlang Programming: A Concurrent Approach to Software Develop-
ment. (O’Reilly Media,2009)

[2] Bozó, I., Horpácsi, D., Horváth, Z., Kitlei, R., Köszegi, J., M., T. & Tóth, M. RefactorErl - Source Code
Analysis and Refactoring in Erlang. Proceedings Of The 12th Symposium On Programming Languages
And Software Tools, ISBN 978-9949-23-178-2. pp. 138-148 (2011,10)

[3] Logan, M., Merritt, E. & Carlsson, R. Erlang and OTP in Action. (Manning Publications Co.,2010)

[4] Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Víg, A., Nagy, T., Tóth, M. & Király, R. Modeling seman-
tic knowledge in Erlang for refactoring. Knowledge Engineering: Principles And Techniques, Proceed-
ings Of The International Conference On Knowledge Engineering, Principles And Techniques, KEPT 2009.
54(2009) Sp. Issue pp. 7-16 (2009,7)

[5] Li, H. & Thompson, S. Refactoring Support for Modularity Maintenance in Erlang. 2010 10th IEEE
Working Conference On Source Code Analysis And Manipulation. pp. 157-166 (2010)

[6] Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R. & Benson, T. Zero Downtime Release:
Disruption-Free Load Balancing of a Multi-Billion User Website. Proceedings Of The Annual Con-
ference Of The ACM Special Interest Group On Data Communication On The Applications, Technologies,
Architectures, And Protocols For Computer Communication. pp. 529-541 (2020)

[7] Maule, A., Emmerich, W. & Rosenblum, D. Impact Analysis of Database Schema Changes. Proceed-
ings Of The 30th International Conference On Software Engineering. pp. 451-460 (2008)

[8] Meurice, L., Nagy, C. & Cleve, A. Detecting and Preventing Program Inconsistencies under Database
Schema Evolution. 2016 IEEE International Conference On Software Quality, Reliability And Security
(QRS). pp. 262-273 (2016)

[9] Ferenczi, D. & Tóth, M. Static analysis for safe software upgrade. Annales Mathematicae Et Informati-
cae. (2023)

31

Clustering and Community Detection in Nested Graphs

Imre Gera and András London

Abstract: Nestedness is a strict structural property that was first observed in mutualistic eco-
logical networks. Since then, numerous metrics have emerged that quantify the global nest-
edness of a network, although methods to detect the detailed local nestedness structure of
networks were missing for a long time. Our research goal is to compare multiple approaches to
detect local nestedness in networks, and to introduce hierarchical clustering for this purpose.

In this paper, we compare both hierarchical clustering and overlapping community detec-
tion algorithms that detect nested structures in both bipartite and non-bipartite networks. We
show that hierarchical clustering can be adapted to unveil nested structures and find a fully
nested clustering of the network, while overlapping community detection can be used to find
all nested communities of a network.

Keywords: nestedness, network science, clustering, community detection

1 Introduction

Detecting structural patterns and groups of nodes with common properties, often referred to
as communities, in graphs has always been a crucial part of network science. Various methods
and approaches have emerged to find these patterns, including clustering (partitioning) and
overlapping community detection. Most of these methods are general clustering and commu-
nity detection algorithms, relying on the definition of a community being a group of vertices
densely connected inside and having less connections outside the group. Community detection
and clustering, though, can also be used to identify groups of nodes with special properties.

In this paper we are going to look at an unweighted, undirected graph G = (V,E), with V
being the set of vertices (n = |V |), and E = {(i, j) | i, j ∈ V } being the set of edges. Since we
work with undirected graphs, (i, j) ∈ E ⇔ (j, i) ∈ E.

1.1 Clustering or community detection

While clustering and community detection are often used interchangeably, here we are go-
ing to refer to different tasks under these two names. In this paper, we are going to refer to
clustering as partitioning, where every node is assigned a single label: the cluster it belongs to.
On the other hand, when we refer to the task as (overlapping) community detection, a node can
be assigned multiple labels (or communities it belongs to). In between the two approaches lies
hierarchical clustering, where the result is a list of n clustering results, the i-th level containing
i clusters. Hierarchical clustering can be agglomerative (bottom-up), or divisive (top-down).

1.2 Nestedness

We call a graph fully nested if, for all vertices (or in the case of bipartite graphs, all vertices of
the same class) an ordering v1, v2, . . . , vn can be given such that Nv1 ⊆ Nv2 ⊆ · · · ⊆ Nvn , where
Ni is the neighborhood of vertex i.

Nestedness is a structural property that has been observed primarily in ecological bipar-
tite networks [1], but largely remained one that was only quantified on graphs and treated as
a global property, instead of a local one, at the node level. To quantify nestedness on a graph
level, several nestedness metrics were introduced, including NODF [2], the binmatnest temper-
ature [3] and discrepancy [4]. These, however, don’t give us a node-level view of nestedness,
only a single number that represents how nested the entire graph is.

32

For nestedness to work as a local property, we need to define a metric to quantify it between
a pair of nodes. To do this, we will use

nest(i, j) =
|Ni ∩Nj |

min {Ni, Nj}
, (1)

where Ni is the neighborhood of vertex i. In the case of non-bipartite graphs, we ignore the
edge (i, j) ∈ E for the calculation, if it exists, i.e., using Ni \ {j} and Nj \ {i} instead of Ni and
Nj . As such, the bipartite and non-bipartite full graphs are considered fully nested.

2 Algorithms for detecting nestedness

2.1 Hierarchical clustering

First, we are going to look at using hierarchical clustering to detect nestedness, using both
bottom-up (agglomerative) and top-down (divisive) methods.

Bottom-up clustering can be implemented by having a pairwise distance matrix of the nodes
and merging the two clusters with the smallest distance. The distance of two clusters is deter-
mined by the linkage method used – in this paper, we use single-linkage (the minimum of the
pairwise distances among clusters), complete-linkage (the maximum of the pairwise distances)
and average-linkage (the average of the pairwise distances).

We implement top-down clustering by modifying the Girvan-Newman algorithm [5]. In the
original algorithm, edges with the highest edge betweenness are deleted in every step until the
number of components increases. We have made two modifications to the algorithm:

1. the algorithm works on the auxiliary nestedness graph instead of the original one as its
input: a graph with edge weights wij = nest(i, j), excluding edges with wij = 0.

2. the edge to be deleted is the one with the maximal bc(i, j)/nest(i, j) value, where bc is
the edge betweenness centrality used by the original algorithm

We have also created an alternative “nested” version, where we skip recalculating the edge
betweenness values and instead only use the nest(i, j) value.

2.2 Overlapping community detection

In order to find overlapping nested communities, we can use the following algorithm intro-
duced in [6]. In summary, the steps are the following:

1. create an auxiliary nestedness graph Gnest where (i, j) ∈ E(Gnest) if Ni ⊆ Nj

2. merge nodes with equal neighborhoods (this removes bidirectional edges from Gnest,
making it acyclic)

3. perform transitive reduction, i.e., delete edge (i, k) ∈ E if (i, j), (j, k) ∈ E

4. find maximal length (non-expandable) directed paths

5. replace compacted nodes with the original ones

The algorithm does not remove information related to nestedness and does not work with
heuristics, and as such it finds all nested communities.

3 Results

In this section, we are going to highlight our key findings regarding nested clustering and
community detection, obtained using the algorithms described in sections and . We are going

33

to perform comparisons, devise new global nestedness metrics from them and compare them
to existing solutions. We show that both hierarchical clustering and overlapping community
detection are capable of providing an overview of the network’s nestedness, and we also detail
what situations they are useful in. We also show that our methods are not restricted to bipartite
graphs only (like the previous nestedness metrics).

3.1 Data

We first test both algorithm families using synthetic networks. In the case of clustering, we
generate fully nested bipartite graphs with multiple components, then introduce permutation
inside each component with probability pi and among the clusters using a different probability
pa. The perturbation is performed by replacing an original edge (part of a fully nested network)
with a random edge, either inside the component or among two components. We can then
measure how close the clustering algorithm’s best clustering was to the original labels. In
the case of community detection, we generate a random directed acyclic graph (a community
graph) and then generate a bipartite graph with a matching nestedness structure.

Then, we use real bipartite graphs from the Web of Life dataset [7] to measure their nest-
edness, and finally we evaluate our algorithms on non-bipartite networks commonly used for
traditional clustering and community detection [8].

3.2 Experiments

Synthetic networks

We have evaluated five hierarchical clustering methods: three linkage methods for the bottom-
up algorithm (single-linkage, average-linkage, complete-linkage) and two versions of the top-
down algorithm (one called “full”, using betweenness centrality, and one called “nested”, using
nest(i, j) only).

We have found that the average-linkage and complete-linkage versions found the largest
fully nested clustering on the synthetic networks, followed by the two top-down algorithms
and finally the single-linkage bottom-up method. Despite this, the top-down algorithm’s “full”
version had the highest ARI index for smaller permutation values, while the single-linkage
bottom-up method was the best at high perturbation levels.

On the synthetic bipartite networks for community detection, we have found that the algo-
rithm was able to fully reconstruct the original communities.

Real networks

Evaluating the algorithms on bipartite graphs from the Web of Life dataset, we find that since
average cluster sizes are high (the means being around 50%) and there is a large amount of
overlapping communities, the networks show some local nestedness, but are far from being
fully nested. This is confirmed by the other global nestedness measures, with all being in the
10-50% region. The Web of Life dataset does contain some fully nested graphs, for example,
the A_HP_015 host-parasite network.

The non-bipartite graphs showed much less nestedness overall. Zachary’s karate club net-
work showed lots of smaller nested clusters, while the Florentine families network had tiny
nested communities, sometimes with very little overlap. In some networks, like the aforemen-
tioned families network, nestedness is best avoided – e.g., as a way to avoid influence from
others in the network.

We have also derived metrics to quantify nestedness: in the case of clustering algorithms,
the first step where all clusters are fully nested can be used to measure nestedness – the more
steps are needed, the less nested a graph is. In the case of overlapping nested communities, we

34

1 2 31 2 322

44 5 54 6 6 6

Figure 1: The M_PL_070 pollination network with a fully nested clustering indicated by vertex
colors and labels, and the overlapping nested communities indicated by colored groups.

can take the average of the fraction of communities each vertex is part of. If every vertex is part
of only one community and there is a single community in the graph, the graph if fully nested.

4 Conclusion

We have compared algorithms using multiple approaches to detect local nestedness in net-
works. Hierarchical clustering allows us to select a desired clustering based on different cri-
teria (e.g., the nestedness of the clusters), while overlapping community detection lets us see
the overall nested structure of the graph, albeit at the cost of the difficulty to parse it. The real
world networks we examined showed varying levels of nestedness: the ecological networks
had higher, while the non-bipartite ones had low nestedness values.

References

[1] M. S. Mariani, Z.-M. Ren, J. Bascompte, and C. J. Tessone. Nestedness in complex networks: obser-
vation, emergence, and implications. Physics Reports, 813:1–90, 2019.

[2] M. Almeida-Neto and W. Ulrich. A straightforward computational approach for measuring nested-
ness using quantitative matrices. Environmental Modelling & Software, 26(2):173–178, 2011.

[3] M. Ángel Rodríguez-Gironés and L. Santamaría. How foraging behaviour and resource partitioning
can drive the evolution of flowers and the structure of pollination networks. The Open Ecology
Journal, 3:1–11, 2010.

[4] R. A. Brualdi and J. G. Sanderson. Nested species subsets, gaps, and discrepancy. Oecologia, 119:256–
264, 1999.

[5] M. E. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical
review E, 69(2):026113, 2004.

[6] I. Gera and A. London. Detecting and generating overlapping nested communities. Applied Network
Science, 8(51), 8 2023.

[7] Bascompte Lab. Web of life: ecological networks database. https://www.web-of-life.es.

[8] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://
snap.stanford.edu/data, 6 2014.

35

https://www.web-of-life.es
http://snap.stanford.edu/data
http://snap.stanford.edu/data

Effective Heuristics for Accelerated Branch and Bound Solver of
Process Network Synthesis Problems

Emília Heinc and Balázs Bánhelyi

Abstract: The P-graph methodology can be used to find the optimal solution for large process
systems. This methodology solves the combinatorial part of the problem more efficiently than
the traditional branch and bound method due to the relationships inherent in the structure.
However, reducing the number of possibilities developed in the constraint functions also plays
a major role in this algorithm. In this publication, we present a new constraint function that
also takes into account the minimum cost structure and compares it with earlier versions.

Keywords: P-graph, Accelerated Branch and Bound, Heuristics

1 Introduction

The task of process synthesis is to determine the optimal structure of a process system and
the optimal configurations and operating sizes of the functional units that make up the system
and perform various operations [1]. Process synthesis plays a critical role in reducing material
and energy consumption and negative environmental impacts, thereby increasing profitability.
Several examples in the literature demonstrate that efficient process synthesis can reduce en-
ergy consumption by up to 50% and costs by 35% [2]. Ideally, the structure of a process and
the operational configurations that make up the process could be designed and synthesized
simultaneously because their performance interacts. In practice, however, it is extremely dif-
ficult due to the simultaneous continuous and discrete nature of the task. The discrete nature
is caused by the structure of the process, which leads to the combinatorial complexity of the
problem that makes it complex to find an optimal solution to the problem. The process network
synthesis problems formulate a MIP problem with many binary variables. Finding the optimal
subnetwork is an NP-hard problem. Combinatorial analysis can be applied to this type of prob-
lem. The method is used to reduce the number of possible solutions by exploiting the unique
properties of the so-called PNS (Process Network Synthesis) problems is the accelerated branch
and bound method [3]. It bases on the branch and bound method, i.e., the method uses a lower
bound submethod to exclude the solutions that cannot provide a better solution than the cur-
rent best solution. It is critical for the computation time of solving the problem with the B&B
method to find a tighter lower bound submethod. The currently available implementations
and the previous studies do not exploit all the information, considering only the continuous
part of the problem by calculating the LP relaxation of the MIP problem. In this article, we
introduce a better selection strategies for the ABB algorithm. Different heuristics for both ma-
terial selection and decision mapping were presented. Furthermore, the ABB algorithm was
reorganized so that we can also review our previous decisions.

2 P-graph

The P-graph (Process Graph) methodology was developed in the early 1990s for the complex
chemical production system to model and optimize. Its name derives from a directed straight
graph obtained by P-graph, which provides the ability to use combinatorial possible solution
structures to determine the optimum for large tasks [4]. The P-graph methodology based on
graph theory and combinatorial techniques provides a solution to facilitate finding the opti-
mal PNS subproblem. In the methodology, we use a directed bipartite graph to represent the
structure of a process system. We distinguish two kinds of nodes, the material (set of M) and
operating units (set of O) in the graph. The directed edges represent the connection between the

36

operating units and materials. The edges from the materials to the operating units mark the re-
lation of the operating units that consume the materials. The edges from the operating units to
the materials represent the relation of producing the materials. In the PNS problems, costs can
be assigned to the operating units and raw materials. We distinguish three types of materials-
raw materials must be consumed by the operating units and not be produced, the products
must be produced by the operating units not be consumed, and the intermediate materials can
be produced or consumed by the operating units. The goal of the model is to produce all of the
products from the raw materials at minimum cost. To solve this problem, we first find the max-
imum structure which contains all combinatorically feasible process structures. This method is
called the MSG method (Maximal Structure Generation) [5].

3 SSG algorithm

Further investigation is aided by the SSG (Solution Structure Generation) algorithm, which
generates each combinatorially possible structure exactly once. The algorithm is based on de-
cision mappings. Decision mappings involve deciding which material to use for one or more
operational units, i.e., which operational units are involved in a given solution structure [6].
Consequently, during decision mapping, we also decide which operational units will be ex-
cluded from the given structure. We must be consistent in our decisions, because even if it
has already been decided that an operating unit for one material should not be included in the
structure, we cannot choose again when deciding for another material. All output materials
for an operation unit, if included in the structure, must be specified; an inconsistent decision
would result in certain substances being produced and certain substances not. The SSG imple-
mentation of the decision mapping based algorithm calls itself recursively [7, 8].

4 ABB method

Since this is a mixed-integer programming problem, they can also use general branch and
bound-type methods to solve this model. Although the optimal solution to the problem can
also be determined using these methods, their efficiency can be further improved since the
special properties of the synthesis tasks are not taken into account in the search for a solution.
Accordingly, the P-graph method for determining the optimal solution is a special algorithm
of the Constraint and Separation type, ABB (Accelerated Branch and Bound) use.

This algorithm uses the previously described decision mappings of the SSG algorithm for
binary variables in the B&B tree. Previously, the B&B method used continuous relaxation of
the mathematical model in addition to the structural constraints of the constraint SSG. In this
relaxed model, the binary variables (yi) were not considered, and the model was limited to de-
termining the optimal values of the continuous variables (xi). This optimization task provided
a lower bound on the operating costs.

5 Modified ABB method with heuristics

The original ABB algorithm is a traditional B&B algorithm, which decides for each decision
a material to be manufactured with which machines to produce and which not. In our previous
results, we showed that the choice of material can already greatly decrease the running time
of the algorithm. In this result, we only made local decisions regarding the choice of materials
and made simple FIFO and LIFO decisions regarding the materials.

In our present result, instead of this traditional B&B procedure, we created a list for decision
mappings, in which the previous decisions are also stored. With this list, it becomes possible
to choose the most encouraging branch for further development. But on top of that, it is also

37

possible that if a branch is less successful, then we can continue with an earlier branch instead.
Several heuristics were developed for this decision, such as one based on the results of the LP or
simply based on the costs of the selected operating units. In addition, we are able to coordinate
material and decision-mapping decisions.

6 Conclusion

A new heuristics were created for the ABB algorithm that give a better decisions in ABB
algortihm. In this prezentation, we show that the overall running time will be reduced.

Acknowledgements

The research presented in this paper was funded by the National Laboratories 2020 Program -
Artificial Intelligence Subprogram - Establishment of the ”National Artificial Intelligence Lab-
oratory (MILAB) at Széchenyi István University (NKFIH-870-21/2020)” project.

References

[1] Naonori Nishida, George Stephanopoulos, and A. W. Westerberg. A review of process synthesis.
AIChE Journal, 27(3):321–351, 1981.

[2] Jeffrey J. Siirola. Industrial applications of chemical process synthesis. 23:1–62, 1996.

[3] F. Friedler, J. B. Varga, E. Fehér, and L. T. Fan. Combinatorially Accelerated Branch-and-Bound Method
for Solving the MIP Model of Process Network Synthesis, pages 609–626. Springer US, Boston, MA, 1996.

[4] F. Friedler, K. Tarjan, Y.W. Huang, and L.T. Fan. Graph-theoretic approach to process synthesis:
axioms and theorems. Chemical Engineering Science, 47(8):1973–1988, 1992.

[5] F. Friedler, K. Tarjan, Y.W. Huang, and L.T. Fan. Graph-theoretic approach to process synthesis: Poly-
nomial algorithm for maximal structure generation. Computers and Chemical Engineering, 17(9):929–
942, 1993.

[6] F. Friedler, J.B. Varga, and L.T. Fan. Decision-mapping: A tool for consistent and complete decisions
in process synthesis. Chemical Engineering Science, 50(11):1755–1768, 1995.

[7] F. Friedler, Á. Orosz, and J.P. Losada. P-graphs for Process Systems Engineering: Mathematical Models
and Algorithms. Springer International Publishing, 2022.

[8] F. Friedler, K. Tarjan, Y.W. Huang, and L.T. Fan. Combinatorial algorithms for process synthesis.
Computers and Chemical Engineering, 16:S313–S320, 1992.

38

Quantitative Radiomics Analysis of Lung CT Images Using Radial
Harmonic Fourier Moments

A. H. M. Sajedul Hoque, Gergő Bognár, Sándor Fridli

Abstract: Radiomics is an emerging field of CT image processing, which utilizes quantita-
tive image features that noninvasively quantify the tumour phenotypes. Radiomics analysis is
promising for treatment planning, together with personalized medicine, as well as for predict-
ing clinical factors. However, it usually involves the data mining of a large pool of features,
where the optimal feature selection is not properly managed in the literature. In this paper, we
investigate radiomic feature extraction using radial harmonic Fourier moments as higher-level
decompositions. We perform radiomics analysis on lung CT images of non-small cell lung can-
cer patients from multiple annotated datasets. There, we evaluate the stability, reliability, and
prognostic value of the proposed features following the literature guidelines, and compare the
performance with state-of-the-art wavelet features.

Keywords: radiomics, lung CT, quantitative imaging, radial harmonics, orthogonal moments

1 Introduction

Medical imaging, especially X-ray computed tomography (CT), is a primary diagnostic tool
of clinical oncology. CT, as an imaging modality, noninvasively quantifies the internal tissue
density, that might help the localization and characterization of the tumour. CT imaging is
routinely used in many areas of clinical oncology not only for diagnosis, but also for therapy
planning and monitoring. In therapy planning, CT provides precise visualization of the ge-
ometric shape of the tumour and the normal tissue, which helps to determine the optimum
radiation dose distribution in the tumour [1].

In this paper, we research quantitative imaging for lung CT motivated by personalized
medicine. Personalized medicine is an emerging field that promises better patient care by tak-
ing the genetic differences of the tumour into account. In this personalized medicine, predictive
and prognostic data factors coming from multimodal information including clinical, imaging,
and molecular data are merged to forecast treatment outcomes [2]. However, the molecular
characterization of cancer is challenging, and usually requires invasive approaches (biopsies
and surgeries), which themselves may be limited if the tumour is heterogeneous. CT imaging
is a promising supplementary tool to quantify tumour phenotypes [3]. As a quantitative imag-
ing approach, radiomics [4] aims the robust extraction of image features through mathematical
algorithms that describe the intensity, shape, and textural properties of tumour. It is already
shown that radiomics correlate to tumour phenotypes [5], and can be utilized to predict distant
metastasis [6].

Radiomics analysis usually involves a large number of features, including higher level de-
compositions of the CT image using scale-space transformations (e.g. wavelets and Laplace
pyramids) [7]. In this paper, we investigate the radiomic features derived from Radial
Harmonic Fourier Moments (RHFM) [8]. Image moments are widely used transformation-
invariant feature descriptors [9], popular for pattern recognition, object representation, and fea-
ture extraction. In particular, orthogonal moments provide efficient and stable time-frequency
decompositions, with the support for adaptivity. Here, we generate radiomic features from
RHFM reconstructions, and we investigate their reliability, stability and prognostic value us-
ing annotated lung CT datasets of non-small cell lung cancer (NSCLC) patients.

39

2 Materials and Methods

Radiomics Features: Radiomics features are constructed employing advanced hard-coded
algorithms, that provide a large set of quantitative imaging features. Radiomics features are
usually grouped as follows:

• Shape and size related features illustrates the three-dimensional size and shape of tu-
mour region, usually involving features like volume, surface area, surface to volume ra-
tio, sphericity, spherical disproportion, maximum diameter, and compactness.

• First order statistical (FOS) features describes the gray distribution in the tumour area us-
ing descriptors like energy, entropy, kurtosis, maximum, minimum, mean, mean absolute
deviation, median, range, root mean square, skewness, standard deviation, uniformity,
and variance.

• Second order statistical features illustrate the statistical correlation between a voxel and
its neighboring voxels addressing texture information. That is, second order features
describe the heterogeneity of the tumour. In order to extract the texture features, matri-
ces like Gray-Level Co-Occurrence Matrix (GLCM) and Gray-Level Run-Length Matrix
(GLRLM) are formed from the CT image. GLCM provides the probability of combined
occurrence of two intensity values. From that matrix, features like autocorrelation; clus-
ter prominence, shade, and tendency; contrast; correlation; difference and joint entropy;
informational measures of correlation; inverse difference and difference moment (nor-
malized); inverse variance; maximum probability; sum average, entropy, and squares
can be extracted. GLRLM represents the run-length of gray level in the CT image, that
allows features such as run emphasizes (short and long run, low and high gray level, and
combined), gray level and run length nonuniformity, and run percentage.

• High-order statistical features aim to characterize the repeated or nonrepetitive potential
patterns inside the tumour region [4]. Two possible approaches are wavelets and Laplace
pyramids, where first and second- order statistical features are extracted from the decom-
posed images.

Datasets and Data Analysis: In this study, three lung CT datasets are considered, involving
non-small cell lung cancer (NSCLC) patients:

• The RIDER test/retest dataset [5] provides blind delineations to 31 patients of the RIDER
Lung CT dataset [10]. RIDER Lung CT consists of same day repeat scans, where two CT
scans were acquired from each patient within 15 minutes. In this study, this dataset was
used to assess the reliability of the features.

• The multiple delineation dataset [5] consists of lung CT scans of 21 patients, manually
delineated by five oncologists independently. This dataset was used to assess the feature
stability.

• The Lung1 dataset [5] consists of lung CT scans of 422 patients, together with manual
delineations, clinical and survival data. This dataset was used to assess the prognostic
value of the radiomic features.

Radial Harmonic Fourier Moments: Following [8], consider the radial harmonic basis func-
tion Hpq (p ∈ N, q ∈ Z), defined in polar coordinates as

Hpq(r, φ) := Rp(r)e
iqφ (r ∈ [0, 1], φ ∈ [0, 2π)) ,

where

Rp(r) :=

1/
√
r, if p = 0,√

2/r cos(πpr), if p is even,√
2/r sin (π(p+ 1)r) , if p is odd.

40

Radial harmonic basis functions form a complete orthonormal system in the space of the square
integrable functions over the unit disk (i.e. in L2(D)) with respect to the usual scalar product

⟨F,G⟩ := 1

2π

∫ 2π

0

∫ 1

0
F (r, φ)G∗(r, φ)rdrdφ

(
F,G ∈ L2(D)

)
.

A grayscale image, represented as a function f ∈ L2(D) over the unit disk, can be expressed as

f(r, φ) =
+∞∑
p=0

+∞∑
q=−∞

MpqHpq(r, φ) (r ∈ [0, 1], φ ∈ [0, 2π)) ,

where Mpq := ⟨f,Hpq⟩ is the radial harmonic Fourier moment (RHFM) of order p ∈ N and
repetition q ∈ Z. Here, we will consider the partial reconstruction of order n,m ∈ N as

f(r, φ) ≈ fnm(r, φ) :=

n∑
p=0

m∑
q=−m

MpqHpq(r, φ) (r ∈ [0, 1], φ ∈ [0, 2π)) .

Note that the real application of RHFMs involves discretization and the conversion of the input
image to the unit disk, for which we investigated multiple approaches.

Proposed features: We propose the extraction of high-order statistical features based on
RHFM. Our motivation is that similar to wavelets and image pyramids, orthogonal mo-
ments can also capture higher level patterns on the CT image. Additionally, orthogonal mo-
ments possibly provide more flexibility and even adaptivity in some cases. In this study,
we applied RHFM slice-wise, and used the reconstructed images (fnm) of order n = m =
2, 4, 10, 18, 22, 32, 40, 48. Then, 14 first-order statistical, 17 GLCM and 11 GLRLM-related fea-
tures are extracted from those reconstructed images, as introduced above. Totally, we inves-
tigated 336 RHFM-based features, which we compared to the same amount of wavelet-based
features as of [5], where the first level of 3D wavelet decomposition with Coiflet 1 was utilized.
The low-order features were extracted using the pyradiomics package [7].

3 Results and Discussion

In this study, the extracted radiomics features of lung cancer are analyzed to evaluate their
reliability, stability, and prognostic power, following the workflow proposed in [5]. In the case
of reliability, the features from test/retest dataset are examined using intraclass correlation co-
efficient (ICC), which describes how strongly units in the same group resemble each other.
Here, the ICC score indicates not only the degree of correlation but also the agreement be-
tween the features from test and retest dataset. In order to evaluate the reliability, we have
classified the ICC reliability index into four groups according to the usual guidelines. The four
groups are: Poor(ICC<=0.4), Fair(ICC>=0.4 and ICC<0.6), Good (ICC>=0.6 and ICC<0.75) and
Excellent (ICC>=0.75 and ICC<=1). Table 1 shows the distribution of the number of RHFM
and wavelet features among those groups. The table implies that the RHFM features are more
promising compared to wavelets. Next, the stability of features is measured using Friedman

Table 1: Reliability: number of features of different agreement levels based on ICC

Type of Features Poor Fair Good Excellent
RHFM 19 31 50 236
Wavelet 96 68 43 129

test, a non-parametric statistical test which is used to detect the differences of units among

41

multiple groups. Here, the test is applied on the five-feature set extracted from five multiple
delineation dataset. It has revealed that there are 89 and 151 stable features for RHFM and
wavelet decomposition, respectively, at a 5% significance level. The test shows that the stabil-
ity of RHFM and wavelet features are comparable. Finally, the prognostic power of extracted
features is determined using Cox hazard regression model which makes association between
survival times of patients and one or more predictor variables. The regression model applied
on Lung1 dataset gives concordance index (CI) indicating the weights of the variable in the
prediction of survival time. In our experiment, 319 RHFM and 326 wavelet features are above
0.5 and thus show prognostic value. The mean and median CI is approximately 0.55 and 0.56
for both the RHFM and wavelets, which proves a similar prognostic value. In summary, RHFM
provides multiple features that are stable, reliable, and also have prognostic power.

4 Conclusion and Future Work

We investigated the application of orthogonal moments for radiomics analysis of lung CT
images of NSCLC patients, and compared the extracted RHFM with state-of-the-art wavelet
features. Statistical tests were performed to determine the stability, reliability, and prognostic
value of the proposed features, which aspects play important roles in clinical oncology. We con-
clude that orthogonal moments are promising for radiomics analysis, since they show similar
or better behavior compared to wavelets, while they are more flexible and possibly adaptive.

In the future, we plan to further investigate the application of orthogonal moments in ra-
diomics in several respects. This includes the adoption of various orthogonal bases, adap-
tive transformations, discretization, extension of the models to 3D, and the direct utilization
of transformation invariant moments as radiomic features. Further, we plan radiogenomics
analysis using orthogonal moments.

References

[1] G. C. Pereira et al. The Role of Imaging in Radiation Therapy Planning: Past, Present, and Future.
BioMed Research International, 2014:e231090, Apr. 2014.

[2] P. Lambin et al. Predicting outcomes in radiation oncology–multifactorial decision support sys-
tems. Nature Reviews. Clinical Oncology, 10(1):27–40, Jan. 2013.

[3] R. Li et al. Radiomics and Radiogenomics : Technical Basis and Clinical Applications. CRC Press, 2019.

[4] J. Tian et al. Radiomics and Its Clinical Application: Artificial Intelligence and Medical Big Data. Aca-
demic Press, June 2021.

[5] H. Aerts et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics
approach. Nature Communications, 5:4006, Aug 2014.

[6] T. P. Coroller et al. CT-based radiomic signature predicts distant metastasis in lung adenocarci-
noma. Radiotherapy and Oncology, 114(3):345–350, 2015.

[7] J. J. M. van Griethuysen et al. Computational Radiomics System to Decode the Radiographic Phe-
notype. Cancer Research, 77(21):e104–e107, Nov. 2017.

[8] H. Ren et al. Multidistortion-invariant image recognition with radial harmonic Fourier moments.
Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 20(4):631–637, Apr. 2003.

[9] Y. Liu et al. Accurate quaternion radial harmonic fourier moments for color image reconstruction
and object recognition. Pattern Analysis and Applications, 23:1–17, 11 2020.

[10] B. Zhao et al. Evaluating variability in tumor measurements from same-day repeat CT scans of
patients with non-small cell lung cancer. Radiology, 252(1):263–272, 2009.

42

Design of Hyperledger Fabric Private Data Collections with Formal
Concept Analysis

Damaris Jepkurui Kangogo, Imre Kocsis

Abstract: Hyperledger Fabric, a permissioned blockchain-based distributed ledger frame-
work, enables secure collaboration among organizations in a network only shared by them.
Its architecture facilitates data partitioning through a number of mechanisms to ensure that
specific data segments are replicated only among the relevant subsets of organizations in the
network consortium. These include Private Data Collections (PDCs), for scenarios where a
specified subset of the organizations who jointly maintain a ledger wants to keep some portion
of data only hash-committed to the common ledger. In this paper, we propose a novel use of
Formal Concept Analysis (FCA) for the requirement-based design of PDCs.

Keywords: blockchain, Distributed Ledger Technology, Hyperledger Fabric, confidentiality, Formal
Concept Analysis

1 Introduction

Distributed Ledger Technology (DLT), is a blockchain-based technological infrastructure
originally motivated by Bitcoin digital currency and its derivative technologies. DLT has
demonstrated a transformative potential for many traditional business practices, including fi-
nance, supply chains, healthcare, and education. The fundamental idea behind the popularity
of blockchain-based systems is the notion of a distributed ledger kept up-to-date by a peer-to-
peer network in which every node, or peer, possesses an identical copy of the ledger. There is
no single node that owns the ledger, meaning there’s no central authority to trust concerning
the ledger contents. The integrity of the ledger is guaranteed through some form of Byzantine
fault- and error-tolerant multiparty consensus mechanism. Transactions submitted to the net-
work are validated, ordered, and grouped into blocks. A hash chain is built over these blocks,
forming a chain, hence the name blockchain.

Hyperledger Fabric [1] is a leading DLT, with an architecture that facilitates the creation of
bespoke, cross-organizational blockchains (i.e., blockchains where consensus as well as access
are permissioned). In a Hyperledger Fabric network, channels are distributed ledgers managed
by a subset of organizations. Whenever a group of organizations needs to transact and ex-
change data in isolation from the rest of the network, they have the option to create a new
channel accessible only to these subsets of organizations. In contrast, for scenarios where trans-
actions must be shared among the channel members while restricting access to some (or all) of
the transaction data to only a subset of channel members, Fabric offers Private Data Collections
(PDCs). Transactions over data in PDCs write only hash commitments to the channel ledger
and maintain the underlying data by a dedicated gossip protocol for data sharing and using a –
not blockchain-backed, potentially transient –“sideDB” on the network nodes that participate
in the PDC.

2 Data compartmentalization design in Hyperledger Fabric

Introducing the architectural design space of Hyperledger Fabric networks and the ap-
proach to Byzantine consensus used in Fabric are beyond the scope of this paper. For our
purposes here, a Fabric network is operated by an O set of organizations through their peers
dedicated to this task, where for the channel set C of the network, the nodes maintaining each
channel as a distributed ledger come from non-empty subsets of O. Smart contracts (“chain-
code” in Hyperledger Fabric parlance) are deployed on the channels; smart contracts can read

43

and write their own channel freely (subject to distributed consensus) and, under certain circum-
stances, can read the contents of other channels (a chaincode executed on an organizational
node participating in multiple channels of that organization can “read between channels”).
Global transaction ordering and identity services are shared across all channels in a network.

Fabric uses a generic key-value storage model as its ledger abstraction and chaincode is
developed against this key-value storage model. Application-level data models have to be
translated to this key-value storage model; earlier work has demonstrated this process for the
rather involved relational data model for the classic TPC-C benchmark [2] and approaches for
the model-driven engineering of data model mappings are under development [3]. Without
losing much generality, we treat a Fabric network here as a distributed means to store a relation,
with attribute set A. Then, assuming that each attribute is maintained only on a single channel,
a partitioning of the attribute set to channels can serve as a robust mechanism to fulfill data
confidentiality requirements across the organizations: organizations who shall not be privy to
the values of certain attributes can be closed out from the circle maintaining that attribute.

In earlier work [4], we proposed the use of Formal Concept Analysis (FCA) to establish the
channel structure necessary to adhere to confidentiality requirements, given an attribute set, a
set of organizations, and a binary matrix of positive data maintenance requirements – that is,
which organization is required to participate in the maintenance of which attribute.

However, using channels for data compartmentalization has the drawback that cross-
channel atomic (writing) transactions are not straightforward under the Fabric channel
model [5] and their performance engineering is largely unexplored. Also, our original posi-
tive access modeling approach is too restrictive in the sense it is ill-equipped to express “may
see” relations and to handle decision making for newly joining organizations. Of the two, the
first is the conceptually more important problem: in a decentralized setting, we still want to
maximize the level of (Byzantine fault tolerant) replication of data, up to the level allowed by
confidentiality requirements.

Thus, in this paper, we investigate the use of FCA for design for confidentiality in Fabric
using PDCs, under the restrictive (“must not see”) model.

3 Formal Concept Analysis

Formal Concept Analysis (FCA) is a technique that has been used primarily for knowledge
representation, data analysis, and information management [6, 7]. It takes a formal context, a
binary cross-table of objects and their attributes. From the formal context, formal concepts can
be extracted: a pair of maximal sets of objects (the extent of the concept) that share a maximal set
of attributes (the intent of the concept). Every object in extent shares every attribute in intent,
every attribute in the intent is shared by all objects in the extent and neither the intent nor the
extent can be further extended without reducing the other.

A natural subconcept-superconcept relation over the formal concepts of a formal context
entails a concept lattice. In this lattice, a more specific concept (with fewer objects and more
attributes) is “below” a more general concept (with more objects and fewer attributes). Formal
concepts of a context are regularly visualized with line diagrams, which enable their expert
exploration.

Formal concept analysis has found applications in various domains. Among them, FCA has
been applied in the security domain, specifically for modeling access control. The majority of
the studies have focused on modeling role-based access control (RBAC) [8, 9]. [10] used FCA
to model Chinese wall access control (CWAC).

However, to the best of our knowledge, our use of FCA for modeling data isolation in dis-
tributed ledgers is novel.

44

Table 1: Example context of organizations and “attributes”. X denotes “must-not-see”.

Warehouse District Customer Order O_Line Stock Item N_Order C_History
Manufacturer X X
Distributor X X
Retailer
Courier X X X X X X
Regulatory
Agencies

X X X

Figure 1: Line diagram of the concept lattice for the context in Table 1

4 Applying FCA for setting up PDCs

As a demonstration, we use a simple supply chain case study (a heavy simplification of [2])
of five stakeholders. As attributes, we use the TPC-C tables (Warehouse, District, Customer,
Order, Order_Line, Stock, Item, New_Order, Customer_History). Table 1 defines our formal
context; the line diagram visualization of the corresponding formal concept lattice is depicted
on Figure 1. (We used the tool Concept Explorer1 to generate the concept lattice from the formal
context.)

To demonstrate the “processing” of the diagram to define PDCs, we highlighted the node
N_Order, the formal concept node which “introduces” this attribute as a commonly shared
one to the set of all objects “below” it – i.e., all object reachable through a downward walk – by
omitting the Retailer object. (Visual collection of the attributes belonging to a formal concept
node is performed the same way through all “upward” walks). The interpretation of the node
is that Regulatory Agency and Courier should not see N_Order, which implicates the
creation of a PDC over N_Order for all other organizations. In general, all nodes with at least
one attached attribute in the line diagram translate to exactly one PDC this way.

Common FCA algorithms built into FCA tools have the potential to support PDC design
further. In particular, attribute exploration enumerates attribute implications which follow from
the context and queries the user about their general validity (with an option to specify new,
counterexample objects). In usual FCA use, attribute exploration on the context and its trans-
position serve to reveal “missing” (or on contrary, “redundant”) attributes and objects; in our
application context, it promises to be a useful tool for catching modeling errors.

1https://conexp.sourceforge.net/

45

https://conexp.sourceforge.net/

5 Conclusion

We proposed the use of Formal Concept Analysis to create Private Data Collections in
Hyperledger Fabric channels to fulfill confidentiality requirements with a rich structure. As
PDCs are handled in a straightforward way in Hyperledger Fabric chaincode, the challenges
associated with cross-channel atomic transactions in a channel based Fabric confidentiality-
supporting solution do not arise in this setting. At the same time, the performance implications
of a truly heavy use of PDCs are poorly understood in Fabric for representative smart contract
logic and workloads. Thus, we plan to empirically analyse this aspect, in addition to integrat-
ing the integrated use of PDC sets to our upcoming model-based Fabric chaincode data access
layer solution.

References

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and J. Yellick. Hyperledger Fabric: A
distributed operating system for permissioned blockchains. In R. Oliveira, P. Felber, and Y. C. Hu,
editors, Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26,
2018, pages 30:1–30:15. ACM, 2018.

[2] A. Klenik and I. Kocsis. Porting a benchmark with a classic workload to blockchain: Tpc-c on
hyperledger fabric. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages
290–298, 2022.

[3] M. Debreczeni, A. Klenik, and I. Kocsis. Transaction conflict control in hyperledger fabric: A
taxonomy, gaps, and design for conflict prevention. IEEE Access, 12:18987–19008, 2024.

[4] K. Damaris and K. Imre. Requirement-based, structural design for confidentiality in Hyperledger
Fabric. In PROCEEDINGS OF THE 31ST MINISYMPOSIUM, pages 78–83. Dept. of Measurement
and Information Systems, Budapest University of Technology and Economics, 2023.

[5] E. Androulaki, C. Cachin, A. De Caro, and E. Kokoris-Kogias. Channels: Horizontal scaling and
confidentiality on permissioned blockchains. In J. Lopez, J. Zhou, and M. Soriano, editors, Com-
puter Security, pages 111–131, Cham, 2018. Springer International Publishing.

[6] B. Ganter and R. Wille. Formal concept analysis: mathematical foundations. Springer Science & Busi-
ness Media, 2012.

[7] F. Škopljanac Mačina and B. Blašković. Formal concept analysis – overview and applications.
Procedia Engineering, 69:1258–1267, 2014.

[8] C. A. Kumar. Designing role-based access control using formal concept analysis. Security and
Communication Networks, 6(3):373–383, 2013.

[9] C. A. Kumar, S. C. Mouliswaran, J.-h. Li, and C. Chandrasekar. Role based access control design
using triadic concept analysis. Journal of Central South University, 23:3183–3191, 2016.

[10] S. C. Mouliswaran, C. A. Kumar, and C. Chandrasekar. Modeling chinese wall access control using
formal concept analysis. In 2014 International Conference on Contemporary Computing and Informatics
(IC3I), pages 811–816. IEEE, 2014.

46

Identifying security issues in Elixir web applications

Smiljana Knežev, István Bozó and Melinda Tóth

Abstract: The security of software products is extremely important in the era of internet-based
applications. Building secure web applications is not straightforward. Several guidelines and
tools were developed to support this process. The biggest challenge for those tools is to not
overwhelm the developers with false-positive hits. This paper aims to investigate the use of
static analysis for accurate vulnerability identification in the case of Elixir web applications.

Keywords: Static analysis, Elixir, security vulnerabilities, XSS

1 Introduction

Elixir [1] became a widely used programming language for developing web-based fault-
tolerant, scalable applications. It inherited all the useful properties of the BEAM virtual ma-
chine.

Application security become one of the most important metrics of web-based applications.
Developing secure applications for a non-expert programmer is challenging, therefore several
standards, guidelines and tools support this process [2, 3]. Static analyser tools1, 2 can help to
identify security vulnerabilities in an early stage of development [4].

Developing tools to identify security issues is not straightforward. The most challenging
part is to provide valuable useful results. Simple text-based searches can identify several issues
quickly, but syntactic, tree-matching-based approaches usually provide more accurate results.
However, both approaches result in lots of false-positive hits. Providing too many results for
developers requires manual post-analysis of the result, it is time-consuming and error-prone.
Semantic analysis-based approaches can help reduce false-positive hits. Control- and data-flow
analysis-based approaches can help to produce more accurate results.

Security checkers already exist for Elixir. This paper aims to investigate the role of static
analysis in the vulnerability identification process and provide a tool for accurate Elixir security
analysis.

2 Background

Erlang [5] and the BEAM virtual machine were designed for building fault-tolerant dis-
tributed applications. Its "Let it crash" concept allows processes to fail instead of handling
runtime errors and provides an extensive mechanism for handling process failures. Elixir, as a
new language on the top of BEAM, also inherited this property. However, security issues can
not be handled with process error handling. Therefore, there has been a huge interest in secure
application development on the BEAM in recent years. The Security Working Group [6] of the
Erlang Ecosystem Foundation (EEF) defined several guidelines for building secure and secure
web applications on the BEAM: for Erlang and Elixir.

The RefactorErl tool [7] has an extensive static analyser framework for Erlang and we built
a security analyser on top of that framework [8]. It provides data- and control-flow analysis
as well. Elixir programs are compiled to the same intermediate source-code representation as
Erlang programs (the so-called Abstract Code), therefore we build our Elixir analysis on the
top of RefactorErl. We build RefactorErl’s Semantic Program Graph from the abstract code and
search for the vulnerabilities in that representation. Using this approach we can build semantic
analysis-based security checkers.

1https://codechecker.readthedocs.io/en/latest/
2https://spotbugs.readthedocs.io/en/latest/introduction.html

47

https://codechecker.readthedocs.io/en/latest/
https://spotbugs.readthedocs.io/en/latest/introduction.html

3 Secure Elixir web applications

Web Application Security Best practices for BEAM languages EEF’s Security Working
Group [10] describes a special document for best practices for secure web applications running
on BEAM. These recommendations are mostly related to the use of the Phoenix [11] framework
for web applications.

Cross-site scripting (XSS) is a common security vulnerability where a web application incor-
porates user input into its generated output without performing validation allowing the user
to inject malicious code.

Motivation example The importance of data-flow analysis when identifying and labelling
security vulnerabilities like XSS attacks can be demonstrated in a small example. Below is an
example of a controller from a sample Phoenix app.

defmodule HelloWeb . PageControl ler do
use HelloWeb , : c o n t r o l l e r
def home(conn , _params) do

render (conn , : home , layout : f a l s e)
end
def html_resp (conn , %{" i " => i }) do

html (conn , "<html><head >#{ i }</head></html >")
end
def html_resp2 (conn) do

var = "<html></html >"
html (conn , var)

end
def html_resp3 (conn) do

html_resp4 (conn , "<html></html >")
end
defp html_resp4 (conn , ob j) do

html (conn , ob j)
end

end

We can observe the function html_resp taken from the EEF guideline on Common
Web Application Vulnerabilities on Cross-Site Scripting [10] and its variations html_resp2,
html_resp3, and html_resp4. Sobelow [12] rightfully flags html_resp function as XSS
in ‘html‘ with High Confidence but also the html_resp4 function even though we can see it
is private and its parameter comes from function html_resp3 and could be viewed as safe.
Also, Sobelow flags function html_resp2 as XSS in ‘html‘ - Medium Confidence even though
the var parameter is defined in the same function as "<html></html>".

Semgrep [9], without specifying custom rules does not flag any of these functions as vulner-
able.

Using data-flow analysis we spot that these functions, besides html_resp are safe and
reduce the false positives. The Algorithm 1 used is an adapted algorithm defined in [13] for
detecting OS injections. Location of function calls posing an XSS threat, like html/2, are found
then data-flow analysis is run on those function’s parameters.

Proposed methodology RefactorErl also supports analysis for compiled, BEAM files. There-
fore we take the Semantic Program Graph as a base of our analysis and look for specific function
calls that may lead to an XSS attack. We analyse the arguments of the function using data-flow
analysis. We calculate the set of possible values for the vulnerable arguments and analyse

48

Algorithm 1 Algorithm for detecting XSS vulnerabilities [13]

1: Function get_calls_for_xss
2: Matchers← [{’Elixir.Phoenix.Controller’, [html, 2]}, ...]
3: CandidateFuns← get_calls_for(Fun,Matchers)
4: FunParamTuples← new list
5: for C ∈ CandidateFuns do
6: Param← get_expr_params_for(C, Matchers, get_all_children(C))
7: add_to_list({C, Param}, FunParamTuples)
8: end for
9: DataFlowValues← get_origins(FunParamTuples)

10: FilteredDataFlowValues← get_unsafe_funs(DataFlowValues)
11: UnknownFuns← get_funs_no_body(FilteredDataFlowValues)
12: ExportedFuns← get_exported_funs(FilteredDataFlowValues)
13: return merge(UnknownFuns, ExportedFuns)

them. Once we find an input that originated from an unknown function3 or a non-validated
user input4, we mark the function call as vulnerable. Applying these steps allows us to report
html_resp as vulnerable and to not report html_resp2 and html_resp4 as vulnerable.

Further steps We aim to develop new security checkers specifically for issues described in
the EEF guidelines regarding Elixir and Phoenix. Furthermore, we plan to analyse open-source
projects and investigate the types of security issues that arise in real-life projects.

Our method marks unknown functions as vulnerable, i.e. functions producing tainted in-
puts. To improve the accuracy of false positive elimination in vulnerability identification for
Elixir, we need to develop an understanding around frequently used library functions, pre-
venting them from being mistakenly marked as vulnerabilities in our analysis tools.

4 Related work

The empirical study looks into vulnerability commits of 25 open-source Elixir projects [14].
It was found that 2% of commits were vulnerability-related. The study also found that in 9
out of 25 projects, one security vulnerability was present. The study suggests further research
into the problem is needed and suggests the use of static code analysis tools for more detailed
results.

There are several static analysis tools available that support Elixir analysis. Sobelow [12] is
the most popular security-focused static analysis tool for Elixir and its web framework Phoenix.
The tool provides the confidence of each insecurity, dividing it into three colour-coded cate-
gories: green-low, yellow-medium, and high-red. It also rather over-reports than under-reports
resulting often in false positives. EEF recommends including Sobelow in a CI/CD pipeline so
it can be run every time code is merged into the main branch [10].

Semgrep [9] is an open-source static analysis tool that supports more than 30 programming
languages, including Elixir. Semgrep also allows user to enforce their own rules for code stan-
dards in a code-like manner. The tool uses pattern-oriented matching technology.

5 Conclusions

Application security has to be considered in all software products. Tools supporting the

3functions that are not analysed by RefactorErl, so the SPG of the function is not available
4an argument that can be provided by the user through an API call

49

identification of possible vulnerabilities are highly desired by the developer communities. We
focus our research on Elixir web applications and want to provide a tool for reliable security
checking based on static analysis. In this paper, we presented our approach to the XSS issue.
In the future, we will investigate the different issues listed by the EEF guideline.
References

[1] Saša Jurić. Elixir in Action. Manning, 2024.

[2] The OWASP Foundation. Application security verification standard. https://owasp.
org/www-pdf-archive/OWASP_Application_Security_Verification_Standard_4.
0-en.pdf. Accessed: 29-03-2024.

[3] Carnegie Mellon University, Software Engineering Institute. Cert coding standards. https:
//wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards.
Accessed: 29-03-2024.

[4] G. Ann Campbell and Patroklos P. Papapetrou. SonarQube in Action. Manning Publications, 06
2013.

[5] Francesco Cesarini and Simon Thompson. Erlang programming. O’Reilly, 06 2009.

[6] Web application security best practices for beam languages. https://erlef.org/wg/
security. Accessed: 29-03-2024.

[7] M. Tóth and I. Bozó. Static analysis of complex software systems implemented in Erlang. Central
European Functional Programming Summer School – Fourth Summer School, CEFP 2011, Revisited
Selected Lectures, Lecture Notes in Computer Science (LNCS), Vol. 7241, pp. 451-514, Springer-Verlag,
ISSN: 0302-9743, 2012.

[8] M. Tóth and I. Bozó. Supporting secure coding for Erlang. In The 39th ACM/SIGAPP Symposium on
Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain. ACM, New York, NY, USA, 3 pages,
https://doi.org/10.1145/3605098.3636185, 2024.

[9] Semgrep. https://github.com/semgrep/semgrep. Accessed: 29-03-2024.

[10] Security working group. https://erlef.github.io/security-wg/web_app_security_
best_practices_beam/index. Accessed: 29-03-2024.

[11] Geoffrey Lessel. Pheonix in Action. Manning, 2019.

[12] Sobelow. https://github.com/nccgroup/sobelow#installation. Accessed: 29-03-2024.

[13] Baranyai, B., Bozó, I., and Tóth, M. Supporting secure coding with RefactorErl. In 13th Joint
Conference on Mathematics and Informatics – MaCS 2020 (2020), pp. 24–25.

[14] Dibyendu Brinto Bose, Kaitlyn Cottrell, and Akond Rahman. Vision for a secure elixir ecosystem:
An empirical study of vulnerabilities in Elixir programs. In Proceedings of the 2022 ACM Southeast
Conference, ACM SE ’22, pages 215–218, New York, NY, USA, 2022. Association for Computing
Machinery.

50

https://owasp.org/www-pdf-archive/OWASP_Application_Security_Verification_Standard_4.0-en.pdf
https://owasp.org/www-pdf-archive/OWASP_Application_Security_Verification_Standard_4.0-en.pdf
https://owasp.org/www-pdf-archive/OWASP_Application_Security_Verification_Standard_4.0-en.pdf
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://erlef.org/wg/security
https://erlef.org/wg/security
https://github.com/semgrep/semgrep
https://erlef.github.io/security-wg/web_app_security_best_practices_beam/index
https://erlef.github.io/security-wg/web_app_security_best_practices_beam/index
https://github.com/nccgroup/sobelow#installation

Optimizing SAP S/4HANA On-Premise with Cloud-Ready
Extensions: a Clean-Core system

Imre Munkácsi, Márta Alexy Angyalné, Tamás Gábor Orosz

Abstract: With the rise of SaaS-based SAP ERP systems in recent years, extension techniques
for cloud-based systems have evolved to enable automatic upgrades without disrupting cus-
tom developments. These techniques and tools are also available for On-Premise system ver-
sions, in which traditionally classical extension tools were used. This paper proposes a novel
methodology for applying cloud-ready extension tools and methodologies to On-Premise SAP
implementations, aligning with the classical RICEFW categories. Through this approach, or-
ganizations can optimize their ERP systems for future scalability, minimize technical debt, and
facilitate the adoption of innovation within their operations.

Keywords: SAP S/4HANA On-Premise, Cloud-Ready Extension, Technical-debt, Clean Core, Key-user
extensibility

1 Introduction

Organizations have traditionally relied on classic ABAP extensions to meet business require-
ments, investing significant effort in building custom processes tailored to specific require-
ments. Consequently, the core ERP system has grown increasingly complex due to extensive
custom developments and enhancements, thus increasing the “technical debt” of the system.
While classic extensibility has proven powerful and flexible in addressing diverse business
needs, it has also contributed to inefficiencies and suboptimal performance. The TCO (Total
cost of ownership) of the system has increased, as custom developments requires maintenance,
additional testing and encumber the upgradeability of the core system and as a result, slows
down the innovation adaptation process, while increasing the technical debt of the ERP sys-
tem [1]. SAP is shifting away from a monolithic ERP architecture towards a Software-as-a-
Service (SaaS) with the S/4HANA Public Edition ERP, but customers are still - and most prob-
ably will be - able to license Private Cloud on On-Premise solutions. Present paper introduces a
new methodology how the available cloud-ready extension tools and methodologies apply in
an On-Premise SAP implementation in alignment with the classical RICEFW categories. With
this methodology, new customer requirements can be designed in-sync with the clean-core
principle in order to decrease the TCO of the ERP system. The paper explores the full range of
cloud-ready solutions and tools present in the SAP S/4HANA 2023 On-Premise FPS0 system
version. Given SAP’s adoption of a two-year release cycle for major On-Premise and Private
Cloud versions, subsequent releases are likely to introduce new tools and modifications related
to this subject.

2 Clean core concept

The concept of “keeping the core clean” was introduced by former SAP CTO, Björn Go-
erke, during his keynote address at TechEd 2018. This concept is currently utilized in SAP’s
Public Cloud edition, facilitating the automatic deployment of mandatory system upgrades
to the client’s system twice a year [2]. The Clean Core concept does not mean a modification
free system, as most clients require some level of extension. Rather, describes a system where
modifications are done in alignment of the Clean Core guidelines and utilizes tools which are
provided. From the “Core” elements we are focusing in this paper on the “Extensibility” and
“Integration” part, as these are the components that are usually affected by classical extension
methods. The fulfillment to the criteria can be established in a green-field SAP implementation

51

Table 1: Criteria for clean core [3]

Element of Core Criteria for Clean Core
Software Stack Software version close to the latest release

Partner solutions clean core compliant
Extensibility Upgrade-stable extensions following prescribed extensibility model

Only actively used and well-documented extensions
Adherence to general code quality standards and best practices

No duplication of SAP standard functionality
Integration Upgrade stable interfaces

Proper monitoring and error resolution capabilities
Only actively used and well-documented integration

Data Complete
Correct

Used and relevant
Processes No inconsistent or inefficient processes

Leveraging SAP recommended Best Practices
Operations Planned and executed regularly to maintain alignment with guidelines

Opt-in on lifecycle events such as periodic upgrades

at the start of the project, but also can be applied in a brown-field implementation, where a
previous SAP system is upgraded to the latest S/4HANA version. In the latter case, the al-
ready existing custom modification shall be examined and re-designed to be aligned with the
Clean Core concept. Extensibility means added functionality to the software, which extends
or changes the standard system behavior e.g. by adding new data fields on database level and
exposing it on the UI to capture additional data during operational work. Integration is used
to exposing SAP ERP system data to other, third-party applications, or fetching data to ERP
from another system. An example for an interface is to download the daily exchange rates of
currencies into the system. White-listed APIs are listed and maintained by SAP [4]. This means
that SAP has certified and released these APIs and are safe to use according to the Clean Core
principle.

3 Cloud-ready extensibility techniques

SAP categorizes these techniques into three groups [5]. All three extensibility options adhere
to the Clean Core guidelines, ensuring that the extension remains decoupled from the core
code. This decoupling is vital as it guarantees that extensions do not disrupt system upgrades,
and contrary, upgrades do not impact extensions.

1. Key-user extensibility tools (Tier 1)

(a) Custom field app: With custom field, key-users are able to extend standard busi-
ness object (e.g. product master, sales order, accounting document etc.) with addi-
tional fields on database level. The tool supports multiple data types and additional
search-help with custom developed Value Help entities. After creating the custom
field, the system allows the users to select where the new field can be available:
which transactional application, analytical report, form interface, or even legacy GUI
based transaction screen appends are created automatically.

(b) Custom logic app: In the custom logic application, the available business contexts
defines the different extension points where custom logic runs, e.g. change the doc-
ument before save. The tool uses simplified ABAP language syntax and provides
sample code for key-users for simple logic.

52

(c) Adapt UI app: The tool allowes standard application user interface to be changed
and deployed to users. The functionality includes adding/deleting fields, and mod-
ifying sections on the UI.

(d) Create and extend forms: With the help of the tool, key-users are able to change the
layout of the forms and create different variants for different use cases.

(e) Create custom business object: CRUD enabled objects can be created, with the option
to deploy it as a standalone application and also as an API.

(f) Create custom CDS view app: CDS views are the main building blocks of the
S/4HANA virtual data modeling solution [6]. CDS views provide a way to define
and consume semantically rich data models in a standardized and efficient manner.
The custom CDS views are able to re-use whitelisted, standard CDS views. This pro-
vides a way to created APIs and datasources for reporting which otherwise are not
available in the system.

(g) Custom query app: This tool provides the capability to create end-user reports and
deploy them as multidimensional application, which uses the embedded analytics
engine of the system. The users can freely change what field they need both in rows
and columns.

(h) Situation handling - Extended Framework: The situation handling engine uses BOR
or Class based workflow events to trigger custom notifications to the users. This
includes upcoming deadlines, failed approvals of documents, expiring contracts,
stock shortage etc.

2. Developer extensibility (Tier 2) [7]

(a) Eclipse-based ABAP Development Tool (ADT) - Extend standard CDS views, Cre-
ate ABAP RESTful Application Programming Model (RAP) based applications [8],
Create new APIs

(b) Business Application Studio on SAP BTP - Deploy Fiori Elements based application,
Extend standard application via Adaptation Project

(c) Visual Studio Code - Deploy Fiori Elements based application, Extend standard ap-
plication via Adaptation Project

3. Side-by-Side extensibility (Tier 3) - Side-by-side extensions are software applications de-
signed to operate externally from SAP S/4HANA while interfacing with it through stan-
dard SAP APIs. The target audience for these extensions are ABAP or non-ABAP (JAVA,
Node.js) developers. The SAP Business Technology Platform (BTP) is the preferred plat-
form for creating side-by-side extensions for any SAP solution [9]. The objective is to
develop extensions that are loosely connected yet integrate smoothly, enabling them to
operate independently from the SAP S/4HANA’s operational processes and lifecycle
management. Since these applications are separated from the core system and operate
on a distinct technology stack compared to the standard ERP system, the core system’s
maintainability and upgradeability remain unaffected.

4 Align RICEFW with Cloud-Ready extensions

RICEFW is an acronym used in SAP to categorize different types of requirements or objects
that are typically encountered during an implementation or extension project. Each letter in
RICEFW represents a different type of object [10] Every tool designed for cloud-ready exten-
sions can correspond to one or several RICEFW categories. The RICEFW framework, by itself,
does not explicitly pinpoint requirements that overlap - such as a scenario where a new report

53

triggers a workflow, which in turn initiates a printing process. Consequently, to address more
complex situations, it is often necessary to employ a combination of multiple tools.

Table 2: Cloud-ready techniques for RICEFW categories

RICEFW category Cloud-ready extension technique
Reports Custom CDS view, Custom analytical query, or BTP analytical application

Interfaces SAP standard white-listed APIs
or custom interface via Custom CDS view and deployed as a RESTful API

Conversions Custom data migration can be done via released APIs
or standard Data migration cockpit functionality

Enhancements Key user extensibility tools:
Custom field, Adapt UI and Custom logic

Custom object for new business objects
Situation handling framework for notification-based extensions

Developer extensibility tools:
SAP S/4HANA Cloud ABAP environment for RAP applications

Side-by-side extension on BTP for substitute applications
Forms Side-by-side extensibility on BTP with Adobe form service

Custom data source with developer extensibility
Workflows Side-by-side extensibility on BTP with SAP Workflow management

5 Result and discussion

By applying this methodology, all user requirements can be categorized according to
RICEFW in the design phase of the project. In the subsequent step, the technical teams should
examine each user requirement to identify which extension type can fulfill it.

1. Categorization by RICEFW: This step ensures a structured approach to understanding
the project’s scope and identifying the specific needs that must be addressed.

2. Evaluation by Technical Teams: Once the requirements are categorized, the technical
team examines each user requirement to determine which type of extension would be
most appropriate for its realization. This determination is crucial as it directly impacts
the extension’s complexity and future flexibility.

3. Preference for Lower Tier Extensions: In situations where more than one extension type
could satisfy a requirement, the goal is to opt for the extension of the lowest tier.

4. Collaboration for Simplification: This step involves engaging in discussions with busi-
ness analysts and the initial requestor of the feature. The purpose of these discussions is
to simplify the requirement without sacrificing essential business functionality.

5. Avoiding High-tier Extensions: The overarching goal is to implement solutions that fulfill
business requirements without resorting to tier 3 or, ideally, even tier 2 extensions.

Although cloud-ready solutions are not mandatory for On-Premise systems, they can be used
to get closer to the goals mentioned in the introduction. Accordingly, a big role is left to the
development teams when they start the technical modelling of the specific user needs, as they
have to be careful to choose techniques that they may have less knowledge about, but which
can facilitate the long-term operability of the system. For enterprise decision-makers, the move

54

towards cloud-ready solutions is not just about embracing innovation for the sake of mod-
ernization. It’s a strategic decision aimed at minimizing technical debt - the accumulation of
suboptimal technology choices that can hinder future system upgrades, scalability, and main-
tenance. Technical debt is a critical consideration in ERP system implementation, as it can
significantly impact the total cost of ownership, system flexibility, and the ability to adopt new
features over time.

References

[1] OutSystems. (2021, May). The growing threat of technical debt. Retrieved March 30, 2024, from
https://www.outsystems.com/1/growing-threat-technical-debt/

[2] RISE with SAP - ERP Clean Core Strategy. (n.d.). SAP. Retrieved March 30, 2024, from https:
//www.sap.com/products/erp/rise/clean-core.html/

[3] Nancy. (2024, February 22). Certification of Partner Solutions fol-
lowing Clean Core. SAP Community. https://community.
sap.com/t5/enterprise-resource-planning-blogs-by-sap/
certification-of-partner-solutions-following-clean-core/ba-p/13556247

[4] SAP Business Accelerator Hub. (n.d.). https://api.sap.com/

[5] SAP Extensibility Explorer for SAP S/4HANA Cloud. (n.d.). https:
//extensibilityexplorer.cfapps.eu10.hana.ondemand.com/
ExtensibilityExplorer/

[6] Robson, S. (2013). Agile SAP: introducing flexibility, transparency and speed to SAP implementa-
tions. IT Governance Ltd.

[7] Glavanovits, R., Koch, M., Krancz, D., Olzinger, M. (2023). Full Stack Development with SAP. SAP
Press.

[8] Baumbusch, L., Jäger, M., Lensch, M. (2022). ABAP RESTful Application Programming Model: The
Comprehensive Guide. SAP Press

[9] S. Banda, S. Chandra and C. Aun Gooi, SAP Business Technology Platform (An Introduction)
(Rheinwerk Publishing, Quincy, MA, 2022), pp. 28-50.

[10] Hrastnik, R. D. C., Dentzer, R., Hrastnik, J. (2024). Core Data Services for ABAP. SAP Press.

55

https://www.outsystems.com/1/growing-threat-technical-debt/
https://www.sap.com/products/erp/rise/clean-core.html/
https://www.sap.com/products/erp/rise/clean-core.html/
https://community.sap.com/t5/enterprise-resource-planning-blogs-by-sap/certification-of-partner-solutions-following-clean-core/ba-p/13556247
https://community.sap.com/t5/enterprise-resource-planning-blogs-by-sap/certification-of-partner-solutions-following-clean-core/ba-p/13556247
https://community.sap.com/t5/enterprise-resource-planning-blogs-by-sap/certification-of-partner-solutions-following-clean-core/ba-p/13556247
https://api.sap.com/
https://extensibilityexplorer.cfapps.eu10.hana.ondemand.com/ExtensibilityExplorer/
https://extensibilityexplorer.cfapps.eu10.hana.ondemand.com/ExtensibilityExplorer/
https://extensibilityexplorer.cfapps.eu10.hana.ondemand.com/ExtensibilityExplorer/

State-of-the-Art Business Intelligence Applications:
A Journey Through Time and Technology

Zoltán Ságodi, István Siket

Abstract: The advent of large language models (LLMs) has revolutionized software devel-
opment, significantly reducing the effort required to create state-of-the-art applications. This
study compares the effort involved in developing advanced software before and after integrat-
ing LLMs into the development process. By examining traditional methodologies alongside
modern AI-enhanced approaches, the research highlights the challenges and efficiencies of
each era. Key aspects such as coding time, debugging processes, innovation cycles, and re-
source allocation are analyzed to provide a comprehensive understanding of the evolution of
development practices. The findings demonstrate a significant reduction in development time
and an increase in software quality with LLMs. This study underscores the transformative
impact of AI on software engineering and offers valuable insights for developers and organi-
zations looking to leverage these advanced tools for future projects.

Keywords: LLM, GPT, Machine Learning, Human effort, Business Intelligence

1 Introduction

In today’s technology landscape, Large Language Models (LLMs) are making significant
impacts across various fields, including software development. One of the most well-known
LLMs is the Generative Pre-Trained Transformer (GPT). LLMs are expertly designed to handle
Natural Language (NL) and excel in data processing tasks [1]. Proficiency in understanding NL
and processing Big Data opens up numerous applications, such as answering questions based
on extensive knowledge bases which can be used in Business Intelligence (BI).

Business intelligence is a critical aspect of modern enterprises, prompting software develop-
ers to devise innovative solutions. Developing BI applications involves several complex steps,
including Natural Language Processing (NLP), Knowledge Retrieval, and answer generation.
Traditionally, creating such sophisticated software requires substantial time and the expertise
of multiple developers.

LLMs are well-suited for performing NLP tasks and handling Big Data, making them ideal
for developing BI applications. There is a growing body of research evaluating the efficacy of
GPT models in Question Answering (QA) scenarios [2, 3]. As Wu et al. highlighted [3], LLMs
leverage the knowledge acquired during their pre-training phase. However, to ensure these
models remain effective with up-to-date information, various techniques must be employed,
as continuous fine-tuning on new data is not feasible.

This work aims to analyze the differences between traditional software development and
AI-supported development. The research questions guiding this study are:

• RQ1: What are the main similarities and differences between traditional and AI-
supported development?

• RQ2: Are maintenance efforts different in traditional and AI-supported applications?

• RQ3: How reliable are they compared to one another?

By addressing these questions, we aim to provide a comprehensive understanding of how
AI, and specifically LLMs, can enhance the software development process, particularly for ap-
plications involving complex data and natural language tasks.

56

2 Methodology

To compare the two development methods we need a traditional and an AI-supported de-
velopment process. We only evaluate the parts that take actual development, as elements like
communicating with the client and describing the final project expectations cannot be done
twice. To evaluate traditional methods we use an already finished project developed by tradi-
tional means. This project leverages various techniques to provide an NL interface over busi-
ness reports. In this case, we have the information on which experts were involved and how
much time was spent on the project. To evaluate the AI-supported process we re-develop the
key components without the additional elements such as front end and input validation since
these elements can be reused. We analyze this solution in the same way as before.

3 Analysis of development

In this section, we describe the process of traditional and AI-supported development and
the factors that make them easier or more problematic. The key steps we discuss are: Under-
standing NL questions (NLP), Analyzing the Data (AD), and Creating Responses and Charts
(CRC).

3.1 Traditional

NLP: NL related processes, such as translation, can be achieved i.e. by syntax trees, although
more complex tasks, such as text understanding require more resources. An additional diffi-
culty is that most of the results in NLP non-AI are based on English texts, therefore, the results
are worse for different languages. Developer teams could leverage various heuristics, prede-
fined sentence patterns, and look-up tables combined with syntax tables. The NLP step re-
garding these difficulties requires a tremendous amount of effort from programmers and other
specialists, e.g. linguists. Using predefined sentence patterns, the variable values can be pro-
vided by API endpoints where one endpoint represents one particular question.
AD: Usually getting the data requires various database connections and predefined queries.
After retrieving the data, various algorithms or even whole data analysis frameworks might be
applied. These steps mostly include applying third-party tools.
CRC: Creating responses mostly leverages template sentences and predetermined charts. The
generator scripts are developed by the team and mostly use third-party libraries.

3.2 AI-supported

In the AI-supported development, we applied GPT-4 to source code generation [4] and the
knowledge retrieval part completely.
NLP: As GPTs are designed to understand NL therefore this step can be skipped.
AD: This step is more complex. Firstly, we have to retrieve the data itself. In an AI-supported
system, developers can create database communicators that connect to a database. With AI-
pipelines, the required data can be mined, which even includes SQL queries, where hard-coded
queries can be swapped for ones that the AI is capable of creating. Therefore, the queries are
dynamic and can be applied to any database. Secondly, GPTs are designed to generate data
based on the knowledge contained in the training set. We cannot use them directly to provide
information about data it did not meet during training. To overcome this issue we can use
prompting, especially few-shot learning. This way we can provide examples of how to react
to data and what is our required output. Although this leads the model to a better outcome
the data is still not fed to the model. We could use the whole data set and provide it to the
model, however, this solution would require too much memory. This problem is solved by
using Retrieval Augmented Generation (RAG) [5].

57

CRC: As GPTs are generative models, a GPT model can generate the complete answer, although
it cannot provide charts. To overcome this issue we made GPT generate code that creates
the charts. These scripts could both use third-party libraries to perform the whole task by
themselves, based on the AI itself, although, it mostly prefers third-party libraries too.

Answer to RQ1: What are the main similarities and differences between traditional and
AI-supported development?
Both traditional and AI-supported development uses third-party libraries and scripts to
perform most of the tasks, however, traditional methods are more rigid and require more
time to complete the scripts for every step. AI-supported systems are faster to develop as
AI creates scripts on the fly. This also makes AI-supported systems more dynamic.

4 Analysis of software evolution

Maintaining software is a critical aspect that often incurs significant costs and places pres-
sure on the evolving development team. The easier a system is to maintain, the more cost-
effective and straightforward it becomes to implement changes to it over time.

Generally, the greater the volume of code to maintain, the more challenging it becomes.
However, this difficulty is influenced by various factors. Here, we will focus on the abstract
components of systems rather than the source code level, as the maintainability of the source
code is highly dependent on its quality.

4.1 Traditional

In a traditional system that relies on predefined sentences, maintenance can involve im-
plementing new algorithms for evaluation and continuously updating scripts, such as Python
versions. Introducing new sentence patterns often requires the implementation of the corre-
sponding algorithms and the responses to the new queries.

4.2 AI-supported

In an AI-supported system, where tasks are performed by AI and scripts are generated dy-
namically, maintenance primarily involves updating the underlying models or prompts. This
allows for the automatic generation of new scripts. Due to the adaptive nature of such a model,
adding new questions requires no extra effort, as the AI pipeline can seamlessly handle new
queries. In our experimental system, the pipeline was designed to run iteratively until all re-
sults were obtained. However, we faced challenges in automatically verifying the correctness
of the results. There were instances where the outcomes were incorrect or irrelevant to the
desired objective.

Answer to RQ2: Are maintenance efforts different in traditional and AI-supported ap-
plications?
Traditional systems suffer from maintenance tasks, while AI-supported systems can be up-
dated by changing configuration files to use new prompts and models. Although using
new models is easy to implement, creating one is way harder, however, that is outside the
scope of this paper.

5 Analysis of reliability

The reliability of a system’s provided answers is one of its most crucial requirements. Reli-
ability ensures that the system can generate responses that are both accurate and correct.

58

5.1 Traditional

The reliability of a traditional system hinges on the quality of the scripts created and the
thoroughness of their testing. While we cannot provide exact figures, the results are generally
consistent with those observed during evaluations, as the same algorithms are executed. This
consistency, however, is heavily dependent on the quality of the evaluation dataset. The overall
robustness of the system also relies on rigorous testing, ensuring there are no additional risks.

5.2 AI-supported

The reliability of an AI-supported system also depends on thorough testing, but there is
a higher risk of producing incorrect results. Analyzing scripts are executed dynamically, or
results are generated by a model. Both approaches are non-deterministic, making it difficult
to predict how the system will react. When generating natural language responses based on
the analyzed data, there is an additional uncertainty, as large language models (LLMs) can
hallucinate and alter the original content, potentially leading to incorrect results.

Answer to RQ3: How reliable are they compared to one another?
The reliability of the traditional system is higher due to the non-deterministic nature of
LLMs.

6 Threats to validity

We chose GPT-4 as our large language model (LLM), which raises several data security con-
cerns. Although other open-source LLMs could have been used, potentially impacting the
validity of our results, we opted for GPT-4 due to its state-of-the-art capabilities. Addition-
ally, using custom local models would have required significant energy and costly hardware,
making GPT-4 a more practical choice for our needs.

Acknowledgements

The research was supported by the project 2019-1.1.1-PIACI-KFI-2019-00449 implemented with
the support provided by the National Research, Development and Innovation Fund, financed
under the “Support for market-driven R&D and innovation projects” funding scheme.

References

[1] O. M. Alyasiri, D. Akhtom, and M. N. Alrasheedy. An overview of gpt-4’s characteristics through
the lens of 10v’s of big data. In 2023 3rd International Conference on Intelligent Cybernetics Technology
& Applications (ICICyTA), pages 201–206, 2023.

[2] Y. Tan, D. Min, Y. Li, W. Li, N. Hu, Y. Chen, and G. Qi. Can chatgpt replace traditional kbqa models?
an in-depth analysis of the question answering performance of the gpt llm family. In International
Semantic Web Conference, pages 348–367. Springer, 2023.

[3] Y. Wu, A. Henriksson, M. Duneld, and J. Nouri. Towards improving the reliability and transparency
of chatgpt for educational question answering. In European Conference on Technology Enhanced Learn-
ing, pages 475–488. Springer, 2023.

[4] B. Idrisov and T. Schlippe. Program code generation with generative ais. Algorithms, 17(2):62, 2024.

[5] J. Li, Y. Yuan, and Z. Zhang. Enhancing llm factual accuracy with rag to counter hallucinations: A
case study on domain-specific queries in private knowledge-bases. arXiv preprint arXiv:2403.10446,
2024.

59

Multi Model Recursion for Hungarian Electricity Load Forecasting

Mátyás Sebők

Abstract: Time series analysis and prediction is a difficult and complex problem. Many
machine- and deep-learning methods exist with better and better results. This paper I proposes
a strategy called Multi Model Recursion. It uses separate deep-learning models per feature that
needs predicting. Another improvement is not predicting features which are easily calculated.
Having extra models per feature helps in “simulating” a future environment since it predicts
exogen variables otherwise unkown.

The Multi Model Recursion developed is an improvement of the commonly used Recursive
strategy. The paper compares this method with models and strategies frequently used in the
field. The testing dataset is put together from publicly available Hungarian electricity load and
weather data. The task was to predict the country’s net electricity load for the next 3 hours.

Keywords: time-series, deep-learning, Multi Model Recursion, electricity load forecasting

1 Introduction

Short term electricity load forecasting is useful since the forecasting models can adapt better
to the given situation and give more accurate predictions. The better predictions then give
the chance for participants to better exploit their resources and minimize their costs. A 3 hour
forecast comparison of Hungary’s net electricity load shows the different models’ strengths at
single step forecasting and also gives an idea about their longer range performance.

The difficulty is that while weather data is available at a large resolution, forecasts are not
always available the same way. The focus of Multi Model Recursion is to create a simulated en-
vironment with the given exogenous variables and their respective models to further enhance
the predictions of the target variable. Compared to the regular Recursive strategy, this architec-
ture can optimize better since it doesn’t have to directly take into account the exogenous and
time-series variables when calculating the cost function.

This paper compares Multi Model Recursion with the regular Recursive strategy using
recurrent deep-learning algorithms. It also compares it with the Multi Input Multi Output
(MIMO) strategy using Convolutional, Temporal Convolutional and LSTM networks. Further
compares it with the very powerful Sequence to Sequence (Seq2Seq) strategy, which uses an
encoder-decoder architecture. To justify the usage of such complex algorithms it also looks at
the performance of a machine-learning algorithm known as Random Forests and a Statistical
method known as Seasonal Autoregressive Integrated Moving Average (SARIMA).

2 Related Work

In time-series forecasting we can discuss different statistical, machine- and deep-learning
models and different strategies. All approaches have their own respective advantages, disad-
vantages and use cases. For electricity load forecasting it was important to choose a strategies
which can forecast for multiple time-steps. Examples for these are Recursive, Multi Input Multi
Output (MIMO) and Sequence to sequence (Seq2Seq) methods.

[1] describes the problem of time-series forecasting to predict electricity load and shows the
different strategies used in the field. Most machine- and deep-learning models can be adapted
to most of the strategies. [2] describes the usage of Convolutional and Temporal Convolutional
Networks for time-series forecasting, Convolutional models were used in 1D on the target vari-
able. [3] shows the use of LSTMs for multi-step time-series forecasting confirming it has supe-
rior performance to the ARIMA model. [4] shows the use of GRUs for sequence predictions,

60

GRUs behave similarly to LSTMs but generally it’s not possible to tell which will perform bet-
ter on a given task. [5] shows the usage and tuning of Random Forests, a machine-learning
model that can easily be adapted to the MIMO strategy.

3 Multi Model Recursion

The Recursive strategy suffers from some issues that heavily decrease its performance in
tasks which have many exogenous variables. Even more so if they are difficult to forecast. It
works in a way where it forecasts a single time-step at a time with all its variables. Afterwards,
it assumes that its predictions as correct and forecasts the next step with this assumption. The
problem is that each variable has to partake in calculation of errors and then in Backpropaga-
tion which heavily decreases the performance for the target variable.

Algorithm 1 Multi Model Recursion algorithm, using the same notation as in [1]

1: for i = 0 . . . nO − 1 do ▷ nO is the length of the predictions
2: for j = 0 . . . k − 1 do ▷ k is the amount of predicted features
3: ŷt[i, j] := fj(xt) ▷ predict feature using fj model, store in ŷt for timestep
4: xt[nT , j] := ŷt[i, j] ▷ add new, predicted features to next timestep
5: if random(0 . . . 1) < teacher_forcing then
6: xt[nT , j] := yt[i, j] ▷ teacher forcing
7: end if
8: end for
9: xt[nT , k . . .] := g(xt) ▷ add pre calculated features to next timestep

10: xt := xt[1..nT) ▷ remove first timestep of input to preserve model input dimensions
11: end for
12: return ŷt[. . . , 0] ▷ return the target variable

The designed Multi Model Recursion (MMRec) strategy is a deep-learning approach that
aims to eliminate the common issues with the regular Recursive strategy. Firstly, it doesn’t
make forecasts using the deep-learning model when the values are simple to calculate. A good
example of this are time/date related variables such as hour, day of the week or holiday identi-
fiers. These values are calculated before the predictions occur and are given to the model at the
appropriate time-step. The second difference is that it uses separate models for each remaining
variable. In the dataset electricity load (the target variable), precipitation and global radiation
were chosen. At the implementation level, these models are combined in a way that backprop-
agation happens only from the target variable backwards. This means that the optimization
only happens based on the variable that is important and is actually used from the output.

4 Dataset

The results were produced with the dataset constructed from the data of OMSZ’s Data Pub-
lication for weather data and from MAVIR’s Data Publication for electricity load data. This
concludes in an hourly time-series dataset from the start of 2015 until the end of August 2023.

After examining the importance of variables during Exploratory Data Analysis and employ-
ing feature selection methods such as evaluating the Confusion Matrix and using Sequential
Automatic Feature Selection with the MIMO strategy and Random Forests the the amount of
features used were heavily reduced. The remaining ones were electricity load, precipitation,
global radiation and time describing variables.

61

https://odp.met.hu/climate/observations_hungary/hourly/
https://odp.met.hu/climate/observations_hungary/hourly/
https://mavir.hu/web/mavir/rendszerterheles

5 Results

The models and training hyperparameters were optimized using the Grid Search algorithm
while splitting the data to 7 pieces. For evaluation the data was split into 10 pieces. Table 1
shows the results of the respective metrics averaged over the 9 train-evaluation pairs and 6
runs. This totals to 54 runs per model-strategy. The mean ± standard deviation is listed for the
results where applicable. MAVIR’s predictions are given as is and not computed in this paper.

Multi Model Recursion (MMRec) was tested with GRUs predicting electricity load and Con-
volutional networks predicting exogenous variables. These are the GRU 1L and GRU 2L entries
in Table 1. The difference between them is the layer-count used by the GRU models. MMRec
FULL GRU is a model using separate GRU models for each of the 3 variables, this makes it
slower but perform better since Recurrent networks are relatively good at dealing with time-
series data.

Table 1: The evaluational scores for each model and strategy combination, closer to 0 is better

Model
and Strategy

MAE
(MW)

RMSE
(MW)

MAPE
(%)

MPE
(%)

MAVIR predictions 252.58 300.81 4.97 −4.70
MIMO - RF 69.96± 15.29 104.32± 24.0 1.42± 0.32 0.017± 0.25

MIMO - CNN 103.13± 21.5 146.69± 27.55 2.12± 0.46 0.196± 0.416

MIMO - TCN 63.92± 10.46 92.96± 15.57 1.31± 0.22 −0.001± 0.198

MIMO - LSTM 62.62± 6.05 88.97± 9.19 1.28± 0.13 0.05± 0.175

Seq2Seq - GRU 58.75± 6.22 84.21± 9.83 1.21± 0.13 0.08± 0.168

Recursive - GRU 94.41± 14.41 128.39± 17.39 1.94± 0.28 0.119± 0.744

MMRec - GRU 1L 65.4± 7.68 92.43± 10.88 1.34± 0.17 0.114± 0.292

MMRec - GRU 2L 64.79± 7.31 90.85± 10.27 1.32± 0.16 −0.029± 0.295

MMRec - FULL GRU 62.17± 7.95 88.42± 11.25 1.27± 0.17 0.098± 0.261

SARIMA’s performance is not included since after testing it was found that computing the
proper parameters for only taking 3 hour predictions takes much longer than other models. If
the proper parameters are not found it’s performance is below the public predictions of MAVIR.

In terms of performance the Seq2Seq strategy performed best on in this dataset followed
closely by the MIMO LSTM and MMRec FULL GRU strategy-model pairs. It’s important to
keep in mind that the electricity load’s mean is around 4900 MW and the standard deviation is
around 735 MW for the entire dataset.

Figure 1: Comparing Seq2Seq and MMRec by RMSE error per hour ahead prediction

62

6 Conclusion

When taking a look at Figure 1 it’s clear that the MMRec strategy’s biggest weakness is
first hour predictions. This could be due to the implementation since all models tested with
the strategy show this behaviour. The advantage of this approach is that when looking at
predictions after the first hour, the advantage of the Seq2Seq is much smaller. This shows that
MMRec’s way of “simulating” the exogenous variables state may be beneficial to predictions.

The improvements upon the regular Recursive method are clear from Table 1. Furthermore
it’s very simple to use this model in a way where external forecasts are incorporated. In that
case the corresponding model can just be ignored for the given step. This is very useful in cases
where the forecasts are not consistently available since the exogenous variable predictors can
step in when something is not available.

Future usecases for MMRec include wind and solar electricity production predictions since
they correlate heavily with weather variables and events. Future tests should include compar-
ing the incorporation of external weather forecasts into both the Seq2Seq and MMRec strategy
to compare their performance.

7 Acknowledgments

This work was supported by Eötvös Loránd University via fellowhip from the HALL 23
application. Special thanks to dr. Vincellér Zoltán from the ELTE Faculty of Informatics for
supervising the project.

References

[1] Gasparin, A., Lukovic, S., Alippi, C.: Deep learning for time series forecasting: the electric load
case. CAAI Trans. Intell. Technol. 7(1), 1–25 (2022). https://doi.org/10.1049/cit2.12060

[2] Shaojie Bai, J. Zico Kolter és Vladlen Koltun. An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling. 2018. arXiv: https://arxiv.org/abs/1803.
01271

[3] Masum, S., Liu, Y., Chiverton, J. (2018). Multi-step Time Series Forecasting of Electric Load Us-
ing Machine Learning Models. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W.,
Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lec-
ture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/
978-3-319-91253-0_15

[4] Guizhu Shen, Qingping Tan, Haoyu Zhang, Ping Zeng, Jianjun Xu, Deep Learning with Gated
Recurrent Unit Networks for Financial Sequence Predictions, Procedia Computer Science, Volume
131, 2018, Pages 895-903, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2018.04.
298.

[5] Probst P, Wright MN, Boulesteix A-L. Hyperparameters and tuning strategies for random forest.
WIREs Data Mining Knowl Discov. 2019; 9:e1301. https://doi.org/10.1002/widm.1301

63

https://doi.org/10.1049/cit2.12060
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1803.01271
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1016/j.procs.2018.04.298.
https://doi.org/10.1016/j.procs.2018.04.298.
https://doi.org/10.1002/widm.1301

Convergence of Fog Computing, Blockchain, and Federated
Learning for Advancing New Generation Networks

Wilson Valdez Solis

Abstract: The rapid evolution of New Generation Networks (NGN) such as 5G, 6G, and the
Internet of Things (IoT), demands innovative approaches to address emerging challenges in
scalability, security, and data management. In this sense, the convergence of novel technologies
such as Fog Computing (FC), Blockchain (BC), and Federated Learning (FL) serves as means
to enhance the capabilities of modern networks, in order to achieve enhanced performance,
reliability, and privacy. This paper presents a high-level taxonomy to categorize the synergy
of these paradigms in terms of networks architecture, security, privacy, resource management,
data analytics, and applications. Through this taxonomy, we aim to provide insights into the
potential benefits and challenges of integrating these technologies, and to guide future research
and development efforts in building robust and scalable NGN infrastructures.

Keywords: Fog Computing, Edge Computing, Blockchain, Federated Learning, Taxonomy.

1 Introduction

Nowadays, the rapid growth of New Generation Networks (NGN) has catalyzed a
paradigm shift, necessitating a profound reevaluation of conventional approaches to address
several escalating challenges such as scalability, security, interoperability, and data manage-
ment. As networks burgeon in complexity and scale, the imperative for innovative solutions
becomes ever more pronounced [1, 2].

In response to this imperative, the emergence, development, and convergence of Fog Com-
puting (FC), Blockchain (BC), and Federated Learning (FL) technologies appear to be an impor-
tant inflection point, heralding a transformative epoch in network architecture and functional-
ity. The synergistic potential of integrating these technologies holds immense promise for NGN
to achieve unparalleled advancements in performance, reliability, and data privacy. FC offers
decentralized processing prowess, distributing computing power across multiple devices for
collaborative data processing while ensuring privacy and security [3]. BC provides immutable
transparency, utilizing distributed ledger technology to securely record transactions across a
network, ensuring data integrity with cryptographic techniques [4]. FL introduces collabora-
tive learning dynamics, training models across decentralized devices without exchanging data
samples, allowing for model improvement while preserving individual data privacy [5].

This paper introduces a high-level overview of the complexities of this convergence, eluci-
dating its multifaceted applications across key domains encompassing network architecture,
security protocols, resource allocation, data analytics, and real-world applications. Through
a crafted high-level taxonomy, our work seeks to provide the academic community with a
structured framework conducive to a nuanced comprehension of the synergies and intrica-
cies inherent of these technologies. By delineating the potential advantages and impediments
intrinsic to this convergence, we endeavor to furnish a compass guiding future research and
practical pursuits aimed at fortifying the NGN infrastructures, thereby ensuring their resilience
and adaptability in navigating the evolving terrain of the digital epoch.

The remainder of this paper is organized as follows. Section presents a short overview
of state-of-the-art studies about integrating these technologies. Section provides a high-level
taxonomy about integrating FC-BC-FL with their explanation. Finally Section presents conclu-
sions and future research directions.

64

2 Related work

This section provides an overview of related taxonomies focusing on the integration of these
technologies. While there are not explicit taxonomies addressing the integration of all three
technologies simultaneously, several studies examine their combination in pairs.

In [6] is introduced a taxonomy about Edge Computing (considering Edge as a similar
paradigm to Fog) in FL. Their taxonomy addresses fundamentals, architectures, frameworks,
applications, and challenges across various areas, including efficiency and privacy. It also out-
lines several open issues and future research directions. Notably, the key distinction from our
work lies in the absence of BC and other aspects such as security issues, data analytics, among
others.

The study in [7] integrates BC, Mobile Edge Computing (MEC), and FL, coining the term
FLChain to represent their combination and offering a detailed taxonomy of FLChain design
and use cases. It extensively examines aspects like design, communication costs, resource al-
location, security, and privacy. Key contributions include the FLChain architecture for EC net-
works, addressing challenges like communication costs and security, and exploring opportu-
nities in EC applications such as data sharing and content caching. However, while the survey
covers MEC, it overlooks FC capabilities and applications in the field.

[8] introduces a BC-FL integration for IoT applications. It provides an overview of archi-
tectural features and privacy techniques, establishes taxonomies for both FL and BC in the IoT
context, and discusses various types of BC and consensus protocols. Furthermore, it presents
a BC-enabled IoT architecture and demonstrates local machine-learning models and FL algo-
rithms. However, the paper overlooks FC capabilities.

Overall, the proposed studies do not directly combine these three technologies into a taxon-
omy, underscoring this paper’s importance.

3 Our proposed FC-BC-FL High Level Taxonomy

Intelligent Control
Layer

NGN (5G / 6G)

Intelligent Edge /
Fog Layer

Intelligent Sensing
Layer

Smart Application
Layer

- Automated Service
- Distributed Service
- Service Provisioning
- Performance Evaluation

- Parameter Optimization
- Resource Management
- Task Scheduling
- Policy Learning

- Dimension Reduction
- Abnormal Data Filtering
- Knowledge Discovery
- Feature Extraction

- Data Collection
- Environment Monitoring
- Measurement
- Statue Detection

CLOUD

FOG

EDGE

EXTREME
EDGE /

DEVICES

Figure 1: NGN’s functional outlook

This section introduces the proposed high-level taxonomy for the integration of FC-BC-FL.
The taxonomy is structured based on the functionalities of the NGNs, as depicted in Figure 1.
The overview of this perspective emphasizes three key layers:

• Extreme Edge or Devices Layer: This layer serves as the intelligent sensing component re-

65

sponsible for data collection, environment monitoring, and measurement of required pa-
rameters.

• Edge and Fog Layer: This middle layer (Fog/Edge) acts as a sub-control point for the sens-
ing layer variables. Key functionalities include Data Dimension Reduction, Abnormal
Data Filtering, Knowledge Discovery, and Feature Extraction.

• Cloud Layer: This level represents both the Intelligent Controlling Layer and the Smart
Application. The former focuses on Parameter Optimization, Resource Management,
Task Scheduling, and Policy Learning. The latter focuses on Automated and Distributed
services, Service Provisioning, and Performance Evaluation.

Afterward, we structured the high-level taxonomy as presented in Figure 2. The categories
have been established from the Systematic Literature Review (SLR) presented in [9]. The pro-
posed taxonomy includes the following branches:

FC/EC + BC + FL

Arch
ite

ctu
ral

Fe
atu

res

Integration

M
odels

Funtionalities

App
lic

ati
on

Fie
lds

Resource Allocation /
Computation
Offloading

Securuty/Privacy

M
echanisms

D
ata M

anagem
ent

Stategies

Solutions and
Challenges

Figure 2: FC-BC-FL High-Level Taxonomy

• Architectural Features. This branch describes the potential architectural models empow-
ered by the three technologies that can fit in the NGNs.

• Data Management Storage. This branch elucidates how data is managed and stored across
various tiers of the NGN architecture. It provides detailed insights into strategies pertain-
ing to Data Collection and Acquisition, Data Preprocessing and Filtering, Data Storage
and Management, Data Sharing and Collaboration, as well as Data Privacy and Security.

• Security/Privacy Mechanisms. This branch should describe mechanisms regarding secu-
rity and privacy concerning to Authentication and Authorization, Data Encryption and
Decryption, Access Control Policies, Anonymity and Identity Management, and Privacy-
Preserving Techniques.

• Resource Allocation and Computation Offloading mechanisms. This branch should describe
the algorithms and orchestration process for managing resources and making adjust-
ments to enhance the functionality of the NGNs.

66

• Integration Models. This branch should delineate the various types of integration feasible
through the different mechanisms provided by FC/EC, BC, and FL technologies, and
their combination.

• Functionalities. This branch must describe the functionalities that this integration should
offer. In this case, we can refer to the outlook presented on Figure 1.

• Application Fields. This branch should introduce novel application fields where the ad-
vantages of this integration can be exploited. It can encompass both existing and new
applications. Besides, it also should describe the types of services offered.

• Solutions and Challenges. This branch should outline the solutions attainable through the
FC/EC-BC-FL integration, along with the forthcoming challenges, whether using this
integration or not.

4 Conclusions and Future Work

In this paper, we have introduced a high-level taxonomy for integrating FC/EC, BC, and FL
to meet the evolving requirements and perspectives of the NGNs. This initial taxonomy serves
as a foundational framework for further exploration, both in terms of a dedicated taxonomy
for the integration of these three technologies and for a more comprehensive taxonomy that
builds upon these initial perspectives. Future efforts will focus on delving into the detailed
characteristics and elements specific to FC/EC, BC, and FL, to address the evolving demands
of the next generation of networks that will shape the future.

Acknowledgements

The research leading to these results has received funding from the national project TKP2021-
NVA-09 implemented with the support provided by the Ministry of Culture and Innovation of
Hungary from the National Research, Development and Innovation Fund, financed under the
TKP2021-NVA funding scheme.

References

[1] W. Chen, X. Lin, J. Lee, A. Toskala, S. Sun, C. F. Chiasserini, and L. Liu. 5g-advanced toward 6g:
Past, present, and future. IEEE Journal on Selected Areas in Communications, 41(6):1592–1619, 2023.

[2] J. M. Parra-Ullauri, X. Zhang, A. Bravalheri, S. Moazzeni, Y. Wu, R. Nejabati, and D. Simeonidou.
Federated analytics for 6g networks: Applications, challenges, and opportunities. IEEE Network,
2024.

[3] S. Yi, Z. Hao, Z. Qin, and Q. Li. Fog computing: Platform and applications. In 2015 Third IEEE
Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pages 73–78. IEEE, 2015.

[4] H.-N. Dai, Z. Zheng, and Y. Zhang. Blockchain for internet of things: A survey. arXiv preprint
arXiv:1906.00245, 2019.

[5] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao. A survey on federated learning. Knowledge-Based
Systems, 216:106775, 2021.

[6] H. G. Abreha, M. Hayajneh, and M. A. Serhani. Federated learning in edge computing: a systematic
survey. Sensors, 22(2):450, 2022.

[7] D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le, A. Seneviratne, J. Li, D. Niyato, and
H. V. Poor. Federated learning meets blockchain in edge computing: Opportunities and challenges.
IEEE Internet of Things Journal, 8(16):12806–12825, 2021.

67

[8] M. Ali, H. Karimipour, and M. Tariq. Integration of blockchain and federated learning for internet
of things: Recent advances and future challenges. Computers & Security, 108:102355, 2021.

[9] W. Valdez, J. Parra, and A. Kertesz. Exploring the synergy of fog computing, blockchain, and feder-
ated learning for iot applications: A systematic literature review. Submitted to IEEE Access, 2024.

68

Multithreading Atomicity Static Analysis Checkers in Java

Patrik Péter Süli, Judit Knoll and Dr. Zoltán Porkoláb

Abstract: This paper explores the enhancement of Java application thread safety through static
analysis. It highlights the significance of Java’s concurrency mechanisms and introduces two
newly created checkers in SpotBugs by the authors. These checkers are designed to identify
unsafe usages of shared resources and improper atomic operations in concurrent Java pro-
gramming, aiming to mitigate common multithreading issues such as race conditions. By em-
phasizing consistent locking strategies and the correct use of Java’s atomic types, the study
offers insights into how to improve the reliability of multithreaded Java applications.

Keywords: java, concurrency, atomic operations, static analysis

1 Introduction

Static analysis in software development can detect several types of issues, such as runtime
errors and security violations in the code, without running the program itself, so developers
could be informed about bugs in early stages of development. There are many ways to ana-
lyze source codes, for example, Control Flow Analysis examines the execution, revealing infi-
nite loops, unreachable codes, and improper usages of control structures (e.g., if, else, for,
while) [1]; Data Flow Analysis focuses on data tracking to identify issues like uninitialized
variables, null pointer dereferences, and potential memory leaks [2]; Pattern-Based Analysis
uses predefined rules to look for common issues or antipatterns in the code [3].

Guidelines have been created to assist developers in producing code that is more secure
and reliable. The Software Engineering Institute (SEI) has its own, called CERT Coding Stan-
dards [4]. It has many rules covering various aspects of coding practices, including memory
handling, proper use of concurrency, input validation, and more, with the aim of preventing
software vulnerabilities such as buffer overflows, race conditions, and injection attacks. These
rules are applicable to different programming languages, and the SEI provides specific sets of
rules for C, C++, Java, and other languages.

For Java, the SEI Cert Coding Standard contains several rules for atomicity, which is essential
in softwares that work with parallel threads. This paper focuses on two specific rules of these,
which are concerned with thread-safe usage of shared data.

In Java, it is crucial to know, that the source code is not directly compiled into machine code.
Instead, it is first transformed into platform-independent bytecode, that can be interpreted by
the Java Virtual Machine (JVM), and this allows running the Java code on any device with a
Java Runtime Environment (JRE) installed [5]. In addition, Java provides high-level concur-
rency constructs, such as synchronized blocks and methods, locking objects, and concurrent
collections.

There are several tools that can analyze code and make suggestions to improve it, one of
them is SpotBugs [6] (a fork of the abandoned FindBugs). It is an open source tool that looks
for bugs in Java code using Apache BCEL (Byte Code Engineering Library) [7], so it can han-
dle binary .class files and understand instructions and methods at the bytecode level. When
analyzing classes, SpotBugs uses BCEL to read and understand the structure of the bytecode,
looking for specific patterns, coding practices, or known issues.

69

2 Strategies to use resources thread-safe

When multiple threads run simultaneously and use common resources, it is important to
consider using some kind of locking, for example, synchronization on the threads or in the
called methods.

Java provides multiple solutions for managing shared resources to avoid data inconsistency
or corruption of the state of an object.

A field can be declared as volatile, and this guarantees that the Java Memory Model will
make sure that all threads see a consistent value for the variable.

If a method or block is marked with the synchronized keyword, it can only be accessed
by one thread at a time for the same object. In some situations, it could be more flexible to use
the java.util.concurrent.locks package, which provides a framework for locking and
waiting for conditions [8].

Also, the Java Concurrency API was introduced in Java 5, containing the
java.util.concurrent.atomic package which includes classes that are useful in
concurrent programming [9]. The AtomicInteger, AtomicLong, AtomicBoolean, and
AtomicReference classes are created to perform atomic operations on single variables
of integer, long, boolean and object reference types. In addition to this, the package con-
tains concurrent collections that are thread-safe versions of standard Java collections (e.g.
ConcurrentHashMap of HashMap).

private AtomicInteger number = new AtomicInteger(0);
public void update(int value) {

number.set(value);
}
public int addAndGet(int value) {

return number.addAndGet(value);
}

Listing 1: Atomic usage of an AtomicInteger field

If the methods contain only one operation for one atomic variable, the code is correct, be-
cause the implementations of the atomic package provide atomicity, even if the methods run
in different threads. However, if atomic variables are combined, then synchronization is always
necessary to create atomic methods that combine multiple resources.

The case is the same when a method contains more than one operation for an atomic variable
because these are not atomic overall, and could cause race condition between the threads. So,
to handle this, synchronization of code blocks or functions guarantees that multiple threads
cannot simultaneously modify or access shared resources.

3 Finding non-atomic operations with static analysis

The VNA03-J [10] and VNA04-J [11] SEI Cert rules focus on the proper use of locking with
synchronization. The authors designed and implemented two checkers into the SpotBugs static
analyzer to find unsafe usages of common references between threads, and make sure the
proper usage of fields with Java atomic type. The checker covering VNA04-J works with
references, of which types are not related to the Java Concurrent API, and the other checker
ensures the proper usage of atomic type-based classes.

The checkers have the same base logic: analyzing functions in a class context and log each
method call and field assignment of common objects which are not synchronized. If a
method contains a synchronized block, the detector logs only once for every different object
inside the block, no matter how many times they are accessed; because of the synchronization,
it is considered an atomic operation. If a private method performs an unsafe operation without

70

proper synchronization, but all the methods that call it have proper synchronization, then the
private function does not need another one.

Shared data could be a field of the class, a function argument, or a local variable containing
a reference for a shared resource, for example, an element of an atomic collection.

There is a strict constraint in the VNA04-J checker, determining what methods to examine,
because only concurrent logic needs to be analyzed. In addition, the Java atomic types are
ignored. Thread instances are sought by the detector and the functions that are passed to
threads are then processed, including other methods which are in the call hierarchy, but taking
place in the current class. If the detector finds shared data that is used at least once in multiple
threads without a consistent locking policy, it marks these instructions as a bug.

The atomic typed fields and collections have atomic methods, so the VNA03-J checker
must seek multiple or combined usages of these method calls. If a shared data is used more
than once, the operations are not atomic, so these accesses will be marked as bug. There may be
the possibility that all shared data are used just once in a method, but if combined (for example
a.get().add(b.get())) then it is a bug too, because these two resource accesses must be
atomic. It is important to note that, if a shared data is used by multiple methods and at least one
accesses it more than once, all methods that work with it need synchronization for consistent
locking.

4 Results

To validate our checkers, first we implemented a large number of unit test cases to eliminate
potential bugs and filter out possible false positive cases. After that we evaluated our VNA03-J
checker on large, modern, open source Java projects, which applied concurrent solutions to get
real-world measurement data. The results (can be seen in Table 1) show that the detector has
low hit rate, indicating its suitability for practical, real-world projects, as confirmed by manual
review of the marked errors to prevent false-positive alerts.

Table 1: VNA03-J Measurements on large, open source projects

Project Lines of Java Code Count of combined Count of simple
access bugs access bugs

Bt [12] 80 714 6 14
MATSim-Libs [13] 154 975 48 18

Jenkins [14] 311 151 0 0
OpenGrok [15] 146 324 0 0

We marked combined atomic accesses issues where atomic variables are accessed multiple
times in the same function without synchronization and marked cases of simple atomic accesses,
when the access needs synchronization due of the existence of the combined resource usages
in other methods.

private AtomicInteger num = new AtomicInteger(0);
public void conditionalUpdate(int val) {

if (num.get() < 0) {
num.set(val); // combined atomic access bug, multiple access of var

}
}
public int addAndGet(int val) {

return num.addAndGet(val); // simple atomic access bug
}

Listing 2: Example of the relation between the bug types

71

In the conditionalUpdatemethod there are unsynchronized combined atomic accesses, and
because of this, the operation in the addAndGetmethod is marked as a simple atomic access bug.

5 Conclusion

In concurrent programming, it is crucial to use shared resources in a thread-safe way. To
achieve this, it is recommended to use a consistent locking policy, which could be even nec-
essary, when a program works with Java atomic based types. Static analysis is a very useful
tool to look for mistakes and make sure the developers implement their concurrent logics in
a proper way. The authors developed new detectors to the SpotBugs project (an open source
static analyzer tool for the Java language) to detect this kind of unsafe resource usage between
concurrent threads leading to more reliable applications worldwide.

References

[1] V. H. Halim and Y. Dwi Wardhana Asnar, "Static Code Analyzer for Detecting Web Application
Vulnerability Using Control Flow Graphs", 2019 ICoDSE, Pontianak, Indonesia, 2019, pp. 1-6

[2] I. Aghav, V. Tathe, A. Zajriya and M. Emmanuel, "Automated static data flow analysis", 2013 Fourth
ICCCNT, Tiruchengode, India, 2013, pp. 1-4

[3] X. Zhang, Y. Zhou and S. H. Tan, "Efficient Pattern-based Static Analysis Approach via Regular-
Expression Rules", 2023 IEEE International Conference on SANER, Taipa, Macao, 2023, pp. 132-143

[4] SEI CERT Coding Standards, https://wiki.sei.cmu.edu/confluence/display/
seccode/SEI%2bCERT%2bCoding%2bStandards, accessed 03 2024

[5] Java virtual machine, https://www.artima.com/insidejvm/ed2/platindep.html, ac-
cessed 03 2024

[6] Official SpotBugs website, https://spotbugs.github.io, accessed 03 2024

[7] Apache Commons BCEL, https://commons.apache.org/proper/commons-bcel/, ac-
cessed 03 2024

[8] The Java Language Specification – Java SE 21 Edition, https://docs.oracle.com/javase/
specs/jls/se21/jls21.pdf, accessed 03 2024

[9] Package java.util.concurrent, https://docs.oracle.com/javase/8/docs/api/java/
util/concurrent/package-summary.html, accessed 03 2024

[10] VNA03-J. Do not assume that a group of calls to independently atomic methods is atomic,
https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+
that+a+group+of+calls+to+independently+atomic+methods+is+atomic, accessed 03
2024

[11] VNA04-J. Ensure that calls to chained methods are atomic, https://wiki.sei.cmu.edu/
confluence/display/java/VNA04-J.+Ensure+that+calls+to+chained+methods+
are+atomic, accessed 03 2024

[12] Bit Torrent, https://github.com/muddlebee/java-bt, accessed 03 2024

[13] MATSim, https://github.com/matsim-org/matsim-libs, accessed 03 2024

[14] Jenkins, https://github.com/jenkinsci/jenkins, accessed 03 2024

[15] OpenGrok, https://github.com/oracle/opengrok, accessed 03 2024

72

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI%2bCERT%2bCoding%2bStandards
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI%2bCERT%2bCoding%2bStandards
https://www.artima.com/insidejvm/ed2/platindep.html
https://spotbugs.github.io
https://commons.apache.org/proper/commons-bcel/
https://docs.oracle.com/javase/specs/jls/se21/jls21.pdf
https://docs.oracle.com/javase/specs/jls/se21/jls21.pdf
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+that+a+group+of+calls+to+independently+atomic+methods+is+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+that+a+group+of+calls+to+independently+atomic+methods+is+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+chained+methods+are+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+chained+methods+are+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+chained+methods+are+atomic
https://github.com/muddlebee/java-bt
https://github.com/matsim-org/matsim-libs
https://github.com/jenkinsci/jenkins
https://github.com/oracle/opengrok

New interval-based training technique to parameter robustness
Attila Szász and Balázs Bánhelyi

Abstract: Today’s artificial neural networks appear in many scientific fields and have a wide
range of applications, for example, they are widely used for image and speech recognition.
Over the years, the accuracy of the networks has continuously improved, but many studies
have shown that these networks are also not error-free. Many technologies have been devel-
oped to reduce the probability of error, but most of them look for examples of adversities in
the input space and try to make neural networks more robust by using them. There is a much
less technique to search for aversality in the smaller distances of the weight matrices of the
neural network. However, this type of adversity is magnified in that area, where taught neural
networks are evaluated with much lower accuracy. In these quantized neural networks, the
results differ greatly from the expected result.

Keywords: Neural Network training, Parameter robustness, Interval Arithmetic

1 Introducion

Neural networks have received outstanding attention in recent years, both from users and
from the research side. Nowadays, they are used in many fields, such as computer vision and
speech recognition. Most of the research is increasing and has gone in the direction of creat-
ing more reliable networks [1]. To teach reliable networks, also known as robust networks,
researchers have proposed several teaching techniques. The two majority of methods can be
classified into 2 groups. The algorithm is based on adversarial learning and many of the adver-
sarial examples optimize the parameters of the networks. Certified teaching-based methods
count as inclusion in the network to its outputs, and then the worst case that can be assumed
based on the constraints is minimized. In addition to input-focused attacks, there are also
network parameter attacks coming to the fore. This type of attack modifies the parameters
of the networks and thus provokes hostile behavior. Based on these, teaching methods were
developed that incorporate the achievement of stability of the network parameters into the
teaching process, which the most common in the literature is Adversarial Weight Perturbation
(AWP) [2], became his method. The main disadvantage of the algorithm is that the worst case
is extreme underestimates, as a result of which it did not provide full protection against pa-
rameter attacks much opposite. During our research, we showed the main weakness of the
AWP algorithm and proposed a certified-based learning algorithm that increased the resilience
of networks against adversarial parameter attacks.

2 Robust teaching methods

During our investigation, we examined the robustness of the networks from two points
of view: input and in terms of parameter robustness. Input robustness is network resilience,
referring to its ability to react to changes in the input. In the literature, most of the research
focused on this robustness. The parameter is robustness, on the other hand, for resistance to
perturbation of the weight and bias parameters to which the network refers. Based on these, a
network is called input robust if the input is in a fixed environment, the network produces the
same output for all inputs, and parameter robust if the network is in a fixed environment of its
parameters. All existing alternative networks result in the same output for the fixed input.

During robust input training, the goal is Θ a parameter configuration of the model finding
the one that minimizes the maximum expected in the environment (ϵ) of the input error:

Θ = argmin
Θ

Ex,y

[
max

x̌∈Bp(w,ϵ)
L(x̌, y)

]
73

L is the error function used during teaching, and Bp(w, ϵ) is the inclusion of the ϵ radius of the
input x denotes, based on which Bp(w, ϵ) = {x̌ :| x̌− x |p≤ ϵ}

3 Type of methods

The teaching algorithms proposed in the literature can be classified into two groups depend-
ing on how the internal maximization task is optimized.

During adversarial training, the network is trained with inputs that maximize the error
function in the given environment. One of the most common methods is Projective Gradient
Descent (PGD). Based on the input gradient, the algorithm maximizes the error, and then the
model optimizes on the input that results in the maximum error parameters. The method can
easily get stuck in a local optimum, as a result of which the worst case can be underestimated.
Adversarial networks are still vulnerable with stronger attack methods based on propagation
and linear programming against.

Certified teaching methods are a reliable inclusion in the online to the outputs, and then
optimize the parameters. Many methods are known to include the output, which usually over-
estimates the set of output values. Due to the strong overestimation, the methods introduce a
very strong regularizing effect into the teaching process, the results of which evaluation of net-
works is simpler, and their demonstrable robustness increases, however, its normal accuracy
over the test set decreases. It has been shown in the literature that the algorithm used during
the verification of networks produces narrower limits, although they would reduce the strong
overestimation, they are much more difficult to optimize and would result in data that would
eventually lead to lower-performing networks [3]. Qualified teaching methods have appeared
that are precise, but do not expect an unconditional reliable inclusion of the output value set.

The teaching, evaluation and use environment of networks can often be different, and the
parameters of the networks must be converted to the type of the current environment. How-
ever, the result of the conversion will be a completely new network with the original one, and
the operation identical to the network cannot be guaranteed.

Algorithms focusing on input robustness are explicitly input-error space is optimized by
adversarial inputs (adversarial training) or propagated constraints (certified training) based
on the worst-case scenario. The methods have a common back, on the other hand, the worst
case is always locally, the current input, or input calculated based on a group. On the other
hand, during parameter robustness, we are looking for parameters (adversary networks) that
trigger gestalt behavior, which are the complete error over the training set is maximized, thus
a model-level, global worst result in a case. Based on the above, the question of parameter
perturbation of networks can be a useful and important addition to methods that only focus
on input perturbation. The professional teaching method used in the literature is illustrated in
Table 1.

4 IA and PGD combined based method

Our method is a certified algorithm (unsound) that is more resilient in networks against
parameter attacks such as AWP. The essence of the method is that the output value sets are
included in the interval of the parameters of the network calculated in addition to its value,
giving a reliable but grossly overestimated value, worst case according to meters. To compen-
sate for gross overestimation, the x̌ component of the subtask is optimized with PGD. Because
PGD does not guarantee the global optimum, the limits calculated with x̌ will certainly not con-
tain a global worst-case (unsound method), but a precise solution is expected to be provided,
which is sufficient for teaching.

Input-Certified algorithms often use propagation methods to compensate for the naive over-
estimation due to the dependency problem of interval arithmetic. In addition to compressing

74

Table 1: Classification of robust training methods

x̌ (Input) θ̌ (Network) Class Implementation
PGD fixed Input-Adversarial PGD

IA fixed Input-Certified (sound) IA, IBP, ...
PGD+IA fixed Input-Certified (unsound) TAPS

fixed IA Model-Certified -
fixed PGD Model-Adversarial -

IA IA Certified-Sound this work
IA PGD

Certified-Unsound
-

PGD IA this work
PGD PGD Adversarial AWP

the networks, the algorithms significantly reduce the length of the calculation chain, and they
reduce the overestimation error. Our algorithm for the parameters of the networks calculates
the output value set in addition to its inclusion there by making propagation impossible meth-
ods. When including the parameters, the radius of the intervals is determined relatively, tak-
ing into account the absolute value of the parameter with which we can properly weight the
required interval widths. With this technique, the degree of overestimation can be kept at an
acceptable level, while the robustness of the neural network improves.

5 Conclusion

A robust learning algorithm based on the parameters of neural networks was prepared.
In the lecture, it was compared with the techniques available in the literature, which shows
that nets were not taught using this technique before. Based on the results, better results can
be achieved on medium-sized networks than previous techniques. Unfortunately, on large
networks, the interval technique becomes unusable due to overestimations, but we hope that
this disadvantage can be reduced with statistical procedures.

References

[1] Zombori, Dániel, Bánhelyi, Balázs, Csendes, Tibor, Megyeri, István and Jelasity, Márk: Fool-
ing a Complete Neural Network Verifier, International Conference on Learning Representa-
tions,2021.

[2] Wu, Yihan, Bojchevski, Aleksandar and Huang, Heng:Adversarial Weight Perturbation Im-
proves Generalization in Graph Neural Networks, NeurIPS, 2020.

[3] Szász, Attila and Bánhelyi, Balázs: Effective inclusion methods for verification of ReLU
neural networks, Annales Mathematicae et Informaticae, 2024.

75

Evaluating GPT-4 on a real Python bug dataset

Norbert Vándor

Abstract: Python is currently one of the most popular languages. In a previous work, we cre-
ated PyBugHive, a Python database consisting of 151 manually validated bugs from 11 projects.
The entries in the database contain the bug report’s summary, the patch that fixes and the test
cases that expose the given bug. We also demonstrated a use case involving a large language
model, GPT-3.51. We used multiple prompts to see whether GPT-3.5 could detect, or even fix
the bugs present in the database. In the case of bug finding, the results were mediocre, and in
the case of bug fixing, they were negligible. As a follow-up, we present an updated benchmark,
now with GPT-4 and updated prompts.

Keywords: bug dataset, benchmark, Python, real bugs, LLM

1 Introduction

In a previous work, we introduced PyBugHive, a meticulously curated dataset of Python
bugs derived from well-known open-source projects. PyBugHive aims to fill the void between
Python’s popularity and the scarcity of high-quality research datasets, providing researchers
with a dependable resource for their experiments. Modeled after influential bug databases like
Defects4J and BugsJS, PyBugHive includes buggy code, associated failing test cases, fixed code,
and detailed installation instructions to replicate the bugs.

To showcase PyBugHive’s utility, we presented a use case involving GPT-3.5, a large lan-
guage model. We wanted to find out two things: whether the AI could find the bugs contained
within the database, and whether it could provide a fix for them. To achieve this, we used mul-
tiple prompts: 4 for bug finding, and 1 for bug fixing. The results were mediocre at best. As a
follow-up to our previous work, this paper aims to evaluate a large language model again: this
time GPT-4.

Bug datasets can be used in a variety of ways with both static and dynamic analysis meth-
ods. For example, it is widely used in defect prediction [1]. Vince et al. [2] and Vancsics et al. [3]
used Defects4J in spectrum-based fault localization. Several bug datasets were used in the work
of Jiang et al. [4], who evaluated ten code language models on four benchmarks, including De-
fects4J and QuixBugs. Kang et al. [5] used Defects4J to evaluate their framework LIBRO in
automatically generating tests from bug reports.

In the field of automated program repair, bug datasets are commonly used [6]. QuixBugs
is often employed in automatic program repair: Ye et al. [7] studied the effectiveness of 10
program repair tools on the part of QuixBugs. Prenner et al. [8] used OpenAI’s Codex [9] for
automated program repair. They concluded that although Codex is not trained for automatic
program repair, it is quite efficient, and Codex works better for Python code than for Java.
Sobania et al. [10] used QuixBugs to evaluate ChatGPT’s bug-fixing performance. They con-
cluded that ChatGPT’s bug-fixing capability is comparable to the widely used deep learning
techniques CoCoNut and Codex and is even superior to the results of standard program repair
techniques.

The rest of the paper is organized as follows. We provide a short summary of PyBugHive in
Section . The methodology we used for evaluating GPT-4’s capabilities is presented in Section .
We provide the results in Section . Finally, we draw conclusions in Section .

1https:\chat.openai.com

76

https:\chat.openai.com

2 Summary of PyBugHive

PyBugHive is a manually curated and validated, reproducible Python bug dataset. It con-
sists of 151 bugs collected from 192 files of 11 open-source GitHub projects. All of the collected
bugs fulfill a number of restrictive criteria. For example, the issue the bug is discovered in must
have a bug label and must be fixed in a single commit.

PyBugHive contains not just the bugs themselves, but also the commit and patch informa-
tion, and the necessary steps to install, test, and verify them. We also provided a CLI program,
which can automatically do these steps.

3 Methodology

To evaluate GPT-4, we decided to update the prompts used in the previous paper (which is
currently under publication).

We have to give two different kinds of prompts. System prompts, which set the context for
the AI, are used by models like GPT to steer the model’s reaction in a particular direction before
it interacts with the user. However, the real inputs and questions utilized to communicate with
the AI are called user prompts.

It can be difficult to choose the right prompts because the answers that the AI provides
can differ greatly based on the user prompts that are used. To achieve the best outcomes, we
employed two distinct system prompts for the two jobs.

3.1 Bug searching

The first system prompt was used in bug searching. It instructed the model to act like a
senior developer conducting a comprehensive code review. We devised multiple user prompts
and tested them to see which worked best for our situation. In the end, we chose the following
two prompts:

Prompt 1: “Does the code contain any major bugs? Whenever you generate an answer,
please explain the reasoning and assumptions behind it. If possible, use specific examples
or evidence with associated code samples to support your answer of why the code is
buggy or not. Moreover, please address any potential ambiguities or limitations in your
answer, in order to provide a more complete and accurate response. Begin your answer
with a yes or no.”
Prompt 2: “Does the code contain any major bugs? I am going to provide a template for
your output. Everything between [[and]] is a placeholder. Any time that you generate
text, try to fit the output into the placeholder that I list. Preserve the formatting and
overall template that I provide. This is the template: Answer: [[YES or NO]]”

3.2 Bug fixing

The second system prompt, which was used in bug fixing, instructed the AI to act like an
expert developer doing a review of a code snippet which was marked buggy by another devel-
oper.

The user prompt was the following:
Prompt: “Another expert said that the following code contains bugs, and made a github
issue. Based on that, fix the following code’s bugs. You have to return the entire code,
with your fixes included. The resulting code should be the last part of your answer.
Do not include comments in your code! The title of the mentioned github issue is the
following: {the title of the issue}.”

Despite the specification of the prompt, the AI sometimes returned more than what was

77

asked, included comments, changed the code indentation, etc. This was a problem in the pre-
vious paper as well, meaning the new prompt did not fix the issue. Consequently, every result
had to be manually checked and cleaned. After that, we manually compared the original patch
with the one the AI created. We marked each patch with the following:

Fix: if the patch provided by the AI correctly fixes the problem. Partial fix: if the patch
provided by the AI only partially fixes the problem. Minor change: if the patch provided by
the AI modified parts of the code, which was not a part of the original bug, but was a correct
suggestion nonetheless. No change: if the AI returned the original code, unmodified. And
Failure: if the patch provided by the AI failed to fix the issue.

4 Results

In this section, we provide the results of our evaluation.

4.1 Bug searching

Table 1: Results of the evaluation

Project Name
Buggy Prompt 1 Prompt 2 # Has # Multi # Corr. Failure No change Minor Partial Fix
Samples Yes No Yes No Yes Yes Expl. change fix

black 38 1 37 1 37 1 1 0 37 0 0 0 1
cookiecutter 2 0 2 2 0 2 0 1 1 0 0 0 1
discord.py 2 0 2 2 0 2 0 0 2 0 0 0 0
freqtrade 15 0 15 1 14 1 0 0 15 0 0 0 0
jax 17 0 17 1 16 1 0 0 16 0 0 1 0
numpy 1 0 1 0 1 0 0 0 1 0 0 0 0
pandas 45 2 43 6 39 6 2 0 42 0 0 1 2
poetry 11 0 11 2 9 2 0 1 11 0 0 0 0
salt 7 2 5 3 4 3 2 0 6 0 0 0 1
scrapy 2 0 2 1 1 1 0 0 2 0 0 0 0
spaCy 11 0 11 3 8 3 0 0 10 0 0 0 1∑

151 5 146 22 129 22 5 2 143 0 0 2 6

The first half of Table 1 summarizes the results obtained with GPT-4 grouped by projects.
The total number of code snippets shown to the model with known bugs is shown in the buggy
samples column. As was previously mentioned, we asked the model to identify any bugs in the
given source code using two separate prompts. The table shows how many times the model
answered a prompt with a yes (the code is buggy) or a no (the code is clean). The number of
instances in which the model answered yes to at least one of the prompts is displayed in the
following column. The number of instances where more than one prompt resulted in a yes
response is listed in the last but one column. The last column lists the number of bugs where
the model answered with a yes that also had correct explanations.

As can be seen, both prompts resulted in very few yes responses: there were only 22 cases,
where at least one of the prompts resulted in a yes. Out of those 22 cases, there were only 5
where both prompts resulted in a yes. Also, the model gave correct explanations for why a
given code snippet is buggy in only 2 cases. Interestingly, both of those explanations came
from Prompt 2, which is supposed to be a simple yes or no question. Additionally, these are not
the only cases, where the AI ignored the template of the prompt, but with the other cases, the
explanation given was wrong.

In comparison, GPT-3.5 was able to detect 67 bugs, by providing at least one yes answer. Out
of those cases, there were 11 with more than one yes result.

78

4.2 Bug fixing

The second half of Table 1 shows the results of bug fixing, with the labels discussed in in
the header. As can be seen, most fixing attempts resulted in a failure. However, in 2 cases, the
model provided a partial fix, and in 6 cases, it provided a correct fix. In comparison, GPT-3.5
was able to correctly fix only 1 issue, and partially fix another.

5 Conclusion

We followed up on one of our previous paper and evaluated GPT-4’s bug searching and
fixing capabilities on PyBugHive, our Python bug database. In addition to upgrading GPT’s
model, we also updated the prompts.

In the case of bug searching, the model correctly marked 14% of the bugs in at least one
prompt and 3% in both prompts. In 2 cases, it also provided a correct explanation (despite not
instructed to do so). In the case of bug fixing, almost all attempts resulted in failure. However,
it could partially fix 1.3%, and completely fix 3.9% of the bugs. As mentioned in Section ,
GPT-3.5 had wildly different results: the old model was able to find more bugs but fix less.

References

[1] G. Antal, Z. Tóth, P. Hegedűs, and R. Ferenc. Enhanced bug prediction in javascript programs with
hybrid call-graph based invocation metrics. Technologies, 9(1):3, 2020.

[2] D. Vince, A. Szatmári, Á. Kiss, and A. Beszedes. Division by zero: Threats and effects in spectrum-
based fault localization formulas. In 2022 IEEE 22nd International Conference on Software Quality,
Reliability and Security (QRS), pages 221–230. IEEE, 2022.

[3] B. Vancsics, F. Horváth, A. Szatmári, and Á. Beszédes. Fault localization using function call fre-
quencies. Journal of Systems and Software, 193:111429, 2022.

[4] N. Jiang, K. Liu, T. Lutellier, and L. Tan. Impact of code language models on automated program
repair. arXiv preprint arXiv:2302.05020, 2023.

[5] S. Kang, J. Yoon, and S. Yoo. Large language models are few-shot testers: Exploring llm-based
general bug reproduction. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pages 2312–2323. IEEE, 2023.

[6] S. Saha, R. k. Saha, and M. r. Prasad. Harnessing evolution for multi-hunk program repair. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 13–24, 2019.

[7] H. Ye, M. Martinez, T. Durieux, and M. Monperrus. A comprehensive study of automatic program
repair on the quixbugs benchmark. Journal of Systems and Software, 171:110825, 2021.

[8] J. A. Prenner and R. Robbes. Automatic program repair with openai’s codex: Evaluating quixbugs.
arXiv preprint arXiv:2111.03922, 2021.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

[10] D. Sobania, M. Briesch, C. Hanna, and J. Petke. An analysis of the automatic bug fixing perfor-
mance of chatgpt. arXiv preprint arXiv:2301.08653, 2023.

79

Knowledge Graph Powered LSTM in Stock Investment Decision
Making

Ronglin Zuo, Bálint Molnár

Abstract: There are a lot of factors related to the trend of the stock market, not just the price
at which people buy and sell. Some significant decisions of enterprises, new policies, or regu-
lations of the country or city will impact the stock price. All those kinds of information exist
in the daily news data. However, some news didn’t directly mention the company’s name, on
the contrary, it may mention some area, industry, the name of an executive, etc. Nowadays
researches’ shortcomings are they ignore or can’t let those news relate to any stock. This paper
propose to use Knowledge graph to build stock information, dig deeper relationships, and find
more relevant news. Used LSTM with news sentiment to predict future trends. Moreover, in-
troduced further potential research directions and discussed the influence of trend prediction
on the stock market.

Keywords: Finance, Stock Movement, LSTM, Knowledge Graph

1 Introduction

Artificial intelligence has made our lives more convenient, saves more time, and energy.
Intelligent services can also give us so-called “perfect” answers fast and accurately without
being distracted by additional human emotions[5]. This is because machine can process and
analyze a large amount of data quickly. Applying this advantage to stock investment can help
people process a large amount of information, estimate whether a stock will rise or fall, and
give recommendations instantly. Financial firms based on AI technology use existing data to
analyze and predict future trends[4]. However, many problems still need to be solved and
improved in prediction[3]. Many factors affect the stock price. News aspects include the re-
cent international situation, new government regulations, state support for a new industry,
or companies involving scandals, such as quality issues or fraud. That real-time information
will impact those correlated stocks, which can cause them to rise or fall[6]. Of course, there
are many other factors. Exchange rate, house price, oil price, etc [2]. The number of stocks is
enormous, and there are many connections between them, those connections affect each other
or have common characteristics that shouldn’t be ignored. However, the current research on
price prediction does not include those connections, they only use one or two potential di-
rect influencing factors to predict the trend and price, and even use the price to predict the
price directly, ignoring the relationship between influencing factors and price, just like predict
a person’s weight only concerns how many slices of bread he ate yesterday and his previous
weight. Exploring and storing the connections is unsuitable for traditional databases. By con-
trast, using knowledge graph can better show the relationships between them. This paper
mainly builds stock-related information structure, predict trends, and the impact of news in-
formation on stock prices. Moreover, based on this research we give other extended research
directions and prove their possibility and importance.

2 Research work

Use the existing open-source financial database Tushare Pro data platform [1] to obtain real-
time financial news data, and conduct research by using each stock’s information, and daily
stock prices.

80

2.1 Comparison of Chinese word segmentation tools

This paper compares the following Chinese word segmentation tools:pyltp, Tsinghua,
NLPIR, Elasticsearch, Jieba, and Pkuseg-python. Discussed their corpus and suitable situa-
tion and compared their results and accuracy. The best performance is pkuseg-python, which
can achieve higher accuracy than other word segmentation tools for specific news feeds.

2.2 Build dictionaries and analysis sentiment

Sentiment classification of news is usually based on the emotional dictionary-based and ma-
chine learning-based approaches. We built a stopwords dictionary, user word dictionary, and
financial sentiment dictionary according to existing open source dictionaries, did sentiment
analysis, and used sentiment analysis API (SnowNLP sentiment analysis, Baidu Sentiment
Analysis API(NLP-Python-SDK), cnsenti Chinese sentiment analysis library) and com-pared
their result.

2.3 Build knowledge graph and use LSTM to predict future stock trend

Established a basic knowledge graph by extracting important information about each stock,
and then associated news. For each stock, sum sentiment values for its directly associated
and indirectly associated news sentiment. Use LSTM to predict future stock prices. Compaird
directly use price to predict, use news sentiment only contain the corresponding company’s
name, use news sentiment contain any associated information.

2.4 Further research probability and discussion

Positive and negative analysis of financial emotional words: positive and negative analysis
of emotional words in the financial field and generation of positive vocabulary dictionaries and
negative vocabulary dictionaries. And their two-side effect analysis. Automatic detection of
lexica: It can automatically detect new lexica and verify its credibility, and can identify existing
lexica that was segmented wrong. The impact level and last time of positive news and negative
news on stock trends(not easy). Other influencing factors analysis: exchange rate, house price,
oil price, etc. Data analysis and confidence research on factors that affect stock prices: Find
factors that affect stock prices and put them in the database and use them together for analyzing
stock trends. Buy-in and sold-out opportunity analysis: Can use moving average convergence
divergence(MACD) and Bollinger Bands, etc. Increase the correctness of investment actions.
Auto quantitative trading. Future discussion of the predicted trend effect of the stock market:
If everyone can predict stock price. If the prediction working well everyone can use it. If predict
well, but only investment company can use it.

3 Conclusion

In my opinion, the accuracy of the estimates is not ideal. It also proves that it is not enough
to only use news to predict stock prices even already dug deeper relation of news and stocks,
and more influencing factors need to be added as judgment conditions. Moreover, the analysis
of news data, especially the processing of financial news, needs to be improved. News keeps
pace with the times, and in terms of word segmentation, it is also necessary to identify and
summarize new lexical at all times. The sentiment vocabulary judgment of news also needs to
be strengthened.

81

Acknowledgements

This research was supported the Thematic Excellence Programme TKP2021-NVA-29 (National
Challenges Subprogramme) funding scheme, and by the COST Action CA19130 - “Fintech and
Artificial Intelligence in Finance Towards a transparent financial industry” (FinAI).

References

[1] Tushare Pro, February 2024. [Online; accessed 11. Feb. 2024].

[2] David M. Cutler, James M. Poterba, and Lawrence H. Summers. What Moves Stock Prices?
NBER, March 1988.

[3] John W. Goodell, Satish Kumar, Weng Marc Lim, and Debidutta Pattnaik. Artificial in-
telligence and machine learning in finance: Identifying foundations, themes, and research
clusters from bibliometric analysis. Journal of Behavioral and Experimental Finance, 32:100577,
December 2021.

[4] Debidutta Pattnaik, Sougata Ray, and Raghu Raman. Applications of artificial intelligence
and machine learning in the financial services industry: A bibliometric review. Heliyon,
10(1):e23492, January 2024.

[5] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edition).
Pearson, 2020.

[6] B. Shravankumar and Vadlamani Ravi. A survey of the applications of text mining in fi-
nancial domain. Knowl. Based Syst., 114:128–147, 2016.

82

LIST OF AUTHORS

Angyalné Alexy, Márta: Eötvös Loránd University, Budapest, Hungary,
E-mail: abalord02@inf.elte.hu

Arafat Md, Easin: Eötvös Loránd University, Budapest, Hungary,
E-mail: arafatmdeasin@inf.elte.hu

Asuah, Georgina: Eötvös Loránd University, Budapest, Hungary,
E-mail: asuahgeorgina@inf.elte.hu

Ádám, Zsófia: Budapest University of Technology and Economics, Hungary,
E-mail: adamzsofi@edu.bme.hu

Bánhelyi, Balázs: University of Szeged, Hungary,
E-mail: banhelyi@inf.u-szeged.hu

Bognár, Gergő: Eötvös Loránd University, Budapest, Hungary,
E-mail: bogqaai@inf.elte.hu

Bozó, István: Eötvös Loránd University, Budapest, Hungary,
E-mail: bozo_i@inf.elte.hu

Erdei, Zsófia: Eötvös Loránd University, Budapest, Hungary,
E-mail: zsanart@inf.elte.hu

Farkas, Martin: Budapest University of Technology and Economics, Hungary,
E-mail: martin.farkas@edu.bme.hu

Ferenczi, Daniel: Eötvös Loránd University, Budapest, Hungary,
E-mail: danielf@inf.elte.hu

Fridli, Sándor: Eötvös Loránd University, Budapest, Hungary,
E-mail: fridli@inf.elte.hu

Gera, Imre: University of Szeged, Hungary,
E-mail: gerai@inf.u-szeged.hu

Hajder, Levente: Eötvös Loránd University, Budapest, Hungary,
E-mail: hajder.levente@gmail.com

Heinc, Emília: University of Szeged, Hungary,
E-mail: heincze@inf.u-szeged.hu

Hoque, A. H. M. Sajedul: Eötvös Loránd University, Budapest, Hungary,
E-mail: sajed@inf.elte.hu

Kangogo, Damaris Jepkurui: Budapest University of Technology and Economics, Hungary,
E-mail: dkangogo@edu.bme.hu

Knežev, Smiljana: Eötvös Loránd University, Budapest, Hungary,
E-mail: smiljana.knezev@inf.elte.hu

Knoll, Judit: Eötvös Loránd University, Budapest, Hungary,
E-mail: judit.knoll@sigmatechnology.com

83

Kocsis, Imre: Budapest University of Technology and Economics, Hungary,
E-mail: kocsis.imre@vik.bme.hu

London, András: University of Szeged, Hungary,
E-mail: london@inf.u-szeged.hu

Micskei, Zoltán: Budapest University of Technology and Economics, Hungary,
E-mail: micskei.zoltan@vik.bme.hu

Molnár, Bálint: Eötvös Loránd University, Budapest, Hungary,
E-mail: molnarba@inf.elte.hu

Munkácsi, Imre: Eötvös Loránd University, Budapest, Hungary,
E-mail: munkacsiimre@inf.elte.hu

Orosz, Tamás: Eötvös Loránd University, Budapest, Hungary,
E-mail: orosztamas@inf.elte.hu

Péter, Bertalan Zoltán: Budapest University of Technology and Economics, Hungary,
E-mail: bpeter@edu.bme.hu

Porkoláb, Zoltán: Eötvös Loránd University, Budapest, Hungary,
E-mail: gsd@inf.elte.hu

Ságodi, Zoltán: University of Szeged, Hungary,
E-mail: sagodiz@inf.u-szeged.hu

Sebők, Mátyás: Eötvös Loránd University, Budapest, Hungary,
E-mail: sebokmatyas01@gmail.com

Siket, István: University of Szeged, Hungary,
E-mail: siket@inf.u-szeged.hu

Solis, Wilson Valdez: University of Szeged, Hungary,
E-mail: wilson@inf.u-szeged.hu

Süli, Patrik Péter: Eötvös Loránd University, Budapest, Hungary,
E-mail: spatrik95@gmail.com

Szász, Attila: University of Szeged, Hungary,
E-mail: szasz@inf.u-szeged.hu

Tarlan, Ahadli: Eötvös Loránd University, Budapest, Hungary,
E-mail: arlanahad@gmail.com

Tóth, Melinda: Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary,
E-mail: tothmelinda@elte.hu

Vándor, Norbert: University of Szeged, Hungary,
E-mail: vandor@inf.u-szeged.hu

Zuo, Ronglin: Eötvös Loránd University, Budapest, Hungary,
E-mail: oscrtq@inf.elte.hu

84

NOTES

	Preface
	Contents
	Program
	Plenary talks
	Gábor Péter Nagy: Graphs, Groups, and Geometry
	Márk Jelasity: Adversarial Robustness of Deep Neural Networks

	Short papers
	 Tarlan Ahadli, Hajder Levente: Drone Localization using Stereo Vision and YOLOv7
	 Arafat Md Easin, Orosz Tamás: Enhancing SAP Ecosystem: Harmonizing Open-Source Technologies for Integration and Innovation
	 Georgina Asuah, Arafat Md Easin, Orosz Tamás: Optimizing SAP Machine Learning-based Solutions through Custom API Integration
	 Zsófia Ádám, Bertalan Zoltán Péter, Zoltán Micskei, Imre Kocsis: Smart Contract in the Loop: Fault Impact Assessment for Distributed Ledger Technologies
	 Zsófia Erdei, Melinda Tóth and István Bozó: Selecting Execution Path for Replaying Errors
	 Martin Farkas, Bertalan Zoltán Péter, Zoltán Micskei, Imre Kocsis: Design Space Exploration of Verifiable Credential Schemas using Partial Graph Modeling
	 Daniel Ferenczi, Melinda Tóth: Towards Correct Dependency Orders in Erlang Upgrades
	 Imre Gera and András London: Clustering and Community Detection in Nested Graphs
	 Emília Heinc and Balázs Bánhelyi: Effective Heuristics for Accelerated Branch and Bound Solver of Process Network Synthesis Problems
	 A. H. M. Sajedul Hoque, Gergő Bognár, Sándor Fridli: Quantitative Radiomics Analysis of Lung CT Images Using Radial Harmonic Fourier Moments
	 Damaris Jepkurui Kangogo, Imre Kocsis: Design of Hyperledger Fabric Private Data Collections with Formal Concept Analysis
	 Smiljana Knežev, István Bozó and Melinda Tóth: Identifying security issues in Elixir web applications
	 Imre Munkácsi, Márta Alexy Angyalné, Tamás Gábor Orosz: Optimizing SAP S/4HANA On-Premise with Cloud-Ready Extensions: a Clean-Core system
	 Zoltán Ságodi, István Siket: State-of-the-Art Business Intelligence Applications: A Journey Through Time and Technology
	 Mátyás Sebők: Multi Model Recursion for Hungarian Electricity Load Forecasting
	 Wilson Valdez Solis: Convergence of Fog Computing, Blockchain, and Federated Learning for Advancing New Generation Networks
	 Patrik Péter Süli, Judit Knoll and Dr. Zoltán Porkoláb: Multithreading Atomicity Static Analysis Checkers in Java
	 Attila Szász and Balázs Bánhelyi: New interval-based training technique to parameter robustness
	 Norbert Vándor: Evaluating GPT-4 on a real Python bug dataset
	 Ronglin Zuo, Bálint Molnár: Knowledge Graph Powered LSTM in Stock Investment Decision Making

	List of Authors

