
TDK-dolgozat

Dávid Sipos

University of Szeged
Institute of Informatics

Department of Computational Optimization

Quantum Optimization Suite for
Airline Crew Pairing

Written by: Supervisors:

Dávid Sipos András Czégel Boglárka G.-Tóth
Computer Science Optimization Expert Senior Research Fellow

MSc. II. year Lufthansa Systems Department of Computational Optimization

Absztrakt

A Reptéri Beosztás Probléma a járatok tervezéséhez kapcsolodó problémák egyik legnehezeb-

bike, hisz a járatok számának növekedésével kombinatorikus robbanás léphet fel. Ugyanakkor

a probléma hatékony megoldása, vagy akár csak jó közelítések gyors megtalálása hatalmas

költségektől mentesítheti a légitársaságokat, hiszen a legtöbb költség a járatok üzemeltetéséhez

szükséges munkaerő fenntartásával jár.

Napjainkban egyre nő az érdeklődés a kvantumszámítógépek által nyújtott potenciális szá-

mítási előny megvalósítása iránt, és ezek a törekvések már a légitársaságok optimalizálási prob-

lémáit is érintik [1]. A kvantum optimalizálás területén a Variációs Kvantum Algoritmusok

(VQA) kapták a legtöbb figyelmet a kutatóktól, melyekben a számítás egy részét kvantum-

számítógép végzi, amit egy klasszikus számítógép felügyel, vezényel a kvantum algoritmus

különféle paramétereinek módosításával.

A Kvantum Közelítő Optimalizáló Algoritmus (QAOA) bevezetése óta annak sok változata,

módosítása született elméleti és kísérleti eredményekkel együtt. A különböző változatok célja,

hogy sikerüljön belátni a kvantum számítógépek előnyét a klasszikus számítógépekkel szem-

ben, akár már zajos, kis-méretű eszközökön is. Az algoritmus változatai több ízben javasolnak

módosításokat, többek közt a kvantum áramkör szerkezetében, a használt globális optimalizáló

algoritmusban és annak konfigurációjában.

A dolgozatban bemutatunk egy Kvantum Optimalizációs Szoftvercsomagot, melynek célja a

különböző algoritmusok ellenőrzése, kiértékelése és kísérletek végrehajtása mind ipari szakem-

berek és kutatók által, többek között a Reptéri Beosztás Probléma különböző példányain. Úgy

véljük, hogy ez a probléma kitűnő mérceként szolgálhat, mind a mostani kisebb és zajosabb

kvantum számítógépeken, mind a jövő hibajavított gépein, és ipari fontossága miatt hatékony

bizonyítékként szolgálhat a kvantumszámítógépek hasznára.

Könnyen bővíthetőségének köszönhetően a csomag tartalmazza a Kvantum Közelítő Op-

timalizáló Algoritmus (QAOA) különböző korszerű változatait, mint például az XQAOA és a

QAOA+ implementációit. Ezek futtatásához alapvető integrációt is tartalmaz a szoftver népsze-

rű szolgáltatókkal, mint az Amazon és IBM, lehetővé téve akár valódi kvantum számítógepek

használatát. A kvantum szubrutinok mellett, az annak paramétereit állító globális optimalizáló

algoritmusok közül is több népszerű módszer is elérhető a programcsomagban.

3

Abstract

The Airline Crew Pairing problem is one of the hardest subproblems associated with airline

planning since the number of flights can lead to a combinatorial explosion. Nevertheless, ef-

ficiently solving the problem, or even quickly obtaining an approximate solution can alleviate

significant costs burdening airlines as most costs incurred come from labor costs.

Nowadays there is a heightened interest in realizing the potential advantage promised by

quantum computing. These efforts have even reached some optimization problems that plague

airlines [1]. In the field of quantum optimization, Variational Quantum Algorithms have gar-

nered the attention of many researchers, where a quantum subroutine is aided by a classical

optimization algorithm.

Since the proposition of the Quantum Approximate Optimization Algorithm, many variants

of it have been introduced along with countless theoretical and experimental results regarding

the possibility of quantum advantage using Noisy Intermediate-Scale Quantum hardware and

beyond. These variants can alter many aspects of the algorithm from the classical optimization

protocol used and its initialization, through the structure of the quantum circuit itself.

We introduce a Quantum Optimization Suite to aid with testing, evaluating, and experiment-

ing with different Variational Quantum Algorithms in both industrial and research settings to

solve, among many others, the Airline Crew Pairing problem. We believe that this problem can

serve as a good benchmark both for the quantum computers of today and those of the future and

due to its industrial importance can serve as proof of the utility of quantum computers.

We include state-of-the-art variants of the QAOA such as xQAOA and QAOA+ along with

multiple global optimization algorithms. Necessary integrations to quantum computing providers

such as IBM, and Amazon are also part of the suite, allowing testing on real quantum hardware.

4

Contents

1 Introduction 8
1.1 Airline Crew Scheduling . 9

1.1.1 Airline Crew Pairing . 9

1.1.2 Airline Crew Assignment . 9

1.2 Quantum optimization . 9

2 Problem Setup 11
2.1 Definitions . 11

2.2 Methodology . 11

2.3 Pairing generation . 12

2.4 Rules . 12

2.5 Cost model . 13

3 Introduction to Quantum Computing 14
3.1 Quantum State . 14

3.2 Measurement . 15

3.3 Hamiltonian operator . 16

3.4 Entanglement . 16

3.5 Interference . 17

3.6 Quantum Circuits . 17

4 Mathematical Model 19
4.1 Minimum Cost Exact Cover . 19

4.2 Quadratic Unconstrained Binary Optimization 19

4.3 Constructing the physical system . 20

5 MCEC on Quantum Hardware 23
5.1 Variational Quantum Algorithms . 23

5.2 QAOA . 24

5.2.1 Finding a lowest energy state of a system 24

5

Quantum Optimization Suite for Airline Crew Pairing

5.2.2 Hamiltonian evolution . 25

5.2.3 Building the circuit . 25

5.2.4 Building the cost layer . 26

5.2.5 Building the mixer layer . 26

5.2.6 Creating the quantum subroutine . 27

5.2.7 Finding the optimal parameters . 27

5.3 Alternative ansätze choices . 27

5.3.1 ma-QAOA . 27

5.3.2 QAOA+ . 28

5.3.3 XQAOA . 28

5.4 Optimization strategies for finding optimal parameters 29

5.4.1 COBYLA . 29

5.4.2 SPSA . 29

5.4.3 Genetic Algorithms . 30

6 Software 31
6.1 Architectural overview . 31

6.1.1 Plugins . 31

6.1.2 Datasets . 32

6.1.3 Platforms . 32

6.1.4 Ansätze . 33

6.1.5 Converters . 33

6.1.6 Initializers . 33

6.1.7 Optimizers . 33

6.1.8 Result processors . 33

6.2 Plugin management . 33

6.2.1 Python metaclasses . 34

6.2.2 Plugin lifecycle . 34

6.3 The optimization pipeline . 35

6.4 Usage . 35

6.5 Example of using the suite . 36

7 Results 39
7.1 Random Instances of MCEC . 39

7.2 Airline Crew Pairing Dataset . 41

8 Conclusion 42

6

Quantum Optimization Suite for Airline Crew Pairing

A Mathematical Notation Supplement 43
A.1 Matrices . 43

A.1.1 Conjugate transpose . 43

A.1.2 Unitary Matrices . 43

A.1.3 Normal Matrices . 43

A.1.4 Hermitian Matrices . 43

A.1.5 Matrix diagonalization . 43

A.1.6 Projection Matrices . 44

A.1.7 Tensor product . 44

A.1.8 Matrix exponent . 44

A.2 Dirac notation . 44

B Experiment in a Python notebook 46

C Expansion of 4.11 47

7

Chapter 1

Introduction

Our goal is to create a framework that streamlines the process of implementation, testing and

evaluation of different quantum optimization algorithms for solving the Airline Crew Pairing

problem.

Optimizations of the labor force employed by airlines can have significant financial ramifi-

cations, making Airline Crew Scheduling a highly relevant problem in industrial settings. The

Airline Crew Pairing problem is one of the hardest problems in airline planning as even a mod-

est number of flights can result in exponentially many pairings. Due to this, we believe that the

Airline Crew Pairing problem can serve as a good benchmark for experimenting with different

state-of-the-art quantum optimization techniques. With smaller hand-crafted problem instances

the noisy intermediate-scale quantum devices of today can be examined. As both algorithms

and hardware develop, larger instances of the Airline Crew Pairing problem will continue to be

a difficult task marking the progress made in quantum optimization. When the solvable prob-

lem instances reach industrial scales, quantum optimization will undoubtedly save large sums

of money and increase customer satisfaction in the airline industry and hopefully many others.

With the introduction of the optimization suite, we aim to facilitate this journey from ex-

ploring circuit constructions and optimization strategies to solving problems plaguing many

industries. As such the suite defines an optimization pipeline with interchangeable steps to

quickly prepare and evaluate different quantum subroutines. While we chose the Airline Crew

Pairing problem as our example, the suite is easy to extend to solve new problems. The devel-

opment of new and exciting quantum hardware solutions seems to be rapidly accelerating, so

one of our goals naturally was to allow easy integration with new quantum providers. In time,

we aim to integrate more platforms, problems, classical optimization algorithms, and circuit

designs into the suite with the hope of creating an easy-to-use and up-to-date system that can

help researchers and industry professionals alike.

First we introduce the industrial problem, then give a brief overview of quantum optimiza-

tion.

8

Quantum Optimization Suite for Airline Crew Pairing

1.1. Airline Crew Scheduling

In the airline industry, a significant source of the costs of operations are labor costs [2, 3] associ-

ated with operating the airliners. As such, significant resources are invested into optimizing the

costs of airline crews while complying with different labor regulations. Due to the complex na-

ture of crew planning, the problem is often considered as a sequence of subproblems, each with

its own set of challenges and possibilities for optimization. Airline Crew Scheduling is one such

subproblem where the goal is to find crew schedules that cover all scheduled flights while ad-

hering to regulations, minimizing costs, and taking into account crew preferences. Since Airline

Crew Scheduling is itself a large and complex problem, it is often split into two subproblems,

Airline Crew Pairing and Airline Crew Assignment (or Rostering).

1.1.1. Airline Crew Pairing

In the Airline Crew Pairing (ACP) subproblem, a sequence of flights is called a pairing if the

home base from which the first flight departs is the same as the one at which the last flight

arrives, and it meets regulatory requirements and constraints placed by airlines. Here crews are

only considered in an abstract sense, as this subproblem aims to find pairings such that every

flight is a part of exactly one pairing, with the total cost of the pairings being minimal. As such,

considerations for individual crew members are not present in this subproblem.

1.1.2. Airline Crew Assignment

Starting from the pairings resulting from the ACP problem, Airline Crew Assignment is con-

cerned with assigning them to crew members, taking into account crew preferences (such as

a crew member disliking pairings that start early in the day) and rules imposed by the airline

(such as the need for a Japanese speaker on a flight) and authorities (such as compulsory rest

times) to maximize robustness and personnel satisfaction.

We focus on the Airline Crew Pairing problem with hopes for cost reductions, exploring

how we can evaluate advances in quantum optimization applied to this problem domain.

1.2. Quantum optimization

Quantum computers, originally envisioned as devices that harness the quantum-mechanical na-

ture of our reality to allow the simulation of quantum mechanical systems too complex for a

classical computer to handle, have seen widespread speculation of their potential applications

to classically hard computational problems. After the definition of the universal quantum com-

puter by Deutsch [4] and the early promises of algorithms such as those of Grover [5] and Shor

[6], many large companies have invested significant resources in the development of quantum

9

Quantum Optimization Suite for Airline Crew Pairing

computing systems. In today’s Noisy Intermediate-Scale Quantum (NISQ) era [7] with quan-

tum computers only possessing qubits in the range of hundreds to low-thousands and fully fault-

tolerant systems far on the horizon, many have turned to hybrid quantum-classical algorithms

[8] where part of the computation is offloaded to classical computers.

The idea of such hybrid algorithms also known as Variational Quantum Algorithms (VQA)

was introduced with the Variational Quantum Eigensolver (VQE) [9] and later the Quantum

Approximate Optimization Algorithm (QAOA) [10] and its many variants [11]. Such hybrid

algorithms have shown promising results among many fields in machine learning [12, 13],

quantum-chemistry and physics [14, 15, 16, 17].

VQAs work by classically optimizing a cost function where the value of the cost function

is approximated using a quantum subroutine. The quantum subroutine is a parametric quantum

circuit that prepares some quantum state from an initial state in accordance with a set of pa-

rameters provided by the classical optimizer. Measuring the resulting quantum state is akin to

sampling a probability distribution induced by the state. After multiple measurements, we can

obtain an estimate for the distribution which is then mapped to the approximate value of the

cost function described by the circuit at the given parameters. In a sense, we can look at this

as a global optimization problem where, given a black-box function, we are trying to find an

optimal set of parameters that minimizes the function.

To solve a problem using VQAs we need to define a cost function that we can map to a

quantum circuit. The most important feature of the cost function is that an optimal solution to

the problem must map to the quantum state, prepared by the circuit, with the lowest associated

cost value. For any single problem, many different circuit designs can exist, which are not

necessarily problem-specific. These circuit designs are referred to as ansätze (singular ansatz),

“educated guesses” about the best way to map the problem to a quantum circuit and in a way

are akin to the architectural choices in building a neural network. Different ansätze can provide

different benefits such as reducing the Hilbert-space explored by the optimizer or altering it

such that infeasible solutions cannot appear as measurement outcomes. Other ansätze may try

to reduce the depth of the quantum circuit or adapt to the hardware of the quantum computer

running the subroutine.

10

Chapter 2

Problem Setup

2.1. Definitions

Here we define a couple of terms used when discussing the ACP problem. These definitions are

simplified analogs to those enshrined in law, making it easier to discuss the problem in a more

theoretical context.

• Flight leg A flight from a departure airport to an arrival airport.

• Duty A valid sequence of a single day’s worth of flight legs. A sequence of legs is valid

if it conforms to the considered regulations and additional constraints some of which are

discussed later in Section 2.4.

• Pairing A valid sequence of duties centered around a home base. As duties themselves

are sequences of legs, a pairing can be thought of as a sequence of flight legs that depart

from and ultimately arrive at the same airport. A sequence of duties is a valid pairing if

the duties themselves are valid and the sequence conforms to the considered regulations

and additional constraints some of which are also discussed in Section 2.4.

2.2. Methodology

We introduce an optimization suite designed to evaluate VQAs and demonstrate its use through

a couple of experiments on the Minimum Cost Exact Cover and ACP problems. To facilitate

this we implement necessary functionalities to use data sampled from [18] and a hand-crafted

dataset using the same format. In the case of the ACP problem, to evaluate the different quan-

tum algorithms we first generate the set of valid pairings classically then using the Variational

Quantum Algorithm of interest we search for a subset of the valid pairings that each contains

every flight leg exactly once while minimizing the cost. This is easily integrated with the suite

through plugins, easily swappable pieces of the optimization pipeline, which allow for a thor-

ough modularization of the process.

11

Quantum Optimization Suite for Airline Crew Pairing

2.3. Pairing generation

To generate the pairings first we take the flight legs of each day and generate the valid duties

from them. In the sequence, consecutive flight legs must come after one another in time, that

is the departure time of the latter leg must be after the arrival time of the former. The arrival

airport of the former must also match the departure airport of the latter. Additional validation

rules may be applied.

With the multiple duties for each day generated, these are in turn joined up into pairings.

Pairings must start and end at the same airport, the home base of the crew. In our experiments

pairings must not contain other pairings, this requirement is naturally satisfied in the case of a

singular home base. Here, just like with duties, additional validation rules are applied.

2.4. Rules

In our experiments we use a ruleset inspired by those that can be found in [18] and may appear

in real-world instances of ACP. The rules themselves are parametric to make it easier to match

real-life scenarios, needing only to adjust the parameters.

• The rule max duties ensures that each pairing can only contain a certain number of

duties at most, by default 5.

• The rule max flights defines the number of flights a duty can contain at most, by

default 4.

• The rule min rest guarantees that between every duty a certain number of hours (9.5

by default) must pass, allowing crews to rest.

• The min connect rule defines a minimum connection time between flight legs in a

duty measured in minutes, 30 by default.

• The max pairing duration rule ensures that no pairing can last longer than the

given number of days, 4 by default.

• The max work time rule sets a cap on the hours worked by crews in each duty, 8 by

default.

• Finally, the max duration duty time caps the duty time, that is the time between

the first departure and last arrival of a duty, to the given number of hours, by default 12.

12

Quantum Optimization Suite for Airline Crew Pairing

2.5. Cost model

We employ a simplified cost model. We assign a cost of 1000$ to every day of a pairing and

an additional 300$ for every night when crew accommodations need to be arranged, which is

when duties end at a non-home base.

13

Chapter 3

Introduction to Quantum Computing

3.1. Quantum State

In Dirac-notation (see Appendix A.2) states of a system with two mutually exclusive states can

be identified with the vectors |0⟩ =
(
1 0

)T
and |1⟩ =

(
0 1

)T
. A quantum bit (or qubit) is

a superposition of the two states, each with a complex amplitude: α0 |0⟩ + α1 |1⟩. The states

|0⟩ and |1⟩ form an orthonormal basis and induce a 2-dimensional Hilbert-space1. An N - and

an M -dimensional vector space H1 and H2 can be combined into an NM -dimensional vector

space using their tensor product (see Appendix A.1.7) H = H1 ⊗H2 spanned by:{
|i⟩ ⊗ |j⟩ | i ∈ {0, . . . , N − 1}, j ∈ {0, . . . ,M − 1}

}
. (3.1)

In a system with N mutually exclusive states |0⟩ |1⟩ . . . |N − 1⟩, a pure quantum state |Φ⟩ is a

superposition of classical states |i⟩ with each having a complex amplitude αi such that:

|Φ⟩ =
N−1∑
i=0

αi |i⟩
N−1∑
i=0

|αi|2 = 1. (3.2)

The pure state |Φ⟩ can also be written as a unit vector in the N -dimensional Hilbert-space

induced by the orthonormal-basis formed by the classical states |0⟩ |1⟩ . . . |N − 1⟩ using the

amplitudes αi:

|Φ⟩ =


α0

...

αN−1

 . (3.3)

In contrast, a mixed quantum state can be thought of as a probability distribution over pure

quantum states and is more aptly described by the density matrix

ρ =
k∑

i=1

pi |Φi⟩ ⟨Φi| , (3.4)

1A vector space with an inner product

14

Quantum Optimization Suite for Airline Crew Pairing

where Φ1, . . . ,Φk are pure states and p1, . . . , pk are their respective probabilities. A pure state

can also be represented using a density matrix, in which case ρ = |Φ⟩ ⟨Φ|.
Sticking to pure states, in quantum mechanics we can change the state |Φ⟩ to some other

state

|Ψ⟩ = β0 |0⟩ β1 |1⟩ . . . βN−1 |N − 1⟩ (3.5)

by applying linear operations that preserve the norm of |Φ⟩. This mathematically is equivalent

to multiplying the vector |Φ⟩ with an N ×N complex unitary matrix U :

U


α0

...

αN−1

 =


β0
...

βN−1

 , (3.6)

which is equivalent to applying a rotation to |Ψ⟩. Some of the most fundamental of such linear

operations are described by the Pauli matrices:

1 =

(
1 0

0 1

)
, σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
.

Every 2× 2 matrix can be written as a linear combination of the Pauli matrices and any 2n× 2n

matrix can be written as a linear combination of the 4n n-fold tensor products of the Pauli

matrices.

3.2. Measurement

Measuring the state |Φ⟩ induces a probability distribution over k possible measurement out-

comes. The probability of measuring outcome i can be computed as Tr(Mi |Φ⟩ ⟨Φ|) = ∥Mi |Φ⟩ ∥2,
whereM1, . . . ,Mk are positive-semidefinite matrices that sum to identity and Tr(A) is the trace

of matrix A, that is, the sum of its diagonal elements. The set {Mi}, characterizing the mea-

surement, is called a Positive-Operator-Valued Measure (POVM).

A Projection-Valued Measure (PVM) is a special case of a POVM where Mi are pairwise-

orthogonal projections, that is Mi = M2
i and Mi = M∗

i , where M∗
i is the conjugate-transpose

of Mi. Using projections, the pure state |Φ⟩ ∈ H can be uniquely decomposed into a sum of

orthogonal states |Φ⟩ =
∑k

i=1 |Φi⟩ where |Φi⟩ = Mi |Φ⟩ are the projections of the state |Φ⟩
onto an orthogonal subspace Hi ⊆ H.

After measurement the state will collapse to the post-measurement state |Φi⟩ /∥ |Φi⟩ ∥.

A special case of PVM is when the projections are formed from the orthonormal basis

states of the Hilbert-space, Mi = |i⟩ ⟨i| for i = 0, . . . , N . A measurement characterized by

such a projector is referred to as a measurement in the computational basis. As per Born’s

rule, measurement in the computational basis yields the outcome i with probability |αi|2 and

collapses the state to |i⟩.

15

Quantum Optimization Suite for Airline Crew Pairing

Given a PVM with projections M1, . . . ,Mk and outcomes λ1, . . . , λk ∈ R, the matrix

O =
∑k

i=1 λiMi is referred to as an observable. Observables are self-adjoint linear opera-

tors that in the real world correspond to some measurable quantity of a physical system. The

possible outcomes for the measurement are given by the eigenvalues λ1, . . . , λk of the operator.

Mathematically,
∑k

i=1 λiMi is the spectral-decomposition of the operator O. Since the proba-

bility of outcome λi is ∥Mi |Φ⟩ ∥2, we can calculate the expected value of the measurement to

be Tr(O |Φ⟩ ⟨Φ|).

3.3. Hamiltonian operator

The Hamiltonian is the linear operator H associated with the observable representing the total

energy of a physical system. The energy of the system is equal to the expected value ⟨ψ|H |ψ⟩.
The Hamiltonian describes the evolution of the system through the Schrödinger equation, which

is a linear differential equation,

iℏ
d |ψ(t)⟩
dt

= H |ψ(t)⟩ .

According to the equation, with letting ℏ = 1, starting from an initial state |ψ(0)⟩, the state at

time t is

|ψ(t)⟩ = U |ψ(0)⟩ ,

where U is the unitary operator e−iHt.

3.4. Entanglement

An important phenomenon in quantum mechanics used by many fundamental algorithms is

that of entanglement. This refers to a correlation between different qubits. Mathematically for

quantum states |Φ⟩ ∈ H1 and |Ψ⟩ ∈ H2, the state |Φ⟩ |Ψ⟩ ∈ H1 ⊗H2 is called a product state.

A quantum state that cannot be written as a product state but only as a sum of product states is

called an entangled state.

For example the quantum state

∣∣Φ+
〉
=

1√
2


1

0

0

1

 =
1√
2
|00⟩+ 1√

2
|11⟩ (3.7)

is an entangled state and measuring the first qubit in the state |0⟩ guarantees that the post-

measurement state of the second qubit will also be |0⟩.

16

Quantum Optimization Suite for Airline Crew Pairing

The quantum state |Φ+⟩ cannot be written as a product state like |Φ⟩ |Ψ⟩ since

∣∣Φ+
〉
= |Φ⟩ |Ψ⟩ =

(
α0

α1

)
⊗

(
β0

β1

)
=


α0β0

α0β1

α1β0

α1β1

 =
1√
2


1

0

0

1

 =⇒



α0β0 =
1√
2

α0β1 = 0

α1β0 = 0

α1β1 =
1√
2

, (3.8)

which cannot hold.

3.5. Interference

Another often exploited phenomenon of quantum mechanics is that of interference, where the

complex amplitudes of states can amplify and cancel each other out. As an example we can

look at the linear operator H = 1√
2
(1 1
1 −1) applied to the state 1√

2
(|0⟩+ |1⟩):

H

(
1√
2
|0⟩+ 1√

2
|1⟩
)

=
1√
2
H |0⟩+ 1√

2
H |1⟩

=
1

2

(
1 1

1 −1

)(
1

0

)
+

1

2

(
1 1

1 −1

)(
0

1

)

=
1

2

[(
1

0

)
+

(
0

1

)]
+

1

2

[(
1

0

)
−

(
0

1

)]

=
1

2

(
|0⟩+ |1⟩

)
+

1

2

(
|0⟩ − |1⟩

)
= |0⟩ ,

(3.9)

where the amplitudes of the |1⟩ state sum to 0.

3.6. Quantum Circuits

Similarly to classical circuits, in the circuit model of quantum computation algorithms are con-

structed using gates, in this case quantum gates, which are unitary transformations acting on

only a few qubits.

As in the case of classical gates, more complex operations can be implemented using a

combination of quantum gates. Applying gates in parallel results in a unitary transformation

that is the tensor product of the applied gates, while applying gates in sequence produces the

unitary transformation described by the matrix product of the applied gates.

At the end of the algorithm, to obtain results we perform measurements, conventionally in

the computational basis.

We recall some quantum gates that will be used in later parts of this text:

17

Quantum Optimization Suite for Airline Crew Pairing

• The I gate or identity gate, implements the unitary transformation (1 0
0 1).

• The Pauli-X, Pauli-Y, and Pauli-Z gates (X, Y, Z) implement the unitary transformations

(0 1
1 0), (

0 −i
i 0) and (1 0

0 −1) respectively.

• The H gate or Hadamard-gate, implements the unitary transformation 1√
2
(1 1
1 −1).

• The RA(θ), A ∈ X, Y, Z, gate is defined as exp(−iAθ).

• The RZZ(θ) gate, is defined as exp
(
−i θ

2
Z ⊗ Z

)
When describing a quantum circuit, indexing of the different gates means that the gate is applied

to the particular qubit(s) of the quantum system, for example, RZZ(θ)jj′ applies the RZZ gate

to qubits j and j′. The unitary transformations implemented by gates configured as such can

be constructed from the tensor- and matrix-products of the unitary transformations described

above.

18

Chapter 4

Mathematical Model

In this section, we discuss how the ACP problem can be formulated as an instance of the Mini-

mum Cost Exact Cover problem and in turn how that formulation can be solved using a Varia-

tional Quantum Algorithm.

4.1. Minimum Cost Exact Cover

The Exact Cover problem is concerned with finding a set S of subsets of a set A such that the

elements of the sets in S contain each element of the original set exactly once.

Formally, given a collection S = {s1, . . . , sm} of subsets of a set A = {a1 . . . an}, an exact

cover of A is a subcollection S∗ ⊆ S that satisfies the following:

si ∩ sj = ∅ ∀si, sj ∈ S∗, i ̸= j (4.1)⋃
sj∈S∗

sj = A (4.2)

An optimization version of the Exact Cover problem can be formulated as trying to find an

exact cover using a minimal number of subsets.

Generalizing this further we get the Minimum Cost Exact Cover (MCEC) problem where each

subset si has an associated cost ci, and we call an exact cover minimal if the sum of the costs of

the included subsets,
∑

sj∈S∗ cj , is minimal. The optimization problem where our goal is to use

a minimal number of subsets is a special case of the MCEC problem where every subset shares

the same positive cost.

It is easy to see that with flight legs being the elements of set A, while valid pairings with

their associated costs being the subsets in S, the ACP problem can be viewed as MCEC.

4.2. Quadratic Unconstrained Binary Optimization

Given a symmetric matrix Q ∈ Rn×n, finding a binary vector x ∈ {0, 1}n such that the term

x⊺Qx is minimized is often referred to as the Quadratic Unconstrained Binary Optimization

19

Quantum Optimization Suite for Airline Crew Pairing

(QUBO) problem. it is a combinatorial optimization problem with great importance when solv-

ing problems using quantum optimization [19, 20, 21] due to their connection to the Ising model

which we will discuss in Section 4.3.

We can rewrite the ACP problem formulated as MCEC into a QUBO problem by first notic-

ing that the original MCEC formulation is equivalent to the following binary linear optimization

problem:

min z =
m∑
j=1

cjxj (4.3)

s.t.
m∑
j=1

bijxj = 1 ∀i ∈ {1, . . . , n} (4.4)

xj ∈ {0, 1} ∀j ∈ {1, . . . ,m} (4.5)

where bij is 1 if subset sj ∈ S contains element ai ∈ A, otherwise 0. The binary variables

xj (j = 1, . . . ,m) determine whether a subset sj is part of the exact cover (xj = 1), or not

(xj = 0).

We can turn this into a QUBO problem by placing penalty terms in the objective that fulfill

similar roles as the constraints. We will use the penalty term
(
1−

∑m
j=1 bijxj

)2
mentioned in

Section 4.1 of [22]. It will be minimal (0) if all the constraints are satisfied. Accordingly, the

reformulated objective function is

min z = D
n∑

i=1

(
1−

m∑
j=1

bijxj

)2

+
m∑
j=1

cjxj, (4.6)

where the first term penalizes violating the constraint, and the second term encodes the cost of

a particular solution. Note that the penalty term is scaled by a factor D > nmaxi{ci} to make

sure that "it doesn’t make sense" to violate a constraint.

4.3. Constructing the physical system

The Ising model [23] introduced by Ernst Ising and Wilhelm Lenz is a mathematical model

of ferromagnetism. In the model, discrete variables, with values of ±1, are used to represent

the magnetic moments of atomic spins. A magnetic moment is the strength and orientation of

an object producing a magnetic field. In the case of elementary particles, such as electrons,

spin refers to an intrinsic angular momentum of the particle. The spin of elementary particles

induces a magnetic moment called a nuclear magnetic moment.

In the Ising model, we consider a set L of so-called lattice sites, each with a set of adjacent

sites (essentially a graph), forming a d-dimensional lattice. Each site k ∈ L is associated with a

spin variable ωk ∈ {−1,+1}, which represents the spin of that site. Between any two adjacent

sites i, j ∈ L there is an interaction Jij , this is a real number that controls whether adjacent

20

Quantum Optimization Suite for Airline Crew Pairing

spins should align (have the same value) or anti-align (have different values) or in the case of

Jij = 0, ωi and ωj can have arbitrary values meaning that the spins don’t interact. Additionally,

each site i is affected by an external magnetic field represented by the real-valued hi, in the

model it is desirable for spins to align with the external magnetic field as that lowers the energy

of the physical system.

For a given spin configuration ω = {ωk}k∈L the energy of the configuration is given by the

Hamiltonian function:

H(ω) =
∑
⟨ij⟩

Jijωiωj +
∑
j∈L

hjωj (4.7)

Where ⟨ij⟩ indicates that i and j are adjacent. Note that conventionally the signs of both sums

are flipped, we consider this version as it conforms better with the later description of QAOA.

One important object of study in physics is finding the ground state or the lowest energy spin

configuration of a system. In the following, we will leverage the fact that quantum computers

are universal simulators of quantum mechanical phenomena and that finding the lowest energy

spin configuration in the Ising model is an NP-complete problem [24].

If we want to examine how the state of a system in the Ising model evolves over time, using a

quantum computer, we need only to rewrite the Hamiltonian above using unitary operators.

To this end, in a system of m qubits we define the operator σz
j that applies the Pauli-Z operator

σz = (1 0
0 −1) to the j-th qubit of the system and applies the identity operator 1 = (1 0

0 1) to the

rest:

σz
j = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

j−1

⊗ σz ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
m−j

. (4.8)

In the case of the Ising model, we can simply replace the spin variable ωj with the σz
j operator

since the eigenvalues of the σz operator are ±1 similar to the domain of the spin variables,

and the expected value of the quantum system is equal to the energy of the physical system

described by the model. The Hamiltonian we get is the following:

HC =
m∑

j,j′=1
j<j′

Jjj′σ
z
jσ

z
j′ +

m∑
j=1

hjσ
z
j . (4.9)

The energy of the physical system described by the Ising model that is in the quantum state |ϕ⟩
is the expected value

⟨ϕ|HC |ϕ⟩ . (4.10)

Our goal now is to reduce the QUBO formulation of the ACP problem to finding the ground

state of a system described by the Hamiltonian in (4.9).

Based on [1], by replacing the variables xi ∈ {0, 1} with spin variables ωi ∈ {−1, 1} in

(4.6), the value of our objective function is equivalent to the energy of the spin configuration ω

21

Quantum Optimization Suite for Airline Crew Pairing

given by the Hamiltonian function:

H(ω) = D
n∑

i=1

(
1−

m∑
j=1

bij
ωj + 1

2

)2

+
m∑
j=1

cj
ωj + 1

2
(4.11)

Notice that expanding the square and collecting terms (C) yields the following:

H(ω) =
D

4

n∑
i=1

m∑
j=1

m∑
j′=1

bijbij′ωjωj′

+
D

2

n∑
i=1

m∑
j=1

bijωj

(m∑
j′=1

bij′ − 2

)
+

m∑
j=1

ωjcj
2

+
D

4

n∑
i=1

(
m∑
j=1

bij − 2

)2

+
m∑
j=1

cj
2
.

(4.12)

By defining

Jjj′ =
D

2

n∑
i=1

bijbij′ ∀j, j′ ∈ {1..m}, (4.13)

hj =
D

2

n∑
i=1

bij

(
m∑

j′=1

bij′ − 2

)
+
cj
2

∀j ∈ {1..m}, (4.14)

const =
D

4

n∑
i=1

(
m∑
j=1

bij − 2

)2

+
m∑
j=1

cj
2

(4.15)

the Hamiltonian function becomes

H(ω) = 1/2
m∑
j=1

m∑
j′=1

Jjj′ωjωj′ +
m∑
j=1

hjωj + const. (4.16)

Since J is symmetric and for all i, Jiiωiωi = Jii(±1)2 = Jii we can further rewrite it as:

H(ω) =
m∑

j,j′=1
j<j′

Jjj′ωjωj′ +
m∑
j=1

hjωj + const+
m∑
j=1

Jjj/2 (4.17)

From this point, we will leave out the constant terms const+
∑m

j=1 Jjj/2 from the formulation

as they do not affect which spin configurations have the lowest energy and can be added back

later if we wish to know the exact energy of a given configuration. With this, we have arrived

at a Hamiltonian1 similar in form to that in (4.9) repeated here:

HC =
m∑

j,j′=1
j<j′

Jjj′σ
z
jσ

z
j′ +

m∑
j=1

hjσ
z
j

1Note that this operator is exponential in size but sparse, and we can write it using polynomially many terms

22

Chapter 5

MCEC on Quantum Hardware

Since the Hamiltonian defined above describes a physical system for which a lowest energy

state is analogous to a minimal valued solution to the MCEC problem, our goal now is to find a

lowest energy state of the system.

5.1. Variational Quantum Algorithms

VQAs are a family of algorithms where a cost function, whose value is evaluated using quantum

computation, is minimized using classical optimization strategies (Figure 1). Formally, as per

[25], the cost function of a VQA can be written as

C(θ) = f({ρk}, {Ok}, U(θ)), (5.1)

where f is some function of a set of states {ρk}, a set of observables {Ok} and the parametrised

unitary transformation U(θ) with paramters θ. The goal of a VQA, in turn, is to find the param-

eters θ∗:

θ∗ = argmin
θ

C(θ). (5.2)

This is achieved by running a hybrid optimization procedure where a global optimizer seeks

the optimal parameters of the cost function C classically, while the value of the cost function

itself is derived using a quantum subroutine.

The quantum subroutine prepares and measures the quantum state U(θ) |Φ⟩ for some ini-

tial state |Φ⟩, and unitary transformation U(θ), defined by the ansatz, several times to obtain

an approximation of the probability distribution of the measurement outcomes. Based on the

measurement results the value of the cost function is determined for the parameters θ, which

the global optimizer uses to determine the next set of parameters.

The unitary transformation U(θ) is realized using a parametric quantum circuit, a quantum

circuit that uses gates that can be parametrized, like theRX(θ), RY (θ), RZ(θ) andRZZ(θ) gates

mentioned at the end of Section 3.6.

23

Quantum Optimization Suite for Airline Crew Pairing

Optimizer

U
p
d
a
t
e
d

p
a
r
a
m
e
t
e
r
s

Outcome distribution

⋮⋮

Ansatz

Repeated state preparation and measurement

Figure 1: Schematic diagram of a VQA

5.2. QAOA

The Quantum Approximate Optimization Algorithm introduced in [10] produces approximate

solutions to combinatorial problems using a discretized simulation of Adiabatic Quantum Com-

putation [26, 27].

5.2.1. Finding a lowest energy state of a system

According to the Adiabatic theorem [28, 29], a physical system that is in a given state at a given

time will remain in that state provided that the system is modified slowly enough and there is

no ambiguity in the ordering of states based on their corresponding eigenvectors.

Thus given a Hamiltonian HC , it is possible to find its ground state with the help of a

Hamiltonian - with the same degrees of freedom - HM , which does not commute with HC and

the ground state of which is known and easy to construct. By performing time-evolution on a

system that is in the ground state of HM for time T , the energy of which at time t is described

by the time-dependent Hamiltonian

H(t) = (1− t

T
)HC +

t

T
HM , (5.3)

we can transition to a ground state of HC , provided that the time it takes to transition between

the two Hamiltonians approaches infinity. In the context of QAOA, HC is called the cost Hamil-

tonian and HM is called the mixer Hamiltonian.

24

Quantum Optimization Suite for Airline Crew Pairing

5.2.2. Hamiltonian evolution

To implement time evolution under the time-dependent Hamiltonian above on a gate-based

quantum computer we need to map it to unitary transformations that more straightforwardly

map to quantum gates. To this end, we can approximate it with a product of Hamiltonians that

each only act on a few qubits and only consist of commuting terms. As explained in [26], this

approximation consists of discretizing the evolution time and applying the Trotter formula at

each discrete time. The time-dependent Hamiltonian H(t) can be represented by the unitary

time evolution operator U(t, t0) which describes the evolution of the system from time t0 to

time t. Plugging this into the Schrödinger-equation we get

i
d

dt
U(t, t0) = H(t)U(t, t0). (5.4)

This means that the state |ψ(T)⟩ of the system at the end of the adiabatic evolution at time T is

|ψ(T)⟩ = U(T, 0) |ψ(0)⟩ . (5.5)

The unitary operator U(T, 0) can be written as a product of M operators

U(T, 0) = U(T, T − δ)U(T − δ, T − 2δ) . . . U(δ, 0), (5.6)

where δ = T/M . Still following [26], this is approximately equal to

e−iδH(T−δ)e−iδH(T−2δ) . . . e−iδH(0). (5.7)

With H(kδ) = βHM +γHC , where γ = 1− (kδ/T) and β = kδ/T are real valued coefficients

between 0 and 1. Applying the first-order Trotter-Suzuki decomposition [30, 31] for the number

of Trotter-steps K gives

e−iδH(kδ) ≃ (e−iδβHM/Ke−iδγHC/K)K . (5.8)

The error term, O((kδ)2/K), vanishes quadratically as δ approaches 0 asM approaches infinity.

Applying the Trotter-Suzuki decomposition to each term in (5.7) gives rise to the generalized

formula introduced in [10]:

UM(βp)UC(γp)...UM(β1)UC(γ1). (5.9)

where γi and βi are the times for which the system evolves under the two Hamiltonians repre-

sented by the unitary transformations UC(γ) = e−iγHC and UM(β) = e−iβHM .

5.2.3. Building the circuit

Now we will be showing the construction of the circuit implementing the following unitary

transformation approximating adiabatic evolution:

UM(βp)UC(γp)...UM(β1)UC(γ1). (5.10)

Over time many alternative circuit designs have been formulated some of which we will

explore in Section 5.3.

25

Quantum Optimization Suite for Airline Crew Pairing

5.2.4. Building the cost layer

Recall that in (4.9) we encoded the objective function of the QUBO formulation of the MCEC

problem in terms of the Ising model,

HC =
m∑

j,j′=1
j<j′

Jjj′σ
z
jσ

z
j′ +

m∑
j=1

hjσ
z
j .

Our goal is to implement the unitary transformation UC(γ) = exp(−iγHC) where γ is a

real number representing the time for which the system evolves under the cost Hamiltonian HC .

UC(γ) = exp (−iγHC)

= exp

−iγ

 m∑
j′

m∑
j=1
j<j′

Jjj′σ
z
jσ

z
j′ +

m∑
j

hjσ
z
j




= exp

−iγ
m∑
j′

m∑
j=1
j<j′

Jjj′σ
z
jσ

z
j′

 exp

(
−iγ

m∑
j

hjσ
z
j

)

=
m∏
j′

m∏
j=1
j<j′

e
−iγJjj′σ

z
j σ

z
j′

m∏
j

e−iγhjσ
z
j

(5.11)

From this, the circuit itself is easy to construct:

UC(γ) =
m∏
j′

m∏
j=1
j<j′

RZZ(2γJjj′)jj′
m∏
j

RZ(2γhj)j (5.12)

5.2.5. Building the mixer layer

Based on the original QAOA formulation the choice for the mixer Hamiltonian is:

HM =
m∑
j=1

σx
j (5.13)

as it does not commute with HC and its ground state |+⟩⊗m, where |+⟩ = 1√
2
(|0⟩ + |1⟩) is the

equal superposition state, is easy to construct by applying the Hadamard gate to each qubit of the

all-zero state, H⊗m |0⟩⊗m = |+⟩⊗m. We can implement the unitary transformation representing

time evolution under this Hamiltonian for time β using the following circuit:

UM(β) =
m∏
j

RX(2β)j. (5.14)

26

Quantum Optimization Suite for Airline Crew Pairing

5.2.6. Creating the quantum subroutine

As we have seen, finding an exact cover while minimizing cost is equivalent to minimizing

an energy function, which in turn is equivalent to minimizing the expected value of a quan-

tum system characterized by the Ising-Hamiltonian described in (4.9). Time evolution under

the Ising-Hamiltonian can be implemented in the circuit model by approximating Adiabatic

Quantum Computing via discretization followed by Trotterization. From this, we can obtain

the variational circuit implementing the unitary transformation by repeatedly applying the cost

and mixer layers in sequence p times, usually referred to as the depth of the algorithm:

U = UM(βp)UC(γp)...UM(β1)UC(γ1). (5.15)

Applying this transformation to the equal superposition |+⟩⊗m of states of m qubits

U |+⟩⊗m , (5.16)

the measured state corresponds directly to sampling a distribution over the solutions to the orig-

inal problem, and the energy of the system in the state U |+⟩⊗m can be efficiently approximated

classically.

By setting the 2p parameters appropriately we can increase the probability of measuring a mini-

mal energy state of the system which should yield a binary vector that minimizes the cost of the

exact cover while abiding by the constraints implicitly given by the penalty terms in the QUBO

formulation.

5.2.7. Finding the optimal parameters

Since finding the 2p parameters maximizing the probability of finding a minimal energy state is

not trivial, in QAOA a hybrid approach is used where a classical global optimizer is tasked with

finding these variational parameters. The energy of the system as the function of the parameters

can be approximated by calculating the empirical expectated value of the system using repeated

executions of the quantum subroutine described above.

5.3. Alternative ansätze choices

Since the introduction of the QAOA, there have been many explorations into different circuit

designs that utilize more parameters or different mixer Hamiltonians.

5.3.1. ma-QAOA

The Multi-angle QAOA (ma-QAOA) ansatz based on [32] assigns a variational parameter to

each summand in the problem Hamiltonian HC and mixing Hamiltonian HM , generalizing

27

Quantum Optimization Suite for Airline Crew Pairing

the original formulation where the cost and mixer Hamiltonians had one variational parameter

each. Instead of each layer i, i = 1 . . . p, having 2 variational parameters, γi and βi, we now

have parameters γ̂i ∈ Rm×m, θ̂i ∈ Rm and β̂i ∈ Rm such that:

U = UM(β̂p)UC(γ̂p, θ̂p)...UM(β̂1)UC(γ̂1, θ̂1), (5.17)

where

UC(γ, θ) =
m∏
j′

m∏
j=1
j<j′

RZZ(2γjj′Jjj′)jj′
m∏
j

RZ(2θjhj)j , and (5.18)

UM(β) =
m∏
j

RX(2βj)j. (5.19)

5.3.2. QAOA+

The QAOA+ ansatz [33] augments the original QAOA ansatz by adding a problem-independent

layer of parametric quantum circuits allowing it to outperform the original QAOA at shallower

depths and even outperform the ma-QAOA in some cases. The circuit implements the unitary

transformation

U = U+(ν̂, µ̂)UM(β̂p)UC(γ̂p)...UM(β̂1)UC(γ̂1), (5.20)

where ν̂, µ̂ ∈ Rm and U+ is the problem independent unitary transformation,

U+(ν, µ) =
m∏
j=2

RZZ(νj)j,j−1

m∏
j=1

RX(µj)j. (5.21)

5.3.3. XQAOA

The eXpressive QAOA (XQAOA) ansatz [34] is a generalization of ma-QAOA. It extends the

mixer Hamiltonian by adding in Y-rotations, parametrized using a vector α̂i ∈ Rm for each

layer i = 1 . . . p to increase the expressiveness of the ansatz by being able to express any

computational-basis state with appropriate parametrization using the unitary

U = UM(α̂p, β̂p)UC(γ̂p, θ̂p)...UM(α̂1, β̂1)UC(γ̂1, θ̂1), (5.22)

where UC is similar to (5.17) used in ma-QAOA and

UM(β, α) =
m∏
j

RY (2αj)j

m∏
j

RX(2βj)j. (5.23)

Table 5.1 summarizes the number of variational parameters used in these ansätze.

28

Quantum Optimization Suite for Airline Crew Pairing

Table 5.1: Number of parameters for ansätze in Section 5.3 depending on

algorithm depth p and number of variables m

Ansatz Number of parameters

QAOA 2p

ma-QAOA p(m2 + 2m)

QAOA+ 2(p+m)

XQAOA p(m2 + 3m)

5.4. Optimization strategies for finding optimal parameters

In this section, we highlight a few methods to optimize the parameters, which are compared in

Section 7.1.

5.4.1. COBYLA

The Constrained Optimization BY Linear Approximation (COBYLA) method [35] is a popular

gradient-free optimization technique for finding optimal QAOA parameters.

5.4.2. SPSA

The Simultaneous Perturbation Stochastic Approximation (SPSA) [36, 37] method is a gradient-

free optimization algorithm that requires only two evaluations of the cost function C in every

iteration. This can help with reducing the costs incurred by executing the quantum subroutines

of VQAs. In the SPSA algorithm the kth estimate θ̂k ∈ Rp of the optimal parameter θ∗ ∈ Rp is

defined as

θ̂k+1 = θ̂k − akĝk(θ̂k), (5.24)

where ĝk(x) is the approximate gradient of the cost function at point x ∈ Rp and the sequence

ak satisfies conditions seen in Section 3 of [36]. The gradient approximations are obtained

by perturbing the point θ̂k by a vector of mutually independent zero-mean random variables

δk ∈ Rp to get

y
(+)
k = C(θ̂k + ckδk) + ϵ

(+)
k y

(−)
k = C(θ̂k − ckδk) + ϵ

(−)
k

where ck are positive scalars and ϵ(±) represent measurement noise. From this the gradient

estimate ĝk(θ̂k) is given by

ĝk(θ̂k) =


y
(+)
k −y

(−)
k

2ckδk1
...

y
(+)
k −y

(−)
k

2ckδkp

 . (5.25)

29

Quantum Optimization Suite for Airline Crew Pairing

5.4.3. Genetic Algorithms

The optimization landscape of QAOA, especially at large depths, is rather complex, character-

ized by many local minima and barren plateaus, regions with vanishingly small gradients, which

makes finding the optimal parameters increasingly difficult. The Genetic Algorithm (GA) pro-

posed in [38] aims to alleviate these concerns by leveraging population-based metaheuristics

to manage candidate solutions and starting from a random population search for the optimal

solution by applying stochastic operators.

In genetic algorithms, inspired by Darwinian evolution, an initial population of candidate

solutions evolve stochastically over generations. Candidate solutions (chromosomes) are strings

of numbers (genes), which in our case are the ansatz parameters. Every generation, genetic

operators are applied to the population to determine the population of the next generation. This

involves selecting the best chromosomes from the population using a fitness function, which in

our case means that a chromosome that achieves a lower energy state of the quantum system is

deemed fitter.

Initial chromosomes are generated randomly and evaluated by querying the quantum com-

puter. Afterward, in every iteration, parent chromosomes are chosen from groups of k based

on their fitness. Offspring are generated from parent chromosomes via uniform crossover and

gaussian mutation. Additionally, the best chromosome of a generation is moved to the next

generation so as not to lose it.

The algorithms showcased in this section are all global optimization methods that have

no information about the function optimized as such we cannot claim anything about their

convergence. As such it is quite common to make assumptions about the behaviors of such

algorithms using a vast array of experimental results. The optimization suite offers the necessary

building blocks to conduct such experiments.

30

Chapter 6

Software

In this section, we describe some key architectural decisions regarding the optimization suite,

along with ways to use the software in both research and industrial settings. To facilitate this,

the suite includes a Command Line Interface (CLI) tool, alongside the definitions needed to

start the suite inside a containerized environment, allowing easy and predictable deployment.

6.1. Architectural overview

The main design philosophy behind the optimization suite is extensibility, to this end, we pro-

vide a core set of primitives that together define a variational quantum optimization pipeline.

This makes the pipeline highly customizable, allowing both researchers and industry profes-

sionals to quickly test and iterate on different approaches. For a quick overview of the archi-

tecture see Figure 2, which shows how the suite is structured with plugin registries for each

part of the pipeline, a namespace with implemented plugins and separately installable platform

integrations. We now take a brief look at the different plugin implementations.

6.1.1. Plugins

Plugins provide functionality as distinct pieces of the optimization pipeline. They are Python

classes implementing plugin interfaces by inheriting from a plugin base class. Plugins are reg-

istered upon importing the module that defines them, which allows them to be loaded automat-

ically if they are in the appropriate namespace. This allows third parties to contribute plugins

to the appropriate namespace making them easy to install through a package manager (e.g. pip

[39]). Additionally, plugins can be registered by simply importing their definitions in Python

scripts or notebooks or by specifying a list of Python filenames from which to load plugins. The

latter method is used, for example, by the CLI tool to allow it to load custom plugins by adding

the paths to their source files in the configuration.

31

Quantum Optimization Suite for Airline Crew Pairing

Qiskit Module

QAOA ma-QAOA

XQAOAQAOA+

Plugin Registries
Core

CLI Tool

Problem

ACP

MCEC

Ising

Plugin Namespace

MCEC → Ising SPSA

ACP → MCEC GA

CSV
Results

COBYLA

Random ACP Dataset

Initializer

Dataset Platform

AnsatzConverter

Result
Processor Optimizer

Braket Module

QAOA ma-QAOA

XQAOAQAOA+

Figure 2: Architectural overview of the suite

6.1.2. Datasets

The optimization pipeline starts with a DatasetPlugin. The purpose of such a plugin is

to load or generate data and formulate the instance of the problem to be solved. The problem

is represented by a Problem object that may store arbitrary information about the problem

instance alongside the name of the problem and a collection of its forms, instances of different

problems that are equivalent to the original problem.

6.1.3. Platforms

The optimization suite supports multiple quantum computing platforms via the plugin called

PlatformPlugin. Each platform plugin must define the methods run_circuit and

wrap_optimization, the former executing the quantum circuit it receives as an argument,

while the latter wraps the optimization process, which for example makes it possible to execute

the optimization inside a Qiskit Session which is designed to streamline the execution of VQAs.

32

Quantum Optimization Suite for Airline Crew Pairing

6.1.4. Ansätze

The quantum circuit executed by the platform plugin is determined by the ansatz of choice and

constructed by the corresponding AnsatzPlugin. By defining the construct_circuit

method, an ansatz plugin constructs the quantum circuit for a problem, using the primitives

offered by the platform.

6.1.5. Converters

Problems must be in a form appropriate for the construction of the ansatz used. To facilitate this,

it is possible to define conversions between problems through a ConverterPlugin. Such a

plugin implements a one-way conversion from a problem instance to an equivalent instance of

a different problem. The conversions implemented by the plugins define a directed graph, from

which the shortest path is chosen to convert the problem loaded from the dataset to a problem

required by the ansatz.

6.1.6. Initializers

Many approaches suggest that using different initialization strategies in the optimization process

can yield improvements in the quality of the solutions. As such, the optimization suite allows

for implementing these initialization strategies with the InitializerPlugin.

6.1.7. Optimizers

To evaluate different global optimization algorithms, the suite can integrate them using the

OptimizerPlugin. An optimizer plugin implements the optimize method which given

a black box function and initial parameters, obtained from an initializer, adjusts the parameters

until the minimum is found or some other termination criterion is met.

6.1.8. Result processors

To interpret the results of the optimization process a ResProcPlugin can be defined. These

plugins receive information about the entirety of the optimization process and are meant for

generating different logs and plots.

6.2. Plugin management

As noted in Section 6.1.1, the optimization pipeline is executed by a series of interchangeable

plugins. This is achieved through a plugin-based architecture where each stage of the pipeline

declares a set of functions for plugins to implement. In this section, we discuss how plugins are

managed in the optimization suite by leveraging functionality offered by the Python language.

33

Quantum Optimization Suite for Airline Crew Pairing

6.2.1. Python metaclasses

In the data model of the Python programming language [40] data are represented by objects.

All objects possess an identity, a type, and a value. The identity of an object is unchangeable

after object creation, and its integer representation can be obtained by calling the id function.

The type of an object defines the supported operations and its possible values, and the type

function returns the type of an object. Type, generally, is likewise an immutable property of an

object. The value of an object can be mutable, like numbers, or immutable, like lists.

The language allows the creation of user-defined types1 using the class keyword or by

calling the type function with appropriate parameters. Since all data are represented as objects,

user-defined types are themselves objects and have a type. The type of a class is often referred

to as a metaclass and is responsible for defining the object that is bound to the name of the class,

which follows the class keyword.

Essentially, in the Python programming language metaclasses serve much the same purpose

to classes as classes do to objects. It is possible to change the metaclass of a Python class by

setting the metaclass keyword in the class definition. We exploit this in creating our plugin

system, as this allows the definition of behavior that is invoked when a class is defined.

6.2.2. Plugin lifecycle

Every plugin is eventually cataloged by a Registry, an object tasked with finding and main-

taining references to plugins of a certain type. Each piece of the optimization pipeline has an

associated registry that stores discovered plugins in Python dictionaries.

Every registry defines a metaclass, with specialized initialization behavior. In most cases,

this behavior simply checks if the class holds the definition of a plugin appropriate for the

registry, and if so, registers the plugin with the registry by storing a reference to it, for example

in a Python dictionary, where the key is the name of the plugin, while the value is the reference

to the plugin object.

The metaclass defined by the registry is used to initialize the definition of a plugin abstract

base class, which defines the interface that plugins need to implement in order to participate in

the optimization pipeline. As plugins inherit from this abstract base class, the initialization logic

of the metaclass is executed up the definition of a plugin class. This automatically registers the

plugins in the corresponding registry.

Since plugins are registered upon definition, they are discovered using the import mech-

anism of the Python language, as class definitions and consequently, the metaclass behaviors

execute when a class is first imported. The suite supports two ways of plugin discovery. By

default, registries import namespaces associated with the piece of the optimization pipeline the

1in older versions of Python class and type were separate concepts [41]

34

Quantum Optimization Suite for Airline Crew Pairing

registry is responsible for, this imports plugins that are part of the optimization suite by de-

fault and any third-party plugins that are defined in the appropriate namespace. Additionally,

registries can import plugins from Python files by passing their file paths to the discover

method of a registry. This method imports the definitions in the Python files, executing the

plugin class definitions, and thereby registering them.

As part of the optimization pipeline the plugins used are instantiated with a user-provided

configuration, a Python dictionary, which plugins can use to further configure their behav-

ior. Plugins conform to interfaces that are expected by certain parts of the optimization pro-

cess. Most of these hooks are provided the current state of the optimization process allow-

ing them to adjust their behavior based on the other parts of the pipeline, for example, an

InitializerPlugin might request information from an AnsatzPlugin about the num-

ber of parameters that need to be initialized.

6.3. The optimization pipeline

The optimization pipeline is defined by a Pipeline object, that uses the plugins instantiated

with the user-provided configurations to orchestrate the optimization process. Every part of the

pipeline contains a single plugin except for result processing where multiple result processor

plugins can be applied.

By calling the solve method of the configured pipeline with the problem to be solved, the

optimization process is started. Informed by the AnsatzPlugin of choice, the suite looks

for the shortest chain of ConveterterPlugins to find an appropriate set of conversions to

reduce the problem instance to one admitted by the ansatz.

After conversion, the Problem, AnsatzPlugin, and the InitializerPlugin are

used to construct a black-box cost function, that executes the ansatz using the integrations pro-

vided by the PlatformPlugin. The cost function is optimized using the optimization strat-

egy defined by the OptimizerPlugin. Platform integrations can define a context in which

they intend to run the optimization process, allowing platform-specific circuit optimizations to

be applied. The initial values used by the global optimizer to parametrise the ansatz are given

by the InitializerPlugin.

When the OptimizerPlugin finishes execution, an object containing the results are

passed to a list of ResultProcessorPlugins that interpret the results by generating plots

and logfiles.

6.4. Usage

There are multiple ways to use the optimization suite to meet the needs of both industry and

research.

35

Quantum Optimization Suite for Airline Crew Pairing

The suite can be run inside an easy-to-set-up containerized environment (Docker). Con-

tainerized environments offer portable and predictable deployment and have seen widespread

utilization in industrial settings. Inside the containerized environment, the suite can be accessed

using a CLI tool that reads and parses a configuration file to set up the optimization process.

Configuration includes the location of the plugin modules to load, the names of the plugins from

which to assemble the optimization pipeline, and also any configurations needed by the plug-

ins themselves. An input and a result folder are mounted from outside the containerized

environment, meant to store the raw data of the datasets used and the results of optimizations

respectively. All these make it easy to integrate the suite into industrial processes, but are not

necessary when evaluating different approaches to solving a problem.

In such cases, we recommend installing the optimization suite directly inside a Python vir-

tual environment (e.g. venv). This method allows for interacting with the CLI tool and also

with the package itself using a Python script or notebook, without the added overhead of a

containerized environment.

6.5. Example of using the suite

In this section, we show how the suite can be used both through the CLI tool and a Python

notebook to execute the optimization pipeline. We solve an instance of the MCEC problem for

2 elements. For this we will use the GenMCECDataset plugin that, configured for 2 elements,

assigns a prohibitively large cost to the empty and 2-element sets, and a random cost to every

other subset. This results in 4 subsets in total, meaning 24 = 16 possible solutions.

We execute the quantum subroutine on the Braket platform with the BraketIntegration

plugin by mapping the problem to the XQAOA ansatz at depth 5. For the classical optimizer, we

use the ScipyOptimizer plugin, which wraps the scipy minimize function [42], configured

to use the Nelder-Mead algorithm [43, 44] initialized randomly.

We plot the sampling of the probability distribution associated with the lowest energy state

obtained during the optimization process using the BarResProc result processor plugin.

Since all plugins used are part of the suite, there is no need to list any Python files that

contain additional plugin definitions.

As mentioned, we use a generated instance of the MCEC problem with 2 elements, as such

we set the name field of the dataset plugin to gen-mcec, which is the name of the plugin we

want to use, additionally, we specify the num elements option as 2 to generate a problem

instance with 2 elements. Namely, the correxponding part of the configuration file looks like

the following.

36

Quantum Optimization Suite for Airline Crew Pairing

[]: dataset:
name: gen-mcec
options:

num elements: 2

The platform section of the configuration file is a bit more detailed, we specify that we

wish to use the Braket platform but specify no backend as in a locally executed experiment

the integration can not be configured to use backends other than the LocalSimulator pro-

vided in Braket. In the execution section, we explicitly set the execution to be local, and in

argument mapping provide a key-value pair that will be passed to the platform during

execution. In the following example, 1024 measurements are specified, which are used to ap-

proximate the probability distribution of outcomes.

[]: platform:
name: braket

execution:
local: True
argument mapping:

shots: 1024

In the ansatz section of the file we declare, that we will be using the XQAOA ansatz. In the

plugin options steps refers to the p value or depth of the ansatz.

[]: ansatz:
name: xqaoa
options:

steps: 5

The optimization process is initialized using the RandomInitializer plugin.

[]: initializer:
name: random

As our classical optimizer, we will use the Nelder-Mead algorithm implemented in the scipy

package, by using the plugin with the same name.

[]: optimizer:
name: scipy
options:

method: Nelder-Mead

The list of result processor plugins includes a single item, the BarResProc result proces-

sor plugin, which generates a bar chart showing the probabilities and costs of the most likely

measurement outcomes.

37

Quantum Optimization Suite for Airline Crew Pairing

0110 0010 0111 1110 1100
Bitstring

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Pr

ob
ab

ilit
y

of
 s

ol
ut

io
n

0

5

10

15

20

25

30

35

C
os

t o
f s

ol
ut

io
n

Figure 3: Solid bars indicate the probability of measuring the bitstring, while the cross-hatched

bars indicate their associated costs. Red bars indicate an infeasible solution and green bars

indicate a feasible solution. In this example the optimum solution is measured with over 0.6

probability.

[]: result processor:
- name: bar

The pipeline can similarly be configured inside a Python notebook as seen in Appendix B. After

the optimization is finished a figure of the results, like Figure 3, is saved inside the results

folder.

38

Chapter 7

Results

In this section, we demonstrate how the optimization suite can be used to obtain some experi-

mental results with a couple of examples.

7.1. Random Instances of MCEC

We implemented a dataset plugin to generate randomized instances of the MCEC problem. The

plugin makes use of the interfaces and the definition of the MCEC problem provided by the

suite to generate instances of the problem based on the configuration passed to the CLI tool.

In an instance, all subsets of an n element set are available for use in finding an exact cover.

Each subset has an associated cost randomly sampled from the interval [0, 1] except the empty

and the original set which are given higher costs to prevent them from being part of an optimal

solution.

We evaluated the optimization algorithms described in Section 5.4 by solving 30 randomly

generated instances for p = 1, . . . , 5 and n ∈ {1, 2}, the latter having 16 possible solutions of

which 4 are feasible. The main focus of our evaluation was the probability of finding an optimal

solution and the number of queries made to the quantum computer during the optimization

process.

For each instance, we solved the problem classically and using the QAOA+ ansatz. The

quantum subroutine was executed using the Qiskit platform plugin with a locally simulated

system. At each query, an approximate distribution over the possible solutions was obtained

by sampling the simulated quantum system 1024 times. In the case of multiple solutions with

minimal associated costs, their probabilities were added.

To run the experiment we created a simple script that executed the optimization pipeline

using the appropriate plugins multiple times and made use of a built-in plugin to obtain in-

formation about each optimization run, see Figures 4 and 5 for the results, which shows the

distribution of the probability of measuring the optimal solutions and outliers, along with the

required number of queries needed for the results with a 95% confidence interval.

39

Quantum Optimization Suite for Airline Crew Pairing

1 2 3 4 5
p

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 o
pt

im
al

 s
ol

ut
io

n

COBYLA

1 2 3 4 5
p

SPSA

1 2 3 4 5
p

GA

60

70

80

90

100

110

120

130

850

855

860

865

870

875

880

885

890

630

640

650

660

670

680

690

700

710

N
um

be
r o

f q
ue

rie
s

Figure 4: Probabilities of finding an optimal solution (box chart), and number of queries made

to the quantum computer (line chart) for different depths p using different classical optimizers

in a 2-subset problem

1 2 3 4 5
p

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 o
pt

im
al

 s
ol

ut
io

n

COBYLA

1 2 3 4 5
p

SPSA

1 2 3 4 5
p

GA

100

120

140

160

180

840

850

860

870

880

890

702

704

706

708

710

712

714

N
um

be
r o

f q
ue

rie
s

Figure 5: Probabilities of finding an optimal solution (box chart), and number of queries made

to the quantum computer (line chart) for different depths p using different classical optimizers

in a 4-subset problem

Mostly in accordance with our expectations, for the smaller problem instance, the algorithm

performs quite well, while for the larger problem, the results are not so promising with even

depth not improving the outcomes. We see an alarming trend in the performance of the SPSA

optimizer, which warrants further investigation. We note that these global optimizers support

several hyperparameters, their tuning is not part of this demonstration, which focuses on show-
40

Quantum Optimization Suite for Airline Crew Pairing

ing the ease of use of the suite.

7.2. Airline Crew Pairing Dataset

In addition to the dataset plugin that generates instances of the MCEC problem, we created a

set of plugins that introduce the ACP problem and a sample dataset for the problem. These

include a converter plugin that defines the mapping from an instance of the ACP problem to

that of the MCEC problem. The dataset itself generates the pairings for the problem from a set

of flight legs stored in a file referenced in the configuration. Generation is done as described in

Section 2.3 using the set of rules and cost model mentioned in Sections 2.4 and 2.5. The dataset

plugin uses the same mechanisms as the suite itself to load the rules and the cost model making

it easily extensible.

The dataset we used, with the applied rules, produced 23 pairings, of which 7 can achieve

an exact cover with minimal cost.

We ran the optimization process using the CLI tool and configuration files, just as with the

MCEC problems we used a local quantum simulator. We ran the pipeline with the QAOA+

ansatz however results warrant further investigation.

41

Chapter 8

Conclusion

We introduced a quantum optimization suite, a Python package to streamline the use of Varia-

tional Quantum Algorithms for experimenting on a variety of problems. We showed how the

Airline Crew Pairing problem can be reduced to an instance of Quadratic Unconstrained Binary

Optimization and how that formulation can be used to define a cost function of a Variational

Quantum Algorithm. We argue that this problem is of great industrial importance and a ex-

cellent candidate for evaluating the capabilities of quantum computers of both today and the

future.

We explored the Quantum Approximate Optimization Algorithm and some of its popular

variants through the optimization suite by integrating them via plugins. Additionally we looked

at several optimization algorithms for finding the optimal parameters for the quantum circuit

used in VQAs and compared them using the suite.

Through examples we show how the suite can be used to define an optimization pipeline

comprised of modular pieces that are easily swappable, leading to fast iteration on the opti-

mization process, allowing researchers to test new ideas quickly. The suite can also be used

through a CLI tool, and is straightforwardly deployable via a Docker container making it easy

to integrate into industrial processes.

As quantum computers and adoptions of related technologies, such as OpenQASM3 [45],

mature so will the optimization suite by introducing new plugins, problems, and workflows to

create a unified solution for quantum optimization in industry and research alike.

42

Appendix A

Mathematical Notation Supplement

A.1. Matrices

A.1.1. Conjugate transpose

The conjugate transpose (or adjoint) of a matrix A ∈ Cn×m is the matrix A∗ ∈ Cm×n which is

the transpose of A with every element replaced with its complex conjugate.

A.1.2. Unitary Matrices

A square matrix A ∈ Cn×n is unitary if A−1 = A∗.

A.1.3. Normal Matrices

A square matrix A ∈ Cn×n is normal if it commutes with its conjugate transpose, that is:

A∗A = AA∗. It is easy to see that all unitary matrices are normal, since A∗A = A−1A = I =

AA−1 = AA∗.

A.1.4. Hermitian Matrices

A normal matrix A ∈ Cn×n is hermitian if A = A∗

A.1.5. Matrix diagonalization

A matrix A is diagonalizeable if A = SDS−1 where D is a diagonal matrix. In this case, the

diagonal elements of D are the eigenvalues of A while the columns of S are the corresponding

eigenvectors. A matrix is called unitarily diagonalizable if it can be diagonalized using a unitary

matrix U , meaning: A = UDU−1. Matrices are unitarily diagonalizable if and only if they are

normal.

43

Quantum Optimization Suite for Airline Crew Pairing

A.1.6. Projection Matrices

If for a matrix P all its eigenvalues are either 0 or 1, it is referred to as a projection matrix.

Projection matrices are hermitian and their associated linear transformation is idempotent, P =

PP .

A.1.7. Tensor product

If A is an n×m matrix and B is an n′ ×m′ matrix, their tensor product (also called Kronecker

product) is the following nn′ ×mm′ matrix:

A⊗B =


a11B . . . a1mB

a21B . . . a2mB
...

an1B . . . anmB

 ,

where aij is the element of A in the ith row and jth column.

A.1.8. Matrix exponent

The exponential of an n× n matrix A, denoted eA is an n× n matrix given by the series

eA =
∞∑
i=0

1

i!
Ai

where A0 is the n × n identity matrix. For a diagonal matrix D, its exponential is equal to

a diagonal matrix with each diagonal element being the exponential function applied to the

corresponding element of D, i.e.

eD =


ed11 . . . 0

...

0 . . . ednn


If A is diagonalizable such that A = SDS−1 then its exponential is the following:

eA = SeDS−1.

A.2. Dirac notation

Dirac notation is commonly used in physics (and consequently in quantum information science)

to write linear algebra. A column vector v is written as |v⟩ (pronounced "ket v") and v∗ is written

as ⟨v| (pronounced "bra v").

With this the inner-product of two vectors v, w can be written as ⟨v|w⟩, while their outer-

product is |v⟩ ⟨w|. The tensor product of two vectors v, w is written as |v⟩ |w⟩.

44

Quantum Optimization Suite for Airline Crew Pairing

In Dirac notation it is also common to write the vectors
(
1 0

)T
and

(
0 1

)T
as |0⟩ and

|1⟩ respectively. In the literature, the tensor products of such vectors are often abbreviated as

bitstrings and even decimal numbers, for example in a 4 qubit system, |0⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩ =
|0110⟩ = |6⟩.

45

Appendix B

Experiment in a Python notebook

[]: from vqaopt.core.implementations.dataset.data_gen_mcec import GenMCECDataset
from vqaopt.platform.braket import BraketIntegration
from vqaopt.platform.braket.ansatz import XQAOAAnsatz
from vqaopt.core.implementations.initializer.init_qaoa_random import␣

↪RandomInitializer
from vqaopt.core.implementations.optimizer.opt_scipy import ScipyOpt
from vqaopt.core.implementations.resproc.res_bar import BarResProc
from vqaopt.core import Pipeline

[]: dataset = GenMCECDataset({"num elements": 2})

platform = BraketIntegration(
{

"local": True,
"run_kwargs": {"shots": 1024},

}
)
ansatz = XQAOAAnsatz({"steps": 5})
initializer = RandomInitializer()
optimizer = ScipyOpt({"method": "Nelder-Mead"})
bar_processor = BarResProc()

[]: problem = dataset.load_problem()

[]: _, processed = Pipeline(
platform,
ansatz,
optimizer,
initializer,
[bar_processor],

).solve(problem)

[]: processed["bar"]

46

Appendix C

Expansion of 4.11

D

n∑
i=1

(
1−

m∑
j=1

bij
ωj + 1

2

)2

+
m∑
j=1

cj
ωj + 1

2

= D
n∑

i=1

(m∑
j=1

bij
ωj + 1

2

)2

− 2

(
m∑
j=1

bij
ωj + 1

2

)
+ 1

+
m∑
j=1

cj
ωj + 1

2

= D
n∑

i=1

(m∑
j=1

bij
ωj + 1

2

)2

−
m∑
j=1

(
bijωj + bij

)
+ 1

+
m∑
j=1

cj
ωj + 1

2

= D
n∑

i=1

[
1

4

(
m∑
j=1

(
bijωj + bij

) m∑
j′=1

(
bij′ωj′ + bij′

))
−

m∑
j=1

(
bijωj + bij

)
+ 1

]

+
m∑
j=1

cj
ωj + 1

2

= D

n∑
i=1

[
1

4

(
m∑
j=1

m∑
j′=1

(
bijωj + bij

)(
bij′ωj′ + bij′

))
−

m∑
j=1

(
bijωj + bij

)
+ 1

]

+
m∑
j=1

cj
ωj + 1

2

= D

n∑
i=1

[
1

4

m∑
j=1

m∑
j′=1

(
bijbij′ωjωj′ + bijbij′ωj + bijbij′ωj′ + bijbij′

)
−

m∑
j=1

(
bijωj + bij

)
+ 1

]

+
m∑
j=1

cj
ωj + 1

2

47

Quantum Optimization Suite for Airline Crew Pairing

= D

n∑
i=1

[
1

4

m∑
j=1

m∑
j′=1

(
bijbij′ωjωj′

)
+

1

2

m∑
j=1

m∑
j′=1

(
bijbij′ωj

)
+

1

4

m∑
j=1

m∑
j′=1

bijbij′

−
m∑
j=1

(
bijωj + bij

)
+ 1

]
+

m∑
j=1

cj
ωj + 1

2

= D

n∑
i=1

[
1

4

m∑
j=1

m∑
j′=1

(
bijbij′ωjωj′

)
+

1

2

m∑
j=1

m∑
j′=1

(
bijbij′ωj

)
+

1

4

m∑
j=1

m∑
j′=1

bijbij′

−
m∑
j=1

bijωj −
m∑
j=1

bij + 1

]
+

m∑
j=1

cj
ωj + 1

2

= D

n∑
i=1

[
1

4

m∑
j=1

m∑
j′=1

(
bijbij′ωjωj′

)
+

1

2

m∑
j=1

m∑
j′=1

(
bijbij′ωj

)
− 1

2

m∑
j=1

2bijωj

+
1

4

m∑
j=1

m∑
j′=1

bijbij′ −
m∑
j=1

bij + 1

]
+

m∑
j=1

cj
ωj + 1

2

= D
n∑

i=1

[
1

4

m∑
j=1

m∑
j′=1

(
bijbij′ωjωj′

)
+

1

2

m∑
j=1

(
bijωj

(m∑
j′=1

bij′ − 2

))

+
1

4

m∑
j=1

m∑
j′=1

bijbij′ −
m∑
j=1

bij + 1

]
+

m∑
j=1

cj
ωj + 1

2

= D
n∑

i=1

[
1

4

m∑
j=1

m∑
j′=1

(
bijbij′ωjωj′

)
+

1

2

m∑
j=1

(
bijωj

(m∑
j′=1

bij′ − 2

))
+

1

4

(
m∑
j=1

bij − 2

)2]

+
m∑
j=1

cj
ωj + 1

2

= D
n∑

i=1

[
1

4

m∑
j=1

m∑
j′=1

(
bijbij′ωjωj′

)
+

1

2

m∑
j=1

(
bijωj

(m∑
j′=1

bij′ − 2

))
+

1

4

(
m∑
j=1

bij − 2

)2]

+
m∑
j=1

cjωj

2
+

m∑
j=1

cj
2

48

Quantum Optimization Suite for Airline Crew Pairing

=
D

4

n∑
i=1

m∑
j=1

m∑
j′=1

bijbij′ωjωj′

+
D

2

n∑
i=1

m∑
j=1

bijωj

(m∑
j′=1

bij′ − 2

)
+

m∑
j=1

ωjcj
2

+
D

4

n∑
i=1

(
m∑
j=1

bij − 2

)2

+
m∑
j=1

cj
2

49

Bibliography

[1] Pontus Vikstål, Mattias Grönkvist, Marika Svensson, Martin Andersson, Göran Johans-

son, and Giulia Ferrini. Applying the quantum approximate optimization algorithm to the

tail-assignment problem. Physical Review Applied, 14(3), September 2020.

[2] Airlines for America. A4A Passenger Airline Cost Index. https:

//www.airlines.org/dataset/a4a-quarterly-passenger-airline-

cost-index-u-s-passenger-airlines/, 2024. Accessed: 2024.02.15.

[3] Airlines for America. State of U.S. Aviation. https://www.airlines.org/

dataset/state-of-us-aviation/, 2024. Accessed: 2024.02.15.

[4] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum

computer. Proc. R. Soc. Lond., 400(1818):97–117, July 1985.

[5] Lov K. Grover. A fast quantum mechanical algorithm for database search. 1996.

[6] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In

Proceedings 35th Annual Symposium on Foundations of Computer Science, SFCS-94.

IEEE Comput. Soc. Press.

[7] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August

2018.

[8] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Ab-

hinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke,

Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy

intermediate-scale quantum algorithms. Reviews of Modern Physics, 94(1), February

2022.

[9] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Pe-

ter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver

on a photonic quantum processor. Nature Communications, 5(1), July 2014.

50

https://www.airlines.org/dataset/a4a-quarterly-passenger-airline-cost-index-u-s-passenger-airlines/
https://www.airlines.org/dataset/a4a-quarterly-passenger-airline-cost-index-u-s-passenger-airlines/
https://www.airlines.org/dataset/a4a-quarterly-passenger-airline-cost-index-u-s-passenger-airlines/
https://www.airlines.org/dataset/state-of-us-aviation/
https://www.airlines.org/dataset/state-of-us-aviation/

Quantum Optimization Suite for Airline Crew Pairing

[10] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimiza-

tion algorithm, 2014.

[11] Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li, Komal

Pandya, and Alessandro Summer. A review on quantum approximate optimization al-

gorithm and its variants. 2023.

[12] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kan-

dala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-enhanced

feature spaces. Nature, 567(7747):209–212, March 2019.

[13] Yuta Shingu, Yuya Seki, Shohei Watabe, Suguru Endo, Yuichiro Matsuzaki, Shiro Kawa-

bata, Tetsuro Nikuni, and Hideaki Hakoshima. Boltzmann machine learning with a varia-

tional quantum algorithm. Phys. Rev. A, 104:032413, Sep 2021.

[14] Scott E. Smart and David A. Mazziotti. Quantum solver of contracted eigenvalue equa-

tions for scalable molecular simulations on quantum computing devices. Physical Review

Letters, 126(7), February 2021.

[15] Qi Gao, Hajime Nakamura, Tanvi P. Gujarati, Gavin O. Jones, Julia E. Rice, Stephen P.

Wood, Marco Pistoia, Jeannette M. Garcia, and Naoki Yamamoto. Computational inves-

tigations of the lithium superoxide dimer rearrangement on noisy quantum devices. The

Journal of Physical Chemistry A, 125(9):1827–1836, February 2021.

[16] Tyson Jones, Suguru Endo, Sam McArdle, Xiao Yuan, and Simon C. Benjamin. Varia-

tional quantum algorithms for discovering hamiltonian spectra. Phys. Rev. A, 99:062304,

Jun 2019.

[17] Alain Delgado, Juan Miguel Arrazola, Soran Jahangiri, Zeyue Niu, Josh Izaac, Chase

Roberts, and Nathan Killoran. Variational quantum algorithm for molecular geometry

optimization. Phys. Rev. A, 104:052402, Nov 2021.

[18] Atoosa Kasirzadeh, Mohammed Saddoune, and François Soumis. Airline crew schedul-

ing: models, algorithms, and data sets. EURO Journal on Transportation and Logistics,

6(2):111–137, June 2017.

[19] Prasanna Date, Davis Arthur, and Lauren Pusey-Nazzaro. Qubo formulations for training

machine learning models. Scientific Reports, 11(1), May 2021.

[20] Joey McCollum and Thomas Krauss. Qubo formulations of the longest path problem.

Theoretical Computer Science, 863:86–101, 2021.

51

Quantum Optimization Suite for Airline Crew Pairing

[21] Kyungtaek Jun. Qubo formulations for a system of linear equations. Results in Control

and Optimization, 14:100380, 2024.

[22] Andrew Lucas. Ising formulations of many NP problems. Front Phys, 2, 2014.

[23] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik,

31(1):253–258, February 1925.

[24] Sorin Istrail. Statistical mechanics, three-dimensionality and NP-completeness: I. uni-

versality of intracatability for the partition function of the ising model across non-planar

surfaces (extended abstract). In Proceedings of the thirty-second annual ACM symposium

on Theory of computing - STOC ’00, pages 87–96, New York, New York, USA, may 2000.

ACM Press.

[25] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo,

Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and

Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644,

August 2021.

[26] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computa-

tion by adiabatic evolution. 2000.

[27] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev.

Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation. SIAM

Review, 50(4):755–787, January 2008.

[28] M. Born and V. Fock. Beweis des adiabatensatzes. Zeitschrift für Physik,

51(3–4):165–180, March 1928.

[29] Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation. Rev. Mod. Phys.,

90:015002, Jan 2018.

[30] Masuo Suzuki. General decomposition theory of ordered exponentials. Proceedings of

the Japan Academy, Series B, 69(7):161–166, 1993.

[31] Naomichi Hatano and Masuo Suzuki. Finding Exponential Product Formulas of Higher

Orders, page 37–68. Springer Berlin Heidelberg, November 2005.

[32] Rebekah Herrman, Phillip C. Lotshaw, James Ostrowski, Travis S. Humble, and George

Siopsis. Multi-angle quantum approximate optimization algorithm. 2021.

[33] Michelle Chalupnik, Hans Melo, Yuri Alexeev, and Alexey Galda. Augmenting qaoa

ansatz with multiparameter problem-independent layer. 2022.

52

Quantum Optimization Suite for Airline Crew Pairing

[34] V. Vijendran, Aritra Das, Dax Enshan Koh, Syed M. Assad, and Ping Koy Lam. An

expressive ansatz for low-depth quantum approximate optimisation. Quantum Science

and Technology, 9(2):025010, February 2024.

[35] M. J. D. Powell. A Direct Search Optimization Method That Models the Objective and

Constraint Functions by Linear Interpolation, page 51–67. Springer Netherlands, 1994.

[36] J.C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gra-

dient approximation. IEEE Transactions on Automatic Control, 37(3):332–341, March

1992.

[37] S. Bhatnagar, H.L. Prasad, and L.A. Prashanth. Stochastic Recursive Algorithms for Opti-

mization: Simultaneous Perturbation Methods, pages 41–44. Springer London, 2013.

[38] Giovanni Acampora, Angela Chiatto, and Autilia Vitiello. Genetic algorithms as classical

optimizer for the quantum approximate optimization algorithm. Applied Soft Computing,

142:110296, July 2023.

[39] The PyPA recommended tool for installing Python packages. https://pypi.org/

project/pip/. Accessed: 2024.04.28.

[40] Python Software Foundation. The Python Language Reference » 3. Data model.

https://docs.python.org/3.10/reference/datamodel.html. Accessed:

2024.04.20.

[41] Guido van Rossum. Unifying types and classes in Python 2.2. https://

www.python.org/download/releases/2.2.3/descrintro/, 2002. Accessed:

2024.04.20.

[42] scipy.optimize.minimize. https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.minimize.html. Accessed: 2024.04.20.

[43] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer

Journal, 7(4):308–313, January 1965.

[44] Fuchang Gao and Lixing Han. Implementing the Nelder-Mead simplex algorithm with

adaptive parameters. Computational Optimization and Applications, 51(1):259–277, May

2010.

[45] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S. Bishop,

Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M. Gambetta, and

Blake R. Johnson. OpenQASM 3: A Broader and Deeper Quantum Assembly Language.

ACM Transactions on Quantum Computing, 3(3):1–50, September 2022.

53

https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://docs.python.org/3.10/reference/datamodel.html
https://www.python.org/download/releases/2.2.3/descrintro/
https://www.python.org/download/releases/2.2.3/descrintro/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

	Introduction
	Airline Crew Scheduling
	Airline Crew Pairing
	Airline Crew Assignment

	Quantum optimization

	Problem Setup
	Definitions
	Methodology
	Pairing generation
	Rules
	Cost model

	Introduction to Quantum Computing
	Quantum State
	Measurement
	Hamiltonian operator
	Entanglement
	Interference
	Quantum Circuits

	Mathematical Model
	Minimum Cost Exact Cover
	Quadratic Unconstrained Binary Optimization
	Constructing the physical system

	MCEC on Quantum Hardware
	Variational Quantum Algorithms
	QAOA
	Finding a lowest energy state of a system
	Hamiltonian evolution
	Building the circuit
	Building the cost layer
	Building the mixer layer
	Creating the quantum subroutine
	Finding the optimal parameters

	Alternative ansätze choices
	ma-QAOA
	QAOA+
	XQAOA

	Optimization strategies for finding optimal parameters
	COBYLA
	SPSA
	Genetic Algorithms

	Software
	Architectural overview
	Plugins
	Datasets
	Platforms
	Ansätze
	Converters
	Initializers
	Optimizers
	Result processors

	Plugin management
	Python metaclasses
	Plugin lifecycle

	The optimization pipeline
	Usage
	Example of using the suite

	Results
	Random Instances of MCEC
	Airline Crew Pairing Dataset

	Conclusion
	Mathematical Notation Supplement
	Matrices
	Conjugate transpose
	Unitary Matrices
	Normal Matrices
	Hermitian Matrices
	Matrix diagonalization
	Projection Matrices
	Tensor product
	Matrix exponent

	Dirac notation

	Experiment in a Python notebook
	Expansion of 4.11

