
Software Quality Model and Framework with
Applications in Industrial Context

Lajos Schrettner
InfoPólus 2009 Ltd.

Szeged, Hungary

schrettner@infopolus.hu

Lajos Jenő Fülöp
DEAK Plc.

Szeged, Hungary

flajos@inf.u-szeged.hu

Árpád Beszédes, Ákos Kiss, Tibor Gyimóthy
Department of Software Engineering

University of Szeged

Szeged, Hungary

{beszedes,akiss,gyimi}@inf.u-szeged.hu

Abstract—Software Quality Assurance involves all stages of
the software life cycle including development, operation and
evolution as well. Low level measurements (product and process
metrics) are used to predict and control higher level quality
attributes. There exists a large body of proposed metrics, but
their interpretation and the way of connecting them to actual
quality management goals is still a challenge. In this work,
we present our approach for modelling, collecting, storing and
evaluating such software measurements, which can deal with all
types of metrics collected at any stage of the life cycle. The
approach is based on the Goal Question Metric paradigm, and
its novelty lies in a unified representation of the metrics and the
questions that evaluate them. It allows the definition of various
complex questions involving different types of metrics, while the
supporting framework enables the automatic collection of the
metrics and the calculation of the answers to the questions.
We demonstrate the applicability of the approach in three
industrial case studies: two instances at local software companies
with different quality assurance goals, and an application to
a large open source system with a question related to testing
and complexity, which demonstrates the complex use of different
metrics to achieve a higher level quality goal.

Index Terms—Software quality assurance, Metrics, Goal Ques-
tion Metric, Quality model, Modelling, Data persistence.

I. INTRODUCTION

Measurement is an essential constituent of any software

quality assurance activity [1]. Without measuring different

properties of the product and process it is impossible to

assess quality issues, and prepare for their mitigation either

in form of prevention, refactoring or any other kind of risk

management. There is a significant body of work published

about what kind of measurements and specific metrics should

be used for this purpose, e.g. see [2]. These metrics are

properties of the system or the process that can be expressed

numerically. Also, there are different recommendations about

how quality should be defined in the first place for a specific

project and goal (e.g. see the ISO 9126 standard). In other

words, what are those higher level quality attributes that should

be managed (specified, tested and maintained). Finally, there

are different standards about the overall quality assurance of

software processes [3], [4].

This work is based on the Goal Question Metric (GQM)

paradigm [5] in the sense that we suggest a method for

combining metrics and questions in a unified model to bridge

the gap between high level goals and low level metrics. The

key idea of this paradigm is that a measurement must be

defined in a top-down fashion. A bottom-up approach has

several drawbacks because there are many characteristics in

software, but selecting the important ones is not straightfor-

ward without well defined top-level goals. This paper makes

two contributions.

First, we implemented the approach in a framework that

supports the modeling, collecting, storing and evaluating soft-

ware measurements, which can deal with all types of metrics

collected at any stage of the life cycle. The model and its

representation allows the definition of various complex ques-

tions involving different types of metrics, while the supporting

framework enables the automatic collection of the metrics and

the calculation of the answers to the questions. The novelty

of the approach is the combined use of metrics and questions.

Second, we present details about three industrial applications

for which a monitoring environment has been set up using the

model and quality framework.

There are some similar works ([6], [7], etc.) but none of

them provided all the features we deemed important: (1) build

on the basis of the GQM paradigm, (2) define models for data

storage, (3) store and manage the questions together with the

data and metrics, (4) should be extendible with regard to data

uploading and model extension.

The paper is organized as follows. Section II describes the

concepts and design decisions that led to the development of

the Unified Quality Monitoring framework. In Section III, we

give some details about the implementation of the framework,

while Section IV is dedicated to details and experiences with

the applications. Finally, we conclude in Section V.

II. SOFTWARE DEVELOPMENT LIFE CYCLE MONITORING

APPROACH

Principles of a possible solution: Based on the above we

define high level concepts that describe the principles and key

requirements of a possible solution. This concept is depicted

in Figure 1.

The left hand side of the figure shows the concepts of

measurement based on GQM. The right hand side of the figure

shows the modelling concepts for the structural elements and

relationships of the software under investigation. An important

detail in the GQM paradigm is that when the GQM model

is defined, then the appropriate data collection techniques and

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.57

447

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.57

447

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.57

453

tools have to be developed.We call this kind of tools adapters,

as can be seen in Figure 1.

Figure 1. High level concepts for a GQM- and model-based software
measurement solution

An important part of this figure is the View, which is located

in the middle, between the Model and the Metrics. View defines

the viewpoint of the model from three aspects: measured phase
(e.g. design, implementation), measured artifact (e.g. design

documents, source code), and measured subject. The latter

deals with the categorization of the measured metrics: product
(e.g. lines of code) and process (e.g. average time to fix a

bug).

The interpretation and the need for a viewpoint are usually

specific to a certain project. For example, in the case of

measured phase it is possible to measure phases such as

operation and maintenance that are parallel to each other, i.e.

may be carried out at the same time. Therefore, the viewpoints

have to be selected first, then the metrics should be determined,

taking into account the viewpoints.
Data model: We developed a model based on the principles

above. The most important part of the developed model,

which we call library, contains the common general elements

of the whole model. Among the elements there are general

items from which specific measurable entities can be derived,

items from which specific metrics can be derived, and top

level elements that are required in every application (such as

identifying the system under observation, and the versions

of the system). The library is defined via a static UML

diagram, but due to space constraints its details cannot be

presented here. We defined a reference process to extend and

customize the library to suit the needs of a specific field or

application. The reference process consists of four steps: (1)

defining the structure of the measurement, (2) identifying the

measured elements, (3) defining software quality metrics, and

(4) determining constraints for the new measurement. The

process does not deal with the high level quality attributes,

because the extension process is general, while goals and

questions are domain-dependent or project specific. While the

questions should determine the type of metrics to use, the

library can be seen as a set of possible metrics at our disposal.

III. IMPLEMENTATION

Based on the principles defined in the previous section we

developed the Unified Quality Monitoring (UQM) application.

The UQM application integrates the collection of quality data,

high level query management and reporting features. It has

been implemented on top of our Model Based Persistence

Server (MBPS) framework, which is capable of supporting

clients that benefit from viewing their persistent data as a

collection of nodes (and connections) instead of as records

of a relational database. Its main distinguishing feature is that

besides serving as a vehicle for model-based data storage, it

supports the integration of queries into the models. Our MBPS

framework provides the basic data abstraction and persistence

infrastructure on which the higher level quality monitoring

functions are built.

The UQM application is still under development, but it

has already been used with success in several academic and

industrial projects. Quality data accumulates in the model

instance by the use of special client components, called

adapters (Figure 2). Adapters are data transformation devices

that collect data from various sources, restructure them as

dictated by the model, then forward the resulting elements

to the persistence server. There are a predefined set of adapter

types that are prepared to be able to collect data from sources

that have been encountered so far in different projects. Adapter

types and supporting classes are arranged in an inheritance

hierarchy, so new adapter types can be included into the system

relatively easily if the need arises.

In a particular installation of the UQM application, those

adapters that are determined to be necessary for the operation

of the system have to be instantiated. Most adapters require

that parameters be provided at instantiation time to be able to

connect to their data source. Instantiated adapters can be set up

to operate under the supervision of a scheduler that activates

them at preconfigured moments, or they can be activated

manually.

Figure 2. UQM architecture

Data collected through adapters accumulates in the current

model instance in the persistent storage, where it can be

queried from. Queries are stored next to the model, and can

have parameters that should be filled in before execution. The

parameters together with the constraints that are described

inside the queries determine a subset of the nodes and con-

nections of the model instance. This way they are similar to

relational queries except that they produce a subgraph, not

448448454

a series of records. Queries can encode a limited number of

aggregation functions (e.g. count, sum, average), and it is also

possible to attach custom post-processing Java code to them.

The results of an executed query can be viewed as formatted

text in the simplest case, or they can appear on a diagram if the

output type of the query is one of those for which diagrams are

predefined. The current set of diagrams consists of several two

and three-dimensional bar charts, timelines and other reports.

There are three views in the unified user interface of the

system, two for administrative tasks (Adapter management,

Question manipulation) and another one for the end users, i.e.

for the experts who would like to monitor the quality of the

observed system(s).

IV. APPLICATION EXPERIENCES

In the following three subsections we present experiences

with three industrial applications.

A. Code Complexity and Regression Testing in WebKit

WebKit is an actively developed open source web browser

engine [8] consisting of about 1.8 million lines of C/C++ code

with a regression test suite consisting of about 20000 test cases

that are run after every commit to the WebKit source code

repository. In principle, the layout regression tests must pass

before any patches can land in the repository, but unfortunately

this requirement is often violated. Developers often skip the

full testing process before the commits, because regression

testing is a complex task that requires a lot of time and other

resources.

We have set up a quality monitoring environment in which

data acquisiton is triggered after each commit and formulated

research questions that we would like to answer using our

quality framework. Specifically, we have set up a measurement

environment in which we are able to:

• Analyze the source code of any revision of the project

and compute a set of code metrics for that revision.

• Instrument the code and measure procedure level code

coverage during regression testing.

• Extract Passed/Failed outcome information from the re-

gression test suite.

Using the Unified Quality Monitoring approach, we gather

data from the development and the regression test phases of

the WebKit life cycle. Two adapters need to be instantiated

for WebKit, one for the development phase, and another one

for the testing phase. The primary goal of our research in

connection to WebKit is centered around investigating the

connection between complex methods and regression errors.

Here, we deal with research problems that occur in the im-

plementation and testing phases of the software development

life cycle, therefore we specialized the necessary components

of the library model (see Section II) to accomodate the data

gathered from WebKit. GQM [5] introduces a summary table

format which we also use in this paper. Table I summarizes a

GQM triplet in connection with WebKit.

The answer to the question included in Table I is given by

the UQM application as a diagram where 3 values are assigned

Table I
GOAL: RELATE COMPLEX METHODS AND REGRESSION ERRORS

Goal Purpose Investigating the connection between complex
methods and regression errors.

Issue What is the most common cause of regression
errors

Object in the system under development?
Viewpoint Software quality assurance

Question Q1 Is it true that in a revision the most complex
methods of the system are responsible for (some
of the) regression errors

Metrics M1 Complexity of methods (e.g. McCabe, NOI, NII)
M2 Set of modified methods between two revisions
M3 Set of methods that were covered during regres-

sion testing of a revision
M4 Regression test outcomes in a revision

to each revision in the given interval: (1) number of complex

methods, (2) number of methods that caused a test case to fail,

and (3) number of elements in the intersection of the set of

complex methods and the set of failing methods.

Preliminary results show that there is indeed a connection

between complex methods and regression errors. Using our

framework, we collected data from 26 revisions. We found

that the ratio of complex methods among the ones that cause

any test case to fail is consistently higher than the ratio

of complex methods among all methods. Depending on the

definition of “complex”, complex methods occur 2 to 5 times

more frequently among failing methods. For example, if we

regard a method “complex” if its NII (Number of Incoming

Invocations) metric is greater than or equal to 10, then 3%

of all methods are complex, but 15% of them take part in

executions that lead to a test case to fail. For technical reasons,

the number of revisions we took into account were somewhat

limited, and coverage information was not available for all

revisions, but the flexibility of the UQM application and more

specifically the way the answer is calculated enables us to

continue this promising line of research. We would like to

continue to work on these and other (e.g. impact analysis)

issues, but they are out of the scope of this paper, as the aim

was to demonstrate the use of the UQM application.

B. Usability Testing in the DEAK Project

In this case study we chose one of the joint projects with

our industrial partner DEAK [9]. The project is about usability

testing of large and complex web applications in the domain of

library administration. Usability information is collected from

deployed systems, therefore we developed a specific model

(i.e. a specific measurement) for this project, which models

the operation phase of the software development life cycle.

Some of the major goals of the DEAK project are to

improve the less usable parts of the systems, and determine the

unnecessary and confusing parts. We worked on developing

automatic methods and questionnaires, for which purpose

our quality framework is perfectly suitable. To facilitate the

above, the systems are extended with capabilities to record

user interactions and store them in specific database tables.

The data from these database tables are then transferred by a

specialized adapter to the UQM application.

449449455

Table II
GOAL: IMPROVE THE LESS USABLE PARTS OF THE SYSTEMS

Goal Purpose Improve
Issue the less usable part of
Object the systems
Viewpoint from the users viewpoint

Question Q1 What functionalities require the longest execution
time?

Metrics M1 Recursive time
M2 Existing time

Question Q2 Which functionalities are the most difficult to use?

Metrics M3 Number of errors
M4 Number of steps
M5 Number of help use

Table III
GOAL: CHARACTERIZING DELAYS IN A SAFETY CRITICAL SYSTEM.

Goal Purpose Characterizing
Issue the response delays
Object in the observed safety critical system (e.g. teller

machine)
Viewpoint for the executive manager (of a bank).

Question Q1 Were there any slowdowns during the last 2
weeks?

Metrics M1 Processes (and related process steps)
M2 ClearTime, ExistingTime

In the following, we give two example questions in this

domain, presented in GQM tabular form. The questions in

Table II are typical usability testing questions, and they

illustrate the connection between metrics and questions well.

The filled questionnaires and the automatic answers of the

framework gave similar results. This way the most problematic

parts (e.g. window resizing, saving search forms, etc.) of the

investigated library applications had been discovered, and then

fixed by developers.

C. Quality Platform of an Industrial Consortium

A large-scale cooperation among local software companies

and the University of Szeged resulted in a project whose

aim is to develop a common platform for software quality

assurance with related models, methodologies and tools. The

companies of the InfoPólus consortium [10] are interested in

the platform in order to reduce their software quality assurance

costs. This particular UQM application uses multiple sources,

while question vary in their scope: some are related to only

a single measurement, but there are ones that are based on

several measurements. The initial development of both the

quality model and the framework were heavily influenced by

collaborating with the partners of the InfoPólus consortium.

There are a lot of different areas involved in this big project

including code quality assurance, test efficiency measurement,

data migration, safety critical systems operation monitoring,

and others. For the purpose of illustrating the model in this

paper, we selected the latter, which we characterize with the

question in Table III. Here ClearTime is interpreted as the

measured completition time of certain phases of the operation

of a teller machine (Recognition of inserted card, waiting time

for PIN number, etc.), while ExistingTime is interpreted as

the maximum allowed completition time for the same phases.

When executed, the question above produces a diagram show-

ing the number of occasions each phase of operation took

longer than it was allowed to in the last two weeks.

V. CONCLUSIONS

We presented an approach to aid software quality manage-

ment by modelling and tooling. We think that our approach

provides a common basis for any task related to measure-

ment in software quality assurance since it can serve as an

infrastructure for any kind of metrics and, following the GQM

paradigm, evaluation of the metrics for specific purposes.

The present article showed only a portion of the models

and tools that we are constantly developing in the scope of

our R&D activities. We gave some details about our solution,

both on conceptual and implementation level, and gave three

concrete examples of the application in very diverse contexts.

We will make some parts of the core model publicly

available so that other researchers and practitioners could also

benefit from it. In the future, we plan different activities

regarding the development of the approach and its publica-

tion. We plan to publish the details of our model (library)

and further details about the industrial applications. We will

develop further questions, data collection and visualization

tools as we move forward with our projects, so we intend to

publish details about these as well. Finally, according to GQM,

“Learning process: GQM models need always refinement and
adaptation...”, hence we will constantly focus on the evolution

of our models to keep their usefulness on a maximum level.

ACKNOWLEDGEMENT

The authors would like to thank György Hegedűs for his

help with the WebKit case study. This research was supported,

in part, by the Hungarian national grants OTKA K-73688,

GOP-1.2.1-08-2009-0005 and GOP-1.1.2-07/1-2008-0007.

REFERENCES

[1] T. DeMarco, Controlling software projects: management, measurement
& estimation, ser. Yourdon Press computing series. Yourdon Press,
1982.

[2] L. M. Laird and M. C. Brennan, Software Measurement and Estimation:
A Practical Approach. Wiley-Interscience, 2006.

[3] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI Guidlines for Process
Integration and Product Improvement. Addison-Wesley Longman
Publishing Co., Inc., 2003.

[4] Systems and software engineering – Software life cycle processes,
ISO/IEC 12207:2008 ed., International Standards Organization, 2008.

[5] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question
Metric Approach,” in Encyclopedia of Software Engineering. Wiley,
1994.

[6] Christian Hein and Tom Ritter and Michael Wagner, “Model-driven tool
integration with modelbus,” in Workshop Future Trends of Model-Driven
Development, 2009.

[7] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K. Lochmann,
and S. Wagner, “The quamoco tool chain for quality modeling and
assessment,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 1007–1009.

[8] “The WebKit homepage.” [Online]. Available: http://www.webkit.org/
[9] “The DEAK homepage.” [Online]. Available:

http://www.gop.deakszeged.hu/language/en
[10] “The InfoPólus homepage.” [Online]. Available:

http://www.infopolus.hu/index.php?lang=en

450450456

