Synthesis of a reactive face
Zsófia Ruttkay 

zsofi@cs.utwente.nl
1. The main components of the reactive face system

The task of this ‘half’ of the project is to generate facial expressions as responses to perceived states. The perceived states are output from the perception module (see description), reporting if some event has been perceived. The output of the synthesis system is a face on the screen, which ‘reacts’ by facial expressions and possibly also by gaze to what is happening in front of the screen (including the case if nothing interesting has been happening).  For inspiration, have a look at the Jeremiah project [1], which raised much attention in media. The transformation of perceived states to an animated face should be taken care of by modules indicated in the figure below. 


[image: image1]
Figure 1. The proposed architecture for generating reactive facial expressions

Hence as a starting point, you will have to decide:

1. What emotional states will be invoked by the perceived situations?

2. How to express these states on the face?

3. How to model the effect of time? (E.g. if there is a new face in front of the screen, how long should the synthetic character be happy and thus smile, as expression of happiness? Should the synthetic face smile several times, how many? After some time the synthetic character may get bored, after all …)

The above 3 aspects will be essential to make a computational model for the reactions by the synthetic  face to the perceived events.  For showing the reactive face,  the CharToon facial animation software, especially its Face Player animation engine component,  will be used, with a ready-made face. 

2. What emotional expressions to generate?

The expression to be shown on the synthetic face should be read as a natural response for what the synthetic character has seen: a (new or known) face appearing/disappearing, some confusing image which could not be figured out well;  the very same image (no person)  for a longer time ….The  normal human reaction for such situations is pleasure, sadness, frustration, boredom …  You should select a number of emotional states corresponding to the possible perceived states. The synthetic face is to express these emotions.  Since the seminal work of P. Ekman it is well-known and described what facial expressions correspond to several emotions. You may search the web for a descriptive model [e.g. 2], play around with EmotionDisc (for the Gerard face), or study your own face expressing emotions. 

Once the facial expression is characterized, the remaining task it so generate the expression on a synthetic face. Note that snapshots, that is static expressions like on photos, are not sufficient, as you want to show how the emotions (and their reflection on the face) change in time.

If also vocal response is to be given, the expressions need to be synchronized with the sentences to be uttered. As an ultimate goal, the synthetic character should move his lips according to the sounds uttered during speech. Note that it is not straightforward to show both emotional expressions and visual speech, e.g. how should a smiling face articulate the speech sounds?  Such subtle issues are relevant for producing a believable, good-quality animation, but are secondary for the main issue of perception-reaction. So we suggest either not to animate the lip at all according to speech, or do the talking and showing expression sequentially, or in parallel, but using the eyebrows and gaze to express emotions, not the lips while talking.  The speech responses can be pre-recorded, or generated by a TTS engine, like the MS TTS. 

3 The animation of the Generic face in CharToon

In order to use the CharToon sw and the parameter files, unzip the enclosed CharToon.zip file into a directory which I refer to as CharDir.  Add the CharDir to the ClassPath system variable in Windows. Then you can run the AnimationEditor (and then activate FacePlayer from its menu) from CharDir:
java AnimEdit –f Generic

Note to load and save files from/to the proper directories. 

A 2d male face, the so-called Generic is provided, which can be controlled by a string of numerical parameters. Each number determines the horizontal or vertical position of a so-called feature point (or some scale for components, we ignore those here) like” right mouth corner x location”,” right  mouth corner y location”,  “right eyelid y location”, etc. This idea of coding of facial expressions is in line with the MPEG-4 standard of defining facial expressions by a set of generic, facial model independent set of numerical parameters. The general idea of animating 2d faces with the  CharToon sw is explained in [6] and in [8]. A manual for using CharToon and EmotionDisc is available [3].  

The 44 facial parameters used for the Generic face are explained as comments in the Generic.aprof file. The facial feature points correspond to a subset of the standard set of points defined in  MPEG-4 as relevant for facial expressions.  The numerical values, that is coordinates for feature points need to be given for each frame in a fixed order.  The numerical value must be between extreme values, corresponding to extreme deformations of the effected part of the face. For each parameter, a default value (corresponding to the neutral facial expression) is given. 

An expression of the face is defined by a value for each 44 parameters (some of which may be the default ones). E.g. to make a smiling face, the two mouth corners need to be pulled up, which involves 4 mouth-corner parameters (the rest preserve their default value). 

To make an animated face, a series of still expressions – so-called frames -  need to be given and shown one after the other, fast enough. To achieve an illusion of smooth movement, 15-24 frames need to be shown in a second.  Of course, the parameters must be specified such that a smooth change of expression is achieved,  It is common to use linear interpolation between the neutral and ‘final’ parameter values, and to assume a trapezoid form of parameter function, according to the three stages of activation – keeping – decay of the expression. Different intensities of expressions may correspond to scaled parameter values, but also to different sets of parameters involved. Think of intensities of surprise, from slightly raise eyebrows to the big surprise shown by raised eyebrows and open mouth. 

Hence in order to control the expressions on the Generic face, these parameters need to be given. A good approach could be to use expressions (also for gaze, like look-right, look-straight, close eyes for blinking, …) and intensities, and compute the 44 parameter values corresponding to the intensity by interpolation between the values for neutral and maximum intensity expressions.  Once the parameter values are decided, they FacePlayer component of CharToon needs to be informed about these values. 

The FacePlayer is a subset of the CharToon system, to show animated faces. The FacePlayer should be started and can be ‘fed’ with data. Depending on in what language the calling software is written, the following should be done (check the arguments in the java code and in the manual):

Calling FacePlayer from Java

1. Start a FacePlayerBody ( a core class present in FacePlayer) by method startFacePlayer(String[] args)

2. You than talk to FacePlayerBody using the method Snapshot(String "line with all 
parameter values").

Calling FacePlayer from C++

If you work in C, you do need sockets for the communication. Java has the Socket class with methods to access input/output data. 
4. Using the facial expressions
In order to generate the right  parameter stream for FacePlayer showing a certain expression on the  Generic face,  some expressions for this face need to be adopted from the existing repertoire, given as .aanim files in the Animations directory, as well as .all files in the CompleteAnimations directory. For each snapshot, an .amov file is also available in the Movies directory. The parameter lines in the .amov files for each expression can be used directly to compute interpolated values and different intensities. In principle, you will not need to use the Animation Editor of CharToon, unless you want further expressions.  
How to (re-)use these files is given in the CharToon manual  [3] and the Extensions manual [5].  You may need a day to get your fingers on CharToon.  Note that the FacePlayer window gets hidden by the AnimEdit windows, so resize the latter not to cover the first one. 
Emotional expressions:
Neutral

Pleased

Smile

Absolute_Joy

Sad

Surprise
Annoyed

Furious

For gaze, the following expressions are available:

LookLeft

LookRight

LookDown

CloseEyelids

There is also one animation in .aanim and .all format:

Blink

Conditions of using CharToon

CharToon may be used only during SSIP2005, should not be copied to other locations.

The sw is under development, and copyright protected. 

References

1. Bowden R, KaewTraKulPong P, Lewin M, Jeremiah: The Face of Computer Vision, Smart Graphics'02, 2nd International Symposium on Smart Graphics, ACM Int. Conf. Proc. Series, pp 124-128, Hawthorn NY USA, June 2000
http://www.ee.surrey.ac.uk/Personal/R.Bowden/publications/smartgraphics02/jeremiah_sg02.pdf
demo: http://www.ee.surrey.ac.uk/Personal/R.Bowden/jeremiah/jeremiah.html
2. Facial Expressions http://www.zackvision.com/weblog/archives/entry/000585.html
3. H. Noot, Zs. Ruttkay: CharToon 2.0 Manual, CWI Report INS-R0004 , Amsterdam, 2000. 
(PDF) 

4. MPEG-4 
Intro: http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm#11.5
FAPs: http://www-dsp.com.dist.unige.it/~pok/RESEARCH/MPEG/fapspec.htm
5. Zs. Ruttkay, A. Lelievre: CharToon 2.1 extensions: Expression repertoire and lip sync, CWI Report INS-R0016, Amsterdam, 2000
(PDF )

6. Zs. Ruttkay, H. Noot, Animated CharToon Faces, Proceedings of NPAR 2000  - First International Symposium on Non Photorealistic Animation and Rendering,   pp 91-100, June 2000. 
 (PDF ) (PDF Color plates )

7. Zs. Ruttkay, H. Noot, P. ten Hagen: Emotion Disc and Emotion Squares: tools to explore the facial expression space, Computer Graphics Forum, 22(1) 2003, pp. 49-53.
(PDF )

8. Zs. Ruttkay’s home page: http://wwwhome.cs.utwente.nl/~zsofi/
Perceived


states





Reactive emotional state


and attention


 computation





Coding of facial expression





Gaze and


emotion


to display





Facial animation parameters 





Perception


component





Facial Animation Engine





CharToon Face Model





Face Player





user








2
1
SSIP2005 Project Description



[image: image2.jpg]


