

Name: Péter Rózsás, BSc student, third year Project type: Thesis project

Topic: Quantitative comparison of Simultaneous Localization And Mapping (SLAM) algorithms

Supervisor: Dr. László Schäffer

- SLAM solutions differing in both sensor utilization and algorithmic approach
 - EKF-SLAM: monocular, Kalman filter
 - MSCKF: stereo + IMU, Kalman filter
 - OKVIS, ORB-SLAM3: stereo + IMU, opt.-based
 - ORB-SLAM3: stereo/RGB-D + IMU, opt.-based
 - F-LOAM: LiDAR, opt.-based
 - LVI-SAM: sensor fusion approach, opt.-based
- Qualitative analysis from publication
- Quantitative testing via open-source code
- Summarized pros & cons of each algorithm
- The implementation of the algorithms was necessary, as accuracy results were not available for a common sequence.
- The algorithms were executed within virtual machines deployed on a laptop

Developr

29 May 2025 Péter Rózsás, © Continental AG **1**

Education

Experiments

Kesearch

- Each algorithm deployed in a separate virtual machine, *due* to OS and package version differences
- KITTI dataset sequences 05 and 07 selected
 - Length: 2223 m and 695 m
 - Includes loop closure points
- 6 algorithms reviewed, 5 implemented, 4 evaluated on KITTI
- 5 runs per sequence to mitigate non-deterministic effects
- We examined the following:
 - Average Position Error the average of all recorded position errors, in meters
 - Average Rotation Error the average of all recorded rotational errors, in degrees
 - Average Final Position Error the average of the final position errors, in meters
 - Average Final Orientation Error the average of the final orientation errors, in degrees
 - Maximum Position Error the largest recorded position error, in meters

29 May 2025 Péter Rózsás, © Continental AG 2

Results & future work

Research

• ORB-SLAM3

- Best accuracy, improvement potential: include IMU to reduce sensor-related errors or GPS based map correction
- LVI-SAM
 - · Good performance but suffers from critical failures
 - Needs robust failure handling and loop closure validation

• F-LOAM

- LiDAR-only approach with moderate accuracy
- Accuracy can be improved with IMU integration

OKVIS

- High error, especially endpoint position
- Lack of loop closure affects pose accuracy
- Recommend: implement loop closure detection and pose correction
- MSCKF SLAM requires parameter tuning for better estimation quality

Education

KITTI sequence 5									
	Average	Average	Average Final	Average Final	Maximum				
Algorithm	Position Error	Rotation Error	Position Error	Rotation Error	Position Error				
	±STD [m]	±STD [°]	±STD [m]	±STD [°]	[m]				
ORB-SLAM3	1.62 ± 0.40	0.35 ± 0.21	$\textbf{2.58} \pm \textbf{0.29}$	0.19 ± 0.04	4.87				
LVI-SAM	6.16 ± 0.09	1.44 ± 0.06	8.93 ± 0.08	1.48 ± 0.02	16.50				
F-LOAM	8.99 ± 0.16	2.03 ± 0.08	21.41 ± 0.14	3.72 ± 0.04	21.67				
OKVIS	12.45 ± 1.54	3.42 ± 0.74	31.52 ± 4.75	7.17 ± 1.20	42.52				

KITTI sequence 7								
	Average	Average	Average Final	Average Final	Maximum			
Algorithm	Position Error	Rotation Error	Position Error	Rotation Error	Position Error			
	±STD [m]	±STD [°]	±STD [m]	±STD [°]	[m]			
ORB-SLAM3	0.72 ± 0.06	0.29 ± 0.05	0.11 ± 0.003	0.27 ± 0.01	1.45			
LVI-SAM	2.51 ± 0.03	0.99 ± 0.04	1.82 ± 0.15	2.71 ± 0.47	3.34			
F-LOAM	2.61 ± 0.36	0.80 ± 0.08	1.40 ± 0.21	0.18 ± 0.13	6.50			
OKVIS	3.46 ± 0.74	1.64 ± 0.66	5.12 ± 0.69	3.46 ± 0.79	6.94			
4								

29 May 2025 Péter Rózsás, © Continental AG 3

References

- 1. Tixiao Shan et al., LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping. pp. 1-7, 2021, 10.48550/arXiv.2104.10831
- 2. Yonghui Liu et al., Real-Time Lidar Odometry and Mapping with Loop Closure, Sensors, 22, 4373, pp. 1-16, 2022, https://doi.org/10.3390/s22124373
- 3. Li M., Mourikis AI., High-precision, consistent EKF-based visual-inertial odometry. The International Journal of Robotics Research. 2013, pp. 690-711. doi: 10.1177/0278364913481251
- 4. J. Civera et al., Inverse Depth Parametrization for Monocular SLAM, in IEEE Transactions on Robotics, 2008, pp. 932-945, doi: 10.1109/TRO.2008.2003276
- 5. Genevois, T., Zielinska, T., A simple and efficient implementation of EKF-based SLAM relying on laser scanner in complex indoor environment., Journal of Automation, Mobile Robotics and Intelligent Systems, 8(2), 2014, pp. 58-67., doi: 10.14313/JAMRIS 2-2014/20 s
- 6. M. K. Paul et al., "A comparative analysis of tightly-coupled monocular, binocular, and stereo VINS," 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 165-172, doi: 10.1109/ICRA.2017.7989022
- 7. A. I. Mourikis, S. I. Roumeliotis, "A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation," Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 2007, pp. 3565-3572, doi: 10.1109/ROBOT.2007.364024.
- 8. Leutenegger S et al., Keyframe-based visual-inertial odometry using nonlinear optimization. The International Journal of Robotics Research. 2015, pp. 314-334. doi:10.1177/0278364914554813
- 9. C. Campos et al., "ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM," in IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874-1890, Dec. 2021, doi: 10.1109/TRO.2021.3075644
- 10. H. Wang et al., "F-LOAM : Fast LiDAR Odometry and Mapping," 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 4390-4396, doi: 10.1109/IROS51168.2021.9636655

29 May 2025 Péter Rózsás, © Continental AG **4**