// Reduces a normal vector specified as a set of three coordinates, // to a unit normal vector of length one. void ReduceToUnit(float vector[3]) { float length; // Calculate the length of the vector length = (float)sqrt((vector[0]*vector[0]) + (vector[1]*vector[1]) + (vector[2]*vector[2])); // Keep the program from blowing up by providing an exceptable // value for vectors that may calculated too close to zero. if(length == 0.0f) length = 1.0f; // Dividing each element by the length will result in a // unit normal vector. vector[0] /= length; vector[1] /= length; vector[2] /= length; } // Points p1, p2, & p3 specified in counter clock-wise order void calcNormal(float v[3][3], float out[3]) { float v1[3],v2[3]; static const int x = 0; static const int y = 1; static const int z = 2; // Calculate two vectors from the three points v1[x] = v[0][x] - v[1][x]; v1[y] = v[0][y] - v[1][y]; v1[z] = v[0][z] - v[1][z]; v2[x] = v[1][x] - v[2][x]; v2[y] = v[1][y] - v[2][y]; v2[z] = v[1][z] - v[2][z]; // Take the cross product of the two vectors to get // the normal vector which will be stored in out out[x] = v1[y]*v2[z] - v1[z]*v2[y]; out[y] = v1[z]*v2[x] - v1[x]*v2[z]; out[z] = v1[x]*v2[y] - v1[y]*v2[x]; // Normalize the vector (shorten length to one) ReduceToUnit(out); }