

Name: Attila Szász, MSc student, second year Project type: thesis project Topic: Parameter Robustness of Neural Networks Supervisors: Dr. Balázs Bánhelyi

- Neural networks can be highly sensitive to small perturbations in both input and parameter space.
- During our research, we focused on parameter perturbations.
- The Adversarial Parameter Propagation (APP) algorithm was defined, which was able to improve both input and parameter robustness.
- $\theta = \arg \min_{\theta} \left(\max_{\check{\theta} \in B_{p1}(\theta, \lambda)} \left(\max_{\check{x} \in B_{p2}(x, \varepsilon)} L_{\check{\theta}}(\check{x}, y) \right) \right)$
- The APP computes precise bounds for the output of the neural networks and then optimizes the parameters of the model based on the worst-case scenario determined from these bounds.
- · Why was only naive interval arithmetic used?

7 June 2024 Author, © Continental AG

1

Experiments

Kesearch

- Techniques for reducing the widening of the intervals was defined.
- Radius(x) = $\frac{\tanh(sx^2)}{m}\lambda$
- The restriction on the parameter value range.
- Neural networks were trained for classification with APP and AWP (Adversarial Weight Perturbation).
- CIFAR-10 dataset
- CNN4 architecture
- APP with and without the regularization techniques
- We examined the following:
 - The normal accuracy and adversarial accuracy of the trained networks.
 - The input robustness of the alternative networks within the defined neighborhood of the midpoint network.
 - Resistance to Adversarial Parameter Attack (APP)

7 June 2024 Author, © Continental AG 2

Results & future work

Research

- The APP induces stronger flattening effect on the weight loss landscape than the AWP.
- The APP with our radius narrowing technique improves both normal accuracy and input adversarial accuracy.
- The APP without the radius narrowing technique improves the resistance to APP attack.
- The APP always optimizes the midpoint network.
- Other result: The implementation of the whole training system in julia.
- Future works:
 - · Wider networks
 - New bound propagation methods (statistical approaches)

ϵ	λ	Algorithm	Accura	су	AutoAtta	ck					
2255	0.001	APP (tanh)	68.15 %		42.75%						
		APP (abs)	59.48%		36.08%						
		AWP	59.88%		39.01%						
	0.005	APP (tanh)	67.17%		49.92%						
		APP (abs)	60.15%		44.92%						
		AWP	61.9%		43.33%						
	0.01	APP (tanh)	63.8%		49.63%						
		APP (abs)	52.71%		42.85%						
		AWP	60.68%		44.16%						
	0.02	APP (tanh)	60.77%		48.18%						
		APP (abs)	48.81%		41.94%						
		AWP	58.1 <u>%</u>	n	43.70%				Ň		
				ϵ	λ	Algorithm	0.00	0.04	A	0.00	0.1
			8-				0.02	0.04	0.00	0.08	410/
					0.001	APP (tann)	27%	31%	30%	30%	41%
					0.001	APP (abs)	14%	18%	19%	24%	21%
						AWP	14%	28%	30%	37%	45%
						APP (tanh)	19%	24%	28%	30%	28%
					0.005	APP (abs)	13%	24%	24%	33%	29%
			2		AWP	8%	18%	34%	44%	49%	
				255		APP (tanh)	12%	25%	22%	27%	27%
					0.01	APP (abs)	9%	18%	20%	24%	27%
						AWP	6%	17%	26%	38%	38%
						APP (tanh)	13%	19%	29%	31%	31%
					0.02	APP (abs)	9%	23%	27%	28%	28%
			_			AWP	21%	13%	23%	37%	32%

