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ABSTRACT
Spectrum-Based Fault Localization (SBFL) is a popular technique
to assist developers in pinpointing faulty elements within their
code based on test outcomes and code coverage. In this paper, we
examine the impact of context switching, i.e., when developers must
frequently shift their attention between different code parts (such
as methods and classes) while going down the SBFL ranked list to
find the faulty statement. The basis of our study is the observation
that it requires less effort to investigate statements that are next to
each other rather than those in different methods and classes. In
particular, we analyse the number of visited methods and classes,
as well as the frequency of switches between them during the
fault localization process. We found that, in programs from the
Defects4J benchmark, developers need to explore 40 methods and
12 classes on average, before finding the faulty statement, leading
to 53 method- and 40 class switches, respectively.

We introduce a novel context-aware metric that better approxi-
mates the total cost of finding a bug than traditional metrics that
solely count the number of statements. Our metric considers both
the statement number and the added cost of context switches. We
also propose a new strategy for reducing the cost by optimizing
the traversal of the elements in the ranked list based on the new
context-aware metric. The algorithm not only lowers the number of
statements that need to be investigated by 12% but also significantly
reduces the number of class and method switches by 52%.

CCS CONCEPTS
• Software and its engineering→ Object oriented languages;
Software maintenance tools; Object oriented development; Soft-
ware testing and debugging; Software evolution;Maintaining
software.
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1 INTRODUCTION
Finding the root cause of a bug in software is an inherently chal-
lenging and costly task, often requiring developers to navigate and
comprehend complex and unknown codebases. This activity, often
referred to as Fault Localization (FL), is an inevitable part of the
debugging process, which may contribute to as high as 50–75% of
the overall development cost [5, 12, 36]. There are approaches to
automate FL, and statistical analysis of program execution profiles
and test case outcomes is a popular technique. The execution profile
is known as the Program Spectrum, hence the name of the technique
is Spectrum-Based Fault Localization (SBFL) [8, 18, 20, 28].

The program spectrum typically records the execution of the
program at a particular granularity level, such as statements or
methods. Since it is a statistical technique, no exact output is given
about the faulty program location, but a ranked list of candidate
elements. The technique is considered successful if the faulty el-
ements are near the beginning of this list, so that it can provide
useful aid to the programmer in the debugging process.

However, state-of-the-art algorithms are far from being opti-
mal [19, 20]. The ranking list often includes non-faulty code ele-
ments before the faulty ones, hence the user has to spend valuable
time examining irrelevant code (the amount of such examinations
is called the Expense [3]). A significant issue with this is that the
ranking list includes the code elements in a flat structure, either as
a statement or a method list without any contextual or hierarchical
information. The order of the elements can be arbitrary in a sense
that no relationship between the subsequent elements is guaran-
teed. So the programmer may need to frequently switch between
contexts when a new rank list element is examined. Or, we could
also ask the question if it is the only way to inspect the program
elements following the ranked list in a linear fashion?

https://doi.org/10.1145/3661167.3661181
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Consider, for example, the output of an SBFL algorithm in Ta-
ble 1 (execution of the DStar formula [27] on benchmark program
Math, version 101 [16], statement level granularity). Here, the faulty
element can be found at the 12th position in the ranked list. We
can observe that the process starts with the method in which the
faulty statement is located, Parse, but at steps three and five, we
switch to different methods, before returning to the first one. The
code line numbers after this point indicate that the examined state-
ments are adjacent until reaching the faulty element. This part of
the process is expectedly easier than the first couple of steps when
the programmer had to switch between various methods.

These context switches can be very costly from program com-
prehension point of view [6, 19], which is very much required for
successfully debugging [24, 36]. If the elements in the rank list
would have more coherence to each other, it would be much easier
for the programmers to work themselves down the list. An even
more problematic aspect to this issue is that most state-of-the-art
literature on SBFL uses trivial, overly optimistic measurement of
Expense. Namely, by simply counting the number of elements in
the rank list in front of the first faulty element, and use this number
in various ways. This approach completely ignores the overhead of
context switches, and we believe that this has serious consequences
on assessing the actual effectiveness of particular approaches.

This paper explores the effects of context switching on fault
localization to provide insights into how it affects the efficiency and
effectiveness of SBFL. Furthermore, how this issue can be overcome
by better measurement of the costs and improved rank list traversal
that take into account context switching. More precisely, we have
two goals with this research: 1) to define a more realistic Expense
measurement that takes context switching into account, and 2) to
improve how and in what order the ranked list of code elements is
offered to the programmer that involves as few context switches as
possible. Our contributions are the following:

(1) On the bug benchmark Defects4J, we measure how prevalent
are context switches, and we find that 4–95 (40, on average)
different methods are present in a single rank list in front of
the faulty element.

(2) We define a new context aware measure for Expense assum-
ing statement-level granularity. We find that the value of
this metric is 2-10 times larger than the traditional Expense.

(3) The core of our approach is to better handle the order of
methods corresponding to the statements in the rank list.
Hence, we develop new method level ranking.

(4) Finally, we give algorithms for the optimized statement level
rank listing which includes less context switching than the
simple linear ordering of elements. We find 24-37% improve-
ment in context-aware Expense with this approach.

2 BACKGROUND AND RELATEDWORK
2.1 Spectrum-Based Fault Localization
Spectrum-Based Fault Localization is a family of statistical fault
localization approaches, and in this work we concentrate on the
most frequently used setup. The so-called “hit-based” spectrum [13]
refers to the simple binary information if a code element (e.g.,
statement or function in a procedural, or method in an object-
oriented context) is covered during the execution of a test case or

Table 1: Motivating example - DStar on Math version 101.

Rank Class Method Line Score

1

Co
m
pl
ex
Fo
rm

at

parse(ParsePosition) 349 0.33
2 parse(ParsePosition) 350 0.33
3 constructor() 58 0.29
4 constructor() 59 0.29
5 getDefaultNumberFormat() 237 0.29
6 parse(ParsePosition) 361 0.18
7 parse(ParsePosition) 364 0.18
8 parse(ParsePosition) 365 0.18
9 parse(ParsePosition) 374 0.18
10 parse(ParsePosition) 375 0.18
11 parse(ParsePosition) 376 0.18
12 parse(ParsePosition) *377 0.18

not. The technique then determines the suspiciousness score of each
program element on the chosen level of granularity based on the
intuition that those code elements are more suspicious to contain
a fault that are exercised by comparably more failing test cases
than passing ones, while non-suspicious elements are traversed
mostly by passing tests. Dedicated formulas are used to calculate
the suspiciousness score, which in turn rank the code elements in
score decreasing order, which is the output of the algorithm.

A frequent implementation of SBFL is a binary coverage matrix
(C) and a test results vector (R) as the basic data structures to
calculate the suspiciousness scores for program elements [1]. In the
coverage matrix, the rows represent the test cases and the columns
are the program elements; statements or methods in our case. The
value of a cell in the matrix is 1 or 0, depending on whether the code
element is exercised by the test or not, respectively (𝑐𝑡,𝑒 ∈ {0, 1},
where 𝑒 ∈ code elements and 𝑡 ∈ tests). An element in the results
vector is 0 if test 𝑡 passed, otherwise it is 1 (𝑟𝑡 ∈ {0, 1}).

All basic SBFL formulas rely on four fundamental statistics that
are calculated from the spectrum. For each element 𝑒 , the following
sets are obtained, whose cardinalities are then used in the formulas:

𝑒ep : set of passed tests covering 𝑒
𝑒ef : set of failed tests covering 𝑒
𝑒nf : set of failed tests not covering 𝑒
𝑒np : set of passed tests not covering 𝑒

A large number of different formulas using these basic statis-
tics have been proposed [14, 28, 31]. For this paper, we selected
three well-known formulas to experiment with, which are shown
in Equation (1). These are among the best performing formulas ac-
cording to several publications, but at the same time are sufficiently
different to foster diversity in the experiments.

DStar [27]: score(𝑒) =
|𝑒ef |2

|𝑒ep | + |𝑒nf |

Ochiai [3]: score(𝑒) =
|𝑒𝑒 𝑓 |√︃

( |𝑒𝑒 𝑓 | + |𝑒𝑛𝑓 |) · ( |𝑒𝑒 𝑓 | + |𝑒𝑒𝑝 |)

Barinel [2]: score(𝑒) =
|𝑒𝑒 𝑓 |

|𝑒𝑒 𝑓 | + |𝑒𝑒𝑝 |

(1)
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2.2 Measuring the Cost of Fault Localization
There are several complementary ways to measure the effective-
ness of SBFL algorithms [14], but the basis for most of them is
conceptually simple: we need to estimate (and minimize) the effort
that is required from the programmers to find the faulty element
with the help of the SBFL tool. The rank list provides a straightfor-
ward proxy for this property, so most previous approaches simply
counted the number of elements in the list in front of the first faulty
element, often collectively called the Expense. This approach makes
the different spectrum formulas comparable to each other since the
scores could not always be compared due to their different intervals.
In this section, we overview the variants of the Expense metric.

Expense metric. The simplest version is the absolute Expense
metric which means that we count the number of code elements
in the rank list in front of the faulty one. One complication with
this method are rank ties [32], i.e., situations when different code
elements share the same suspiciousness scores. No formula can
guarantee that all program elements can get different score values,
either because of the construction of the formula, or because it
is conceptually not possible (consider, for instance, statements in
a basic block which always share the same scores). Typically, all
elements in a rank tie are assigned the same rank value, based on
one of the following approaches [29]: minimum (optimistic or the
best case), where the top most; maximum (pessimistic or the worst
case), where the bottom most; and the average strategy, where the
medium position of the elements sharing the same suspiciousness
value is used, respectively.

Equation (2) shows the absolute average rank calculation [3, 33],
where 𝑖 and 𝑓 are code elements, the latter being the faulty one,
while 𝑠𝑖 and 𝑠𝑓 are the respective suspiciousness score values.

𝐸 (𝑓 ) =
��{𝑖 |𝑠𝑖 > 𝑠𝑓 }�� + ��{𝑖 |𝑠𝑖 ≥ 𝑠𝑓 }�� + 1

2
(2)

Another issue is when the subject program contains more than
one faulty element, which can happen very often. Here, typically the
𝐸 value associated with the element with the highest suspiciousness
score is used (𝑚𝑖𝑛(𝐸 (𝑓 )), where 𝑓 ∈ {faulty elements}).

A normalized approach of the absolute average rank is the EXAM
score [35] (also referred to as Wasted Effort [14]), which is the ratio
of the absolute rank of the bug and the total number of ranked
code elements, expressed as a percentage. This metric describes
the percentage of elements that need to be reviewed to find the
location of the bug. Often, elements with 0 score are excluded from
the calculation. This metric enables comparing the effectiveness
between different bugs and subject programs, but it has less rele-
vance for understanding the actual required effort to find the bug.
Since EXAM and absolute average rank result in the same order of
efficiency, we discussed only the latter in our paper.

Accuracy. Several studies report that developers investigate only
the first 5 or 10 elements in the recommendation (rank-)list by fault
localization algorithms before giving up using the ranking [17, 30].
The family of metrics that distinguishes bugs where the minimum
rank of faulty elements is less than or equal to 𝑁 is commonly
referred to as Top-N or acc@N [19]. This metric represents the
number of successfully localized bugs within the top-n elements of

the ranking lists. Higher values are better for this metric, and the
typical values used for N are 1, 3, 5, and 10. Code elements ranked
behind N, are referred to as the Other category.

2.3 Dealing with Context Switching
In related literature, we did not find any measurements of FL ef-
fectiveness that take into account the context switches. However,
several works recognize the issue and try to address it differently.

Research done with programmers about their experience and
expectations on SBFL tools usually highlight a critique that stand-
alone code elements without contextual information are hard to ex-
amine. Such studies were published by Kochhar et al. [17] on user’s
expectations, by Parnin and Orso [19] and Souza et al. [23] about
empirical studies with programmers, and by Horváth et al. [15] on
results with users using think-aloud sessions.

Cheng et al. [6] provide a ranked list of program subgraphs
made of program elements as the nodes (methods and blocks) and
method call/control flow as edges. This represents contextual infor-
mation for individual suspicious code elements. A similar approach
has been proposed by Yan et al. [34], in which the initial ranking
list is weighted based on the fault propagation context computed
from the System Dependence Graph of the program. The GZoltar
tool [10, 21] uses a hierarchy-based approach to group statements
according to their code structure, and assigns for each code level
(e.g., packages, classes, methods) the highest suspiciousness of its
internal statements. This contextual information is implemented in
an efficient graphical user interface that helps developers to navi-
gate more efficiently between the code elements to locate the fault.
The Jaguar tool [22] also employs a hierarchical view of the faulty
code elements in the graphical user interface.

The work of De Souza et al. [9] is similar to our approach in the
way that they also provide an order of methods in which the de-
velopers should examine the statements. The methods are selected
by the highest suspiciousness score of their blocks and method call
relationships, which provides the context for examining the code
elements. Then, score-based filtering and examination step limiting
is applied to reduce the number of code elements to be explored.

Despite one of their proposed methods, CH, is based on a similar
idea to our algorithms, our approach significantly differs from their
work. First, we provide an objective way to measure the context
problem in the FL process, which enables the comparison of re-
lated approaches. We also give a set of different algorithms that
use this context-aware effectiveness measure. They used only a
small number of bugs from a handful of small programs with mixed
seeded and real bugs, while we rely on a standard benchmark used
in SBFL research with hundreds of manually verified real bugs.
Finally, the basis of their approach are basic-blocks, while our al-
gorithms work on statement-level data, which also makes direct
comparison unfeasible.

3 STUDY SETTINGS
3.1 Benchmark
For the evaluation, we selected Defects4J (v1.4.0)1, a widely used col-
lection of Java programs and curated bugs in FL research [16]. This

1https://github.com/rjust/defects4j/tree/v1.4.0

https://github.com/rjust/defects4j/tree/v1.4.0
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benchmark contains six open-source Java projects with manually
validated, non-trivial real bugs.

The original dataset contains 395 bugs, but there were cases
which we had to exclude from the study due to various issues. We
excluded those versions where no statements were marked as faulty,
and where the faulty statements were not covered by any failing
test. A total of 373 defects were included in the final dataset. Table 2
shows each project and its main properties. Columns 2-4 show
program and test suite sizes, and the number of available bugs. The
statistics related to the code elements and various levels of contexts
are shown in Columns 5-7. The number of bugs that we used is
presented in Column 8.2

Table 2: Main Properties of Programs Used from Defects4J
(KLOC, Tests and No. Bugs Columns Data from [16])

Project KLOC Tests No.
bugs

Avg. no.
statements

Avg. no.
methods

Avg. no.
classes

No. suitable
bugs

Chart 96 2 205 26 4 003 653 36 25
Closure 90 7 927 133 16 222 3 540 418 125
Lang 22 2 245 65 809 138 6 62
Math 85 3 602 106 2 297 321 30 104
Mockito 20 1 379 38 1 727 665 114 30
Time 28 4 130 27 5 150 1 407 87 27

Total 341 21 488 395 5 035 1 121 115 373

3.2 Calculating Rank Lists
For the experiments in this paper, we used the code coverage and
test results published by Pearson et. al [20]. To calculate the sus-
piciousness values of code elements, we rely on Ochiai, DStar and
Barinel3, as explained in Section 2.

Our implementation uses the average position tie breaking strat-
egy (others include the best case and worst case, but we find that the
average position is the most widely chosen strategy). We tackled
the division by zero issue (which can affect many formulas) using
the 𝑐 + 𝜖 approach [26], where 𝑐 is any coefficient in the formula
and 𝜖 is the smallest representable floating number.

3.3 Measuring the Number of Context Switches
Equation (3) shows the four metrics that we use to express the
number of context switches: the number of visited methods (𝑉𝑀 ),
the number of switches between methods (𝑆𝑊𝑀 ), the number of
visited classes 𝑉𝐶 , and the number of switches between classes
(𝑆𝑊𝐶 ). These metrics serve as indicators to assess both the scale
of methods and classes that developers must investigate during
debugging, and the frequency at which context switches occur.

To calculate these metrics, we extracted the fully qualified name
of the containing method for each statement. Next, we extended
the basic file and line number based statement information in the
ranked lists with class and method names. As a result, we could
determine not only the statements that must be investigated, but
the higher-level code elements too.
2The exact list of the bugs can be found in the online appendix.
3Ochiai, DStar and Barinel will be noted as Och, D* and Bar in tables and figures in
the next sections.

We define these metrics in similar fashion to the absolute aver-
age rank shown in Equation (2), thus 𝑖 and 𝑓 are statements (the
latter being the faulty one), 𝑠𝑖 and 𝑠𝑓 are their score values, while
𝑚𝑒𝑡ℎ𝑜𝑑 (𝑖) and 𝑐𝑙𝑎𝑠𝑠 (𝑖) determine the containing method and class
of 𝑖 , and𝑚𝑒𝑡ℎ𝑜𝑑 (0) = 𝑐𝑙𝑎𝑠𝑠 (0) = 𝑛𝑖𝑙 .

𝑉𝑀 (𝑓 ) = |{𝑚𝑒𝑡ℎ𝑜𝑑 (𝑖) |𝑠𝑖 ≥ 𝑠𝑓 }|
𝑉𝐶 (𝑓 ) = |{𝑐𝑙𝑎𝑠𝑠 (𝑖) |𝑠𝑖 ≥ 𝑠𝑓 }|

𝑆𝑊𝑀 (𝑓 ) = |{𝑖 |𝑠𝑖 ≥ 𝑠𝑓 ∧𝑚𝑒𝑡ℎ𝑜𝑑 (𝑖) ≠𝑚𝑒𝑡ℎ𝑜𝑑 (𝑖 − 1)}|
𝑆𝑊𝐶 (𝑓 ) = |{𝑖 |𝑠𝑖 ≥ 𝑠𝑓 ∧ 𝑐𝑙𝑎𝑠𝑠 (𝑖) ≠ 𝑐𝑙𝑎𝑠𝑠 (𝑖 − 1)}|

(3)

3.4 Significance Testing
The ranking comparison results have been checked by testing sta-
tistical significance. Usually, a Wilcoxon sign-rank test [7] is used
for this. However, in the context of SBFL, the test could encounter
ties, i.e., when both approaches report the same rank for an el-
ement. To overcome this limitation, we used an implementation
of the Wilcoxon test which copes with the ties by discarding the
zero-differences. We complement the Wilcoxon test with the Cliff’s
Delta (𝑑) effect size measure [11]. We used the typical thresholds
of 𝑑 < 0.147 “negligible”, 𝑑 < 0.33 “small”, 𝑑 < 0.474 “medium”,
otherwise “large” to determine the magnitude of effect sizes.

3.5 Research Questions
We formulate the following research questions in this paper:
RQ1 How prevalent are context switches in traditional SBFL meth-

ods? – We measure how big the search space is in terms
of the number of investigated code elements on different
granularity levels, and how frequently developers have to
change between these elements.

RQ2 To what extent does the cost of context switching affect the
effectiveness of traditonal SBFL methods? – We introduce a
context-aware metric that accounts for the cost of context
switching, and investigate how it relates to well-known Ex-
pense metrics.

RQ3 How should method-level ranks be calculated from statement-
level results? – We investigate the trade-offs between differ-
ent approaches to calculate method-level ranks.

RQ4 Is there a more optimal approach to rank the statements that
could minimize the number of context switches and how sig-
nificant is the gain of such an approach in effectiveness? –
We introduce algorithms that use the raw ranking output of
any SBFL technique and provide an alternative exploration
order of code elements which is specifically optimized for
minimizing the number of context switches.

4 PREVALENCE OF CONTEXT SWITCHES
(RQ1)

The primary goal of our initial study is to quantify the extent to
which context switching occurs during the FL process. We investi-
gate this by examining four key metrics described in Section 3.3.

Table 3 depicts the results of our initial study regarding context
metrics per program and aggregated over the whole benchmark.
As a basis for comparison, columns 2-4 show the 𝐸 values of the tra-
ditional statement-level SBFL algorithms, i.e., the average number
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Table 3: Traditional Statement Expense and Context Metrics. Numbers in parentheses are the ratio of context metrics with
respect to Expense.

𝐸 𝑉𝑀 𝑆𝑊𝑀 𝑉𝐶 𝑆𝑊𝐶
D* Och Bar D* Och Bar D* Och Bar D* Och Bar D* Och Bar

Chart 148.3 149.3 143.6 33.1 (0.22) 33.0 (0.22) 32.0 (0.22) 34.3 (0.23) 34.5 (0.23) 32.9 (0.23) 7.0 (0.05) 6.9 (0.05) 6.6 (0.05) 19.8 (0.13) 20.0 (0.13) 19.2 (0.13)
Closure 371.8 371.8 366.7 94.8 (0.26) 94.9 (0.26) 93.9 (0.26) 127.4 (0.34) 128.3 (0.35) 128.3 (0.35) 27.3 (0.07) 27.4 (0.07) 27.2 (0.07) 98.0 (0.26) 99.0 (0.27) 99.1 (0.27)
Lang 18.6 20.5 19.7 3.9 (0.21) 3.9 (0.19) 3.9 (0.20) 4.4 (0.23) 4.4 (0.21) 4.3 (0.22) 1.8 (0.10) 1.9 (0.09) 1.9 (0.09) 2.7 (0.14) 2.8 (0.13) 2.7 (0.13)
Math 63.0 63.0 63.3 10.0 (0.16) 10.0 (0.16) 9.8 (0.16) 11.0 (0.17) 11.0 (0.18) 10.9 (0.17) 4.0 (0.06) 4.0 (0.06) 3.9 (0.06) 7.6 (0.12) 7.6 (0.12) 7.6 (0.12)
Mockito 39.1 39.0 39.4 13.7 (0.35) 13.7 (0.35) 13.9 (0.35) 16.3 (0.42) 16.4 (0.42) 16.8 (0.43) 7.3 (0.19) 7.3 (0.19) 7.4 (0.19) 13.4 (0.34) 13.5 (0.35) 14.2 (0.36)
Time 98.3 99.0 99.1 26.4 (0.27) 26.5 (0.27) 26.4 (0.27) 34.2 (0.35) 35.9 (0.36) 36.7 (0.37) 9.0 (0.09) 9.0 (0.09) 9.1 (0.09) 26.6 (0.27) 28.3 (0.29) 29.1 (0.29)

Total 165.5 165.9 163.8 40.5 (0.24) 40.5 (0.24) 40.0 (0.24) 52.6 (0.32) 53.0 (0.32) 53.0 (0.32) 12.3 (0.07) 12.3 (0.07) 12.2 (0.07) 39.7 (0.24) 40.2 (0.24) 40.3 (0.25)

of statements to be examined before the faulty element. Context
metrics are shown in the remaining columns, and the ratio of the
actual context metric and the 𝐸 value is shown in parentheses. For
both methods and classes, the Lang program has the lowest val-
ues, while Closure has the highest. It is interesting to note that
these extreme values are consistent with both the 𝐸 values and
the program sizes shown in Columns 5-7 in Table 2. However, this
similarity is not present for the other programs. For example, Chart
and Mockito are very similar in terms of average method count, but
Chart’s method-level context metrics are two to three times those
of Mockito. Similarly, Math and Chart are close to each other in
terms of average class number, but their class-level context metrics
are also two to three times different.

It can also be observed that the number of visited methods is on
average about a quarter of the 𝐸 value, although this varies from
0.16 to 0.35 when examined program by program. In other words,
for every 4 statements there is a new method in the rank list. The
number of method switches is even higher, on average about 30%.
Looking at larger contexts, i.e. classes, we find that the average
ratio is only around 0.07, but in this case the number of switches
is on average more than three times the number of classes visited.
However, looking at this from the other perspective, every 14th
statement in the list will belong to a new class.

Answer to RQ1: The average number of visited methods
varies from 4 to 95, and the overall average is 40, which is
about the quarter of the 𝐸 value. In addition, the number of
method switches is about 30% higher than this. At class level,
the number of visited items varies between 2 and 27 (overall
average is 12), which is approximately the tenth of the 𝐸 value,
while the number of switches is more than three times larger
than this. This means that for every 4 statements there is a new
method, and for every 14 statements a new class appearing in
the rank list, what we believe is a high rate.

5 CONTEXT SWITCH AWARE EXPENSE(RQ2)
To answer RQ2, we introduce a new context-aware efficiency metric
(𝐸ctx ) based on the classic efficiency metrics for evaluating the
performance of FL. This metric incorporates the cost of context
switching on different granularity levels into the overall efficiency
value. We argue that the required effort of investigating consecutive
statements from the ranked list is much less than investigating
those that are in separate methods or classes. Intuitively, upon

examination of a single statement in a new context, the surrounding
context must also be examined to some extent. Otherwise, it can
be difficult to determine the correctness of the statement itself.

𝐸𝑐𝑡𝑥 =|𝑆 | ∗ 𝛼𝑠,𝑈 +
(𝑉𝑀 − 1) ∗ 𝛼𝑚,𝑈 + (𝑆𝑊𝑀 −𝑉𝑀 ) ∗ 𝛼𝑚,𝑉 +
(𝑉𝐶 − 1) ∗ 𝛼𝑐,𝑈 + (𝑆𝑊𝐶 −𝑉𝐶 ) ∗ 𝛼𝑐,𝑉

(4)

Equation (4) shows how to calculate 𝐸ctx based on the ranked list
of statements (𝑆), the corresponding methods and classes that were
defined in Equation (3), and the 𝛼 parameters. These parameters
assign different factors to the elements based onwhether the current
context has been already investigated (𝛼𝑚,𝑉 and 𝛼𝑐,𝑉 ) or not (𝛼𝑚,𝑈
and 𝛼𝑐,𝑈 ) by the developer. The 𝛼 parameters can be configured
arbitrarily, which allows us to assign different weights to context
switches on different granularity levels. Note that, when 𝛼𝑠 = 1 and
all other parameters are zero, then 𝐸ctx = 𝐸. Table 4 shows how we
configured the 𝛼 parameter of 𝐸ctx for this experiment. We created
three sets of values, Low, Medium and High to get a general idea
about what effects the choice of 𝛼 has on the overall performance.
These values are somewhat optimistic, but we believe that values
that follow the practice more closely would be even larger, however
further research is needed to determine these parameters (see our
discussion on the topic in Section 8).

Table 4: Configuration of the 𝛼 Parameter of 𝐸ctx

Context V – Visited U – Unseen
Low Med. High Low Med. High

s – statement – – – 1 1 1
m – method 1.5 2 3 2 4 9
c – class 2 4 9 4 8 27

In Table 5, we present the results of our measurements of 𝐸 and
𝐸ctx on Defects4J. As we can see, 𝐸ctx values follow the increase of
𝛼 parameters. Thus, naturally, 𝐸ctx values are consistently larger
than 𝐸 values, due to the introduction of the 𝛼 parameter. Again,
the two extremes are Lang and Closure. However, the peak ratios
of 2.70-2.76, 4.34-4.44 and 9.87-10.10 can be found at Mockito, while
the minimal ratios align with the minimum values at Lang. Note
that, while Mockito has lower 𝐸 values than Math, the order is
reversed when 𝐸ctx is taken into account. Furthermore, the values
of both metrics are fairly similar across the three formulas and
configurations. On the per-program basis,𝐸ctx does not significantly
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modify the order of formulas, except for Mockito, where DStar and
Ochiai switch places. However, across the whole benchmark, DStar
slightly outperforms Barinel as 𝛼 increases.

Figure 1 represents the accuracy metrics from the traditional
and the context-based viewpoint. For the latter, we use the corre-
sponding 𝐸ctx values of the faulty statements, therefore, in this case
Top-N could be considered as an effort-budget, where N represents
the amount of developers’ effort (including context switches) that
could be spent on finding a bug. Note that, due to space limits, we
present these results only with the Medium setting of 𝛼 . Further
results are available in the online-appendix. Top-1 results are the
same, while, Top-5 and Top-10 values are significantly worse when
we consider the cost of context-switches. However, it is natural
for the number of context switches to increase as the number of
elements to be analyzed increases. Also, it is important to mention
that in this particular scenario, we utilized the traditional SBFL’s
rank lists and did not incorporate any optimizations for 𝐸ctx .

Answer to RQ2: The cost of context switching has a notable
effect on both the effectiveness and accuracy of SBFL ap-
proaches. We found that the context-aware metric values are
1.58 to 10.10 times larger than the traditional Expense values.
Furthermore, accuracy significantly deteriorates in the Top-5
and Top-10 categories (by about 50% and 26%, respectively)
when method and class contexts are taken into account.

Figure 1: SBFL’sAccuracy inTerms of𝐸 and 𝐸ctx BasedMetrics
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6 METHOD-LEVEL RANKING (RQ3)
In previous sections, we concluded that the amount of context
switches is quite significant, so in the following we discuss how
we can develop an algorithm for the traversal of suspicious code
elements that minimizes the number of these switches, and hope-
fully the overall cost. Our initial focus is on optimizing the method
level context switches, i.e., the ordering of the methods. Then, in
Section 7 we concentrate on the statement traversal.

We consider two basic approaches for assigning suspiciousness
scores and ranks to the methods. The first involves calculating
method scores and ranks based on the method-level spectrum. This
means that, in a matrix implementation, its columns contain meth-
ods and the coverage is computed at method-level (if a method is
invoked, independent of what statements are exercised, it is con-
sidered covered). Then, the suspiciousness scores are computed

using the spectrum formulas from this spectrum. Literature on
SBFL dealing with method-level granularity typically follows this
approach [4, 25, 37]. It has also the benefit of being more space and
time efficient, which might be important in some applications.

The second approach involves calculating scores and ranks on
statement-level, and then aggregating them to method-level using
different aggregation functions such as the sum or maximum of
statement-level scores in a method. While the first approach may be
more straightforward and intuitive, the second approach provides
a more comprehensive and accurate representation of method-level
relations. Therefore, first we evaluate the trade-offs between these
methods to determine which approach is more efficient.

For the first approach, we could have usedmethod-level coverage
matrix, but instead we started with the statement-level matrices, as
they were already available, and aggregated the coverage tomethod-
level (this leads to no practical difference). This aggregation is very
simple: a method is considered covered by a test if at least one of
its statements is covered. Next, we calculated the basic spectrum
metrics, the scores, and the ranks for each method. The results are
shown in Columns 2-4 of Table 6 (referred to as Matrix).

For the second approach, we started with the method scores that
were calculated from the statement-level coverage using various
aggregation functions based on the scores of a method’s statements.
We tested max, sum, mean, median, and other functions, but max
and sum produced the best results. Here, the method is assigned
a score which is the maximum or the sum of all the statements’
scores in the method, respectively. We present the results of these
two score-based approaches in Columns 5-7 and 8-10 of Table 6
(detailed results are available in the online appendix). The numbers
in parentheses are the ratios compared to the Matrix version.

As can be seen, both score-based approaches outperform the
traditional matrix-based one. Note that, Closure’s baseline 𝐸 val-
ues with the matrix-based approach are exceptionally large, which
could make it an outlier, therefore we present the total values with
and without Closure as well. Both approaches can achieve signifi-
cant improvements, lowering the 𝐸 values from 19.7-20.3 to around
11.8-12.0 and 7.0-8.2 on average, which is a 40-41% and 59-65%
improvement compared to the matrix-based approach. On a per-
program basis, the results are highly variable. The overall relative
improvement is between 0.36 and 0.68 in case of the max and 0.15
to 0.54 in case of the sum function. The exception is the Chart pro-
gram with the max function, where results are only slightly better
(0.88-0.91) or worse (1.45) than the matrix-based approach. Consid-
ering the score-based approaches, sum yields better results than
max with 𝐸 values around 15.8-16.9 (7.0-8.2) and 23.5 (11.8-12.0),
respectively. The only exception in this aspect is Mockito with the
Ochiai formula. Note that, even though sum has a slight advantage
here, we use max in Sections 7 and 8 as we found both methods to
be approximately equally efficient in those applications.

On a per-program basis, compared to the matrix-based outcomes,
not all results are statistically sound on the 0.05 significance level.
The number of cases where the advantage of the score-based ap-
proaches is not clear according to the statistics is 11 out of the 36
total cases. This is the case with, for example, Chart, Mockito and
Time with max and DStar, or Chart and Mockito with sum and
Ochiai. However, in the other cases, and especially on the whole
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Table 5: SBFL’s Performance in Terms of 𝐸 and 𝐸ctx with different 𝛼 parameters. Numbers in parentheses show the ratios to 𝐸.

𝐸 𝐸ctx (Low) 𝐸ctx (Medium) 𝐸ctx (High)
D* Och Bar D* Och Bar D* Och Bar D* Och Bar

Chart 148.32 149.32 143.56 263.88 (1.78) 265.38 (1.78) 254.46 (1.77) 378.24 (2.55) 379.96 (2.54) 364.44 (2.54) 717.48 (4.84) 718.96 (4.81) 689.56 ( 4.80)
Closure 371.75 371.76 366.74 855.01 (2.30) 858.26 (2.31) 852.73 (2.33) 1305.70 (3.51) 1311.34 (3.53) 1304.35 (3.56) 2661.26 (7.16) 2672.86 (7.19) 2660.61 ( 7.25)
Lang 18.65 20.48 19.74 30.17 (1.62) 32.38 (1.58) 31.19 (1.58) 41.26 (2.21) 43.81 (2.14) 42.16 (2.14) 76.42 (4.10) 80.39 (3.92) 77.18 ( 3.91)
Math 63.03 62.98 63.35 101.73 (1.61) 101.77 (1.62) 101.52 (1.60) 139.43 (2.21) 139.54 (2.22) 138.63 (2.19) 260.28 (4.13) 260.52 (4.14) 257.02 ( 4.06)
Mockito 39.13 39.00 39.40 105.78 (2.70) 105.98 (2.72) 108.68 (2.76) 169.87 (4.34) 170.27 (4.37) 175.07 (4.44) 386.13 (9.87) 386.70 (9.92) 397.90 (10.10)
Time 98.33 99.00 99.11 228.09 (2.32) 234.61 (2.37) 237.70 (2.40) 350.11 (3.56) 360.85 (3.64) 365.93 (3.69) 725.56 (7.38) 746.44 (7.54) 756.56 ( 7.63)

Total 165.46 165.86 163.81 362.61 (2.19) 364.67 (2.20) 362.26 (2.21) 547.66 (3.31) 550.93 (3.32) 547.77 (3.34) 1108.78 (6.70) 1115.05 (6.72) 1109.10 ( 6.77)

benchmark, the score-based approaches perform statistically sig-
nificantly better with a small to large effect size. Note, that results
are omitted due to space limits, but detailed results can be found in
the online appendix (see Section 9.1).

Answer to RQ3:We found that score-based aggregation ap-
proaches are much more effective than the matrix-based one.
On average, they produce 𝐸 values that are 0.16-0.91 times as
much as the matrix-based approach’s result. Moreover, the
results are statistically significant, with a medium effect size
on the entire benchmark and small-to-large effect sizes on a
per-program basis in most cases.

7 CONTEXT-OPTIMIZED ALGORITHMS (RQ4)
Here, we introduce a set of algorithms that we designed to optimize
the order in which program elements are examined, ultimately
reducing the extra costs that are associated with context switches.

We leverage the results that were presented in the previous
sections to help build the foundation for these approaches. Based
on our observation in Section 4, it is evident that the occurrence of
context switching at method-level is very notable. Section 5 further
highlights the importance of addressing these changes to achieve
cost efficiency. Therefore, reducing the frequency of these switches
should be our top priority, and the findings from Section 6 about
method-level outcomes will support our efforts to achieve this goal.

Our first algorithm takes a relatively straightforward approach. It
determines the order in which to examine code elements through a
two-step sorting process. First, it sorts themethods, i.e., the contexts,
and then it sorts the statements within each method. The principles
used for sorting at each level are alterable, but for the experiments
with this algorithm, we sorted the methods in descending order
based on their score values, which were aggregated by the max
function (see Section 6). Statements within each method are also
sorted in descending order based on their score values.

The algorithm suggests examining all statements in decreasing
score order one method at a time. It starts with the method contain-
ing the statement with the highest score, and after all statements
have been examined in this method it proceeds to the statements of
the next method according to the method score list. Note that this
algorithm skips instructions with no or zero score. In the following,
we will refer to this algorithm as ScoreSort, or SS for short.

Our second algorithm is an extension of the first one. We no-
ticed that in certain situations ScoreSort tends to stick to larger and

seemingly more suspicious contexts. However, due to inherent inac-
curacies in SBFL formulas that give us the basis of the aggregation
and sorting steps, this has the potential to mislead the developers
in identifying the faulty code elements. For instance, if a suspicious
method does not contain the fault, according to ScoreSort, the pro-
grammer would still need to examine all statements in the method,
even if there are statements with very low scores in it.

To mitigate this behavior, we introduce a bounding mechanism
into the algorithm, which forces the algorithm to leave the method
after examining a subset of its statements if they do not meet a
certain score threshold. The algorithm retains flexibility by allow-
ing a return to earlier contexts if the faulty element is not found.
Although this may lead to a higher number of context switches, it
has the potential to accelerate the process of finding the faulty state-
ments by skipping the examination of statements with a small score
value. With this bounding extension, we aim to find the balance
between thorough context exploration and focused search.

Algorithm 1 shows the outline of our second algorithm, referred
to as ScoreSort-K (SSK) in the following. In each iteration, a pa-
rameter called 𝐾 is utilized to determine which statements are
skipped during traversal. In practice, 𝐾 is a list with progressively
decreasing values, i.e., we allow successive iterations to examine
statements with smaller and smaller scores. The algorithm begins
by sorting methods in descending order of their scores (also using
the max aggregation function). Then, for each 𝐾 value, it iterates
through methods, ordering statements within them by score and
skipping those with scores lower than the current 𝐾 value. If the
fault is not found, the algorithm continues to the next iteration with
a new 𝐾 value. In our experiments, we set 𝐾 to be the progressively
decreasing list 40%, 30%, 20% 10% and 0% of the maximal score value
in the faulty program version in question. Note that when 𝐾 = {0}
then we get the basic ScoreSort algorithm.

Algorithm 1 ScoreSort-K
Require: 𝐾 the list of score thresholds
Require: 𝑀 the list of methods

Sort(𝑀)
𝑉 ← ∅ ⊲ the set of examined statements
for all 𝑘 ∈ 𝐾 do

for all𝑚 ∈ 𝑀 do
Sort(𝑚.𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 )
for all 𝑠 ∈ 𝑚.𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 do

if 𝑠 ∉ 𝑉 ∧ 𝑠.𝑠𝑐𝑜𝑟𝑒 ≥ 𝑘 then
𝑉 ← 𝑉 ∪ {𝑠 }
if 𝑠.𝑏𝑢𝑔𝑔𝑦 then return
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Table 6: SBFL’s Performance in Terms of 𝐸 with the Matrix-based and the Score-based Approaches

Matrix Score (max) Score (sum)
D* Och Bar D* Och Bar D* Och Bar

Chart 35.2 33.7 22.3 31.1 (0.88) 30.8 (0.91) 32.3 (1.45) 9.7 (0.28) 5.1 (0.15) 3.5 (0.16)
Closure 1311.4 1134.4 1127.8 48.6 (0.04) 48.5 (0.04) 48.0 (0.04) 36.0 (0.03) 34.7 (0.03) 34.7 (0.03)
Lang 5.3 5.9 6.5 3.6 (0.68) 3.5 (0.59) 3.8 (0.58) 2.9 (0.54) 2.7 (0.45) 2.5 (0.39)
Math 18.5 18.7 19.1 9.1 (0.49) 9.2 (0.49) 9.3 (0.49) 7.7 (0.42) 8.5 (0.46) 7.6 (0.40)
Mockito 26.5 26.8 35.5 13.3 (0.50) 13.2 (0.49) 12.8 (0.36) 12.6 (0.47) 15.4 (0.57) 11.0 (0.31)
Time 35.4 35.7 37.7 21.6 (0.61) 21.6 (0.61) 21.7 (0.58) 14.1 (0.40) 14.6 (0.41) 13.9 (0.37)

Total w/o Closure 19.7 19.8 20.3 11.8 (0.60) 11.8 (0.59) 12.0 (0.59) 8.0 (0.41) 8.2 (0.41) 7.0 (0.35)
Total 431.4 375.0 373.2 23.5 (0.05) 23.5 (0.06) 23.5 (0.06) 16.9 (0.04) 16.7 (0.04) 15.8 (0.04)

Table 7 shows how the optimized algorithms perform compared
to the baseline i.e., the traditional SBFL approach with simple linear
statement rank list (referred to as B in the following tables). Each
block of the table corresponds to an algorithm, while columns are
organized into three sets associated with the three types of metrics:
𝐸, 𝐸𝑐𝑡𝑥 and the context metrics. The rows noted as “Diff” and “Diff
%” represent the absolute and relative improvement of the actual
algorithm relative to the traditional approach’s results. Note that,
due to space limits, we present these results only with the Medium
setting of 𝛼 . Further results are available in the online-appendix.

Context-metrics-based results show that both algorithms have a
significant advantage over the baseline. The SS algorithm seems to
have consistently better results in this aspect than SSK. It improves
𝑉𝑀 by 36-37%, 𝑆𝑊𝑀 by 51-52%,𝑉𝐶 by 28% and 𝑆𝑊𝐶 by 52-53%. Con-
sidering 𝐸ctx , on the whole benchmark, SS improves the baseline
cost values by 36-37%, and SSK is slightly worse with an improve-
ment of 24-33% on average. However, SSK proves to be better than
SS in the case of the smallest program, i.e., Lang.

The 𝐸 values show a much less clear picture. Although both
algorithms can achieve 11-14% improvement when looking at the
whole dataset, the Chart, Lang, Math and Mockito programs show
that the new algorithms lag behind the traditional SBFL, even if
only slightly. Overall, we can see the advantage of our algorithms
even in the traditional 𝐸 values, however, the really significant
improvements are in 𝐸ctx and the context metrics.

Table 8 depicts the Accuracy metrics of the optimized algorithms.
Here, the focus is on the algorithms’ performance in terms of 𝐸 and
𝐸ctx , not on the comparison of the metrics. Top-1 results are the
same across all aspects. 𝐸-based results show that, on the contrary
to previous results, SSK outperforms SS by a small margin, and
SS is not able to improve on the baseline. In the Top-5 category,
SSK almost matches the baseline, but it was able to localize slightly
more bugs in the Top-10 category. However, the 𝐸ctx -based results
are completely different: SS is the best, particularly in the Top-5
category, SSK is second, and the baseline is last.

Based on the results of the statistical analyses described in Sec-
tion 3.4, we found that statistically significant results were obtained
at the 0.05 significance level for the whole dataset in all aspects.
Examining the results separately, we obtain significant results in
𝐸 values for Closure, Math and Mockito. In the case of 𝐸ctx , Clo-
sure, Math and in some cases Time are the programs where the
statistics confirm the results. For the context metrics, the situation
is better, we got significant results in most cases. Note, that results

are omitted due to space limits, but detailed results can be found in
the online appendix (see Section 9.1).

Answer to RQ4:We proposed two approaches SS and SSK,
that optimize the context switches and the overall cost. We
found that, there were no significant differences between these
algorithms in terms of efficiency. They can improve the context
metrics by 21-52% on method level and 13-53% on class level.
They also improve the overall cost of 𝐸ctx by 24-37%, while
matching or slightly improving the 𝐸 values of the traditional
SBFL approach. In addition, they have an advantage over SBFL
in terms of accuracy metrics as well.

8 DISCUSSION
We argue that ignoring the cost of context switches along the
ranking lists produced by SBFL algorithm could impair the fair
evaluation of such approaches. To fill this gap, we introduce the
context-aware Expense measurement approach. Since we used our
own estimates for the costs of switches – the 𝛼 parameters in
Equation (4) –, this only provides a framework for a hopefully more
accurate estimation of costs.

The parameters are determined based on our programming expe-
rience, and the rationale for using these values is that, in our view,
the additional cost of the context switch when changing granular-
ity levels increases exponentially. We agree with the suggestion
by Souza et al. [9] that a fully accurate and general metric would
require further experiments, mainly with humans, to establish and
verify the final parameters of the metric. It is also needed to dis-
cover on which possible additional factors (e.g., code complexity)
the parameters and the overall cost depend. The execution of a hu-
man study requires the careful consideration of various parameters
and aspects such as the participants’ experience, the diversity of
the projects, etc. Despite these factors, the results obtained may
still not be entirely generalizable. However, results with the dif-
ferent settings of 𝛼 are expected to provide a reasonably accurate
approximation of such experiments.

An interesting research direction and open question is how to
handle the contexts, especially at different granularities, and what
additional information can be included in the optimization. We
have seen that reducing the number of context switches implies
that the number of instructions to be examined increases slightly in
some cases. Although the bounding mechanism in the ScoreSort-K



Context Switch Sensitive Fault Localization EASE 2024, June 18–21, 2024, Salerno, Italy

Table 7: Performance of the Traditional and Optimized Approaches in Terms of 𝐸, 𝐸ctx and Context Metrics

𝐸 𝐸ctx 𝑉𝑀 𝑆𝑊𝑀 𝑉𝐶 𝑆𝑊𝐶
D* Och Bar D* Och Bar D* Och Bar D* Och Bar D* Och Bar D* Och Bar

SSK

Chart 151.0 152.0 143.4 376.7 362.5 344.9 32.1 30.9 29.6 33.6 31.4 30.0 6.8 6.4 6.1 19.8 18.0 17.4
Closure 301.4 316.1 295.0 802.3 946.5 802.6 56.6 71.3 57.0 63.7 79.6 64.0 18.9 23.1 19.2 49.2 62.0 50.1
Lang 18.6 17.8 19.1 36.9 34.7 37.5 3.4 3.2 3.4 3.6 3.3 3.5 1.7 1.7 1.8 2.4 2.3 2.3
Math 63.2 65.6 65.4 131.0 131.8 132.8 9.1 9.1 9.1 9.7 9.5 9.7 3.7 3.7 3.7 6.8 6.6 6.7
Mockito 43.3 43.3 43.2 156.9 162.5 161.5 12.7 13.4 12.9 13.8 14.4 14.2 7.0 7.1 7.1 11.2 11.8 11.9
Time 92.9 95.9 94.7 274.6 294.6 276.7 21.6 23.6 21.5 23.6 25.4 23.4 7.7 8.4 7.7 18.1 19.8 18.3

Total 142.0 147.8 140.2 369.2 418.4 368.3 26.8 31.8 26.8 29.7 35.0 29.6 9.2 10.7 9.3 22.3 26.6 22.5

Diff -23.4 -18.1 -23.6 -178.4 -132.5 -179.4 -13.7 -8.6 -13.2 -22.9 -18.0 -23.4 -3.1 -1.6 -2.9 -17.4 -13.6 -17.8
Diff % -14.2 -10.9 -14.4 -32.6 -24.1 -32.8 -33.8 -21.3 -33.1 -43.5 -34.0 -44.1 -24.8 -13.3 -23.7 -43.9 -33.9 -44.1

SS

Chart 150.5 149.3 142.9 354.2 350.6 339.4 30.1 29.8 29.2 30.1 29.8 29.2 6.2 6.2 6.0 17.6 17.4 17.0
Closure 304.4 304.1 302.4 749.1 747.9 739.8 54.6 54.4 53.4 54.6 54.4 53.4 18.1 18.0 17.9 41.5 41.5 41.0
Lang 20.4 20.3 21.6 37.6 36.8 38.1 3.3 3.2 3.2 3.3 3.2 3.2 1.7 1.7 1.7 2.3 2.2 2.2
Math 68.0 68.0 70.1 128.4 128.6 129.3 8.5 8.5 8.4 8.5 8.5 8.4 3.5 3.5 3.4 6.1 6.1 6.0
Mockito 43.3 43.2 44.1 150.0 149.5 153.6 12.5 12.4 12.6 12.5 12.4 12.6 6.9 6.8 7.0 10.3 10.3 10.8
Time 95.2 97.3 97.5 264.4 266.5 268.0 21.4 21.3 21.3 21.4 21.3 21.3 7.6 7.6 7.6 16.3 16.4 16.7

Total 144.8 144.8 144.7 348.0 347.4 344.8 25.8 25.7 25.3 25.8 25.7 25.3 8.8 8.8 8.8 19.2 19.2 19.0

Diff -20.6 -21.1 -19.1 -199.6 -203.5 -203.0 -14.7 -14.8 -14.8 -26.8 -27.3 -27.7 -3.4 -3.5 -3.4 -20.6 -21.1 -21.3
Diff % -12.5 -12.7 -11.7 -36.5 -36.9 -37.1 -36.3 -36.5 -36.9 -51.0 -51.6 -52.3 -28.0 -28.3 -28.2 -51.7 -52.4 -52.8

B

Chart 148.3 149.3 143.6 378.2 380.0 364.4 33.1 33.0 32.0 34.3 34.5 32.9 7.0 6.9 6.6 19.8 20.0 19.2
Closure 371.8 371.8 366.7 1305.7 1311.3 1304.4 94.8 94.9 93.9 127.4 128.3 128.3 27.3 27.4 27.2 98.0 99.0 99.1
Lang 18.6 20.5 19.7 41.3 43.8 42.2 3.9 3.9 3.9 4.4 4.4 4.3 1.8 1.9 1.9 2.7 2.8 2.7
Math 63.0 63.0 63.3 139.4 139.5 138.6 10.0 10.0 9.8 11.0 11.0 10.9 4.0 4.0 3.9 7.6 7.6 7.6
Mockito 39.1 39.0 39.4 169.9 170.3 175.1 13.7 13.7 13.9 16.3 16.4 16.8 7.3 7.3 7.4 13.4 13.5 14.2
Time 98.3 99.0 99.1 350.1 360.9 365.9 26.4 26.5 26.4 34.2 35.9 36.7 9.0 9.0 9.1 26.6 28.3 29.1

Total 165.5 165.9 163.8 547.7 550.9 547.8 40.5 40.5 40.0 52.6 53.0 53.0 12.3 12.3 12.2 39.7 40.2 40.3

Table 8: Accuracy of the Traditional and Optimized Ap-
proaches in Terms of 𝐸 and 𝐸ctx Based Metrics

𝐸 𝐸ctx
Top - 1 5 10 Other 1 5 10 Other

SSK
D* 48 121 174 199 48 89 123 250
Och 49 121 174 199 49 94 130 243
Bar 48 125 175 198 48 91 125 248

SS
D* 48 121 162 211 48 101 133 240
Och 49 121 163 210 49 103 136 237
Bar 48 119 161 212 48 101 132 241

B
D* 48 123 169 204 48 86 120 253
Och 49 123 169 204 49 88 122 251
Bar 48 125 171 202 48 86 120 253

algorithm can compensate for this to some extent, the relationship
between the changes in the twomeasures is not trivial. Also, a slight
increase in the Expense could prove to be worthwhile when there
is a significant decrease in context switches. The choice between
SS, SSK, and other alternative algorithms could also depend on the
environment in which they are used. For instance, if the current
test suite or formula yields many items with small scores, it would
be best to minimize the analysis of these. On the other hand, if
we have many large contexts, including third-party code, we may
decide that minimizing the number of switches is more important.

Further complicating the situation, it is difficult to find a balance
between the type of context to be given priority in the optimization
and the attributes of the contexts to be used.

In this paper, we focus on methods, and sorting them by the
maximum score of their statements.We also performed experiments
based on the sum aggregation method, and we constructed class-
level optimization algorithms. Moreover, we experimented with
several settings of the 𝐾 score thresholds, but these alternatives did
not achieve similar efficiency as the two algorithms reported in the
paper, so we publish these results only in the online appendix.

As already discussed, there are several other ways to deal with
the context switches [6, 9, 34], measuring and optimising the cost
is only one aspect of the issue. It may be useful, for example, to
present contexts or context switches in a more informative and
comprehensible way to the programmers. Additionally, it could also
be possible to combine these methods in a complementary way.

It would also be interesting to experiment with contexts that
are not tied to the existing structural levels of granularity. For
example, statements that are in the same method, but relative far
from each other could be considered as different contexts and the
switching between them could be incorporated into 𝐸𝑐𝑡𝑥 with a
new parameter. It also remains future work, to investigate the
influence of context-based metrics on methods that rely on SBFL,
e.g., automatic program repair, fuzz testing, etc.
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9 CONCLUSION
In this paper, we explored the phenomenon of context switching
in the rank list of spectrum-based fault localization technique, and
provided insights into how it affects the performance of SBFL algo-
rithms and ultimately programmer’s efficiency. To examine the fre-
quency of context switches, we conducted a study on the Defects4J
benchmark and found that, on average, the developers have to
examine around 40 distinct methods before finding the faulty state-
ment. We devised a new metric that accounts for context switches.
Our analysis showed that this metric’s value is 2-10 times greater
than traditional Expense measurements. Finally, we showed that
there are better ways to inspect code elements in the SBFL rank list
and developed new strategies that focus on enhancing the order of
methods associated with statements in the list. We showed that our
algorithms significantly decrease context switching and improve
context-aware Expense by 24-37% on average.

The perspectives of our research are to raise awareness to the
deficiencies of current SBFL effectiveness assessment practices, and
to encourage further research in the direction of making SBFL
techniques more programmer oriented.

9.1 Data Availability
We provide the algorithm implementations, the measurement envi-
ronment, the datasets and experiment results in an online appendix:
https://zenodo.org/doi/10.5281/zenodo.11075509
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