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Introduction

Why do we need image 
smoothing?

What is “image” and what 
is “noise”? 

– Frequency spectrum
– Statistical properties

Prior knowledge



Introduction

Why do we need segmentation?



Brief Review of Linear Operators
[Pratt 1991]

l Generalized 2D linear operator 

l Space invariant operator:

Convolution sum: weighted average of pixels within a window
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Brief Review of Linear Operators

l Geometrical 
interpretation 
of 2D 
convolution
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Linear Image smoothing techniques
Box filters. Arithmetic mean L×L operator
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Linear Image smoothing techniques
Box filters. Arithmetic mean L×L operator

Optimality properties
l Signal and additive white noise

l Noise variance is reduced N times
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Linear Image smoothing techniques
Box filters. Arithmetic mean L×L operator

l Unknown constant signal plus noise
l Minimize MSE of the estimation g:
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Linear Image smoothing techniques
Box filters. Arithmetic mean L×L operator

l i.i.d. Gaussian signal with unknown mean.

l maximize the probability to obtain the observed 
samples, 

l Optimal solution: • = arithmetic mean of observed 
samples
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Linear Image smoothing techniques
Box filters. Arithmetic mean L×L operator

l Image smoothed with 
3×3, 5×5, 9×9 

and 11 ×11 box filters



Linear Image smoothing techniques
Box filters. Arithmetic mean L×L operator

Original Lena image
Lena image filtered with

5x5 box filter



Linear Image smoothing techniques
Binomial filters [Jahne 1995]

l Computes a weighted average of pixels in 
the window

l Less blurring, less noise cleaning for the 
same size

l The family of binomial filters can be defined 
recursively

l The coefficients can be found from (1+x)n



Linear Image smoothing techniques
Binomial filters. 1D versions
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As size increases, the shape of the filter is closer to a Gaussian one



Linear Image smoothing techniques
Binomial filters. 2D versions
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Linear Image smoothing techniques
Binomial filters. Example

Original Lena image Lena image filtered

with binomial 5x5 kernel

Lena image filtered

with box filter 5x5



Linear Image smoothing techniques
Binomial and box filters. Edge blurring comparison

l Linear filters have 
to compromise 
smoothing with 
edge blurring 

l Optimization 
underlying 
assumptions are 
violated at edges

l Be careful what 
you wish J…

l It might come true 
L

Step edge

Result of size L
box filter

L

Size L binomial



Nonlinear image smoothing
Conditional mean

l Pixels in a neighbourhood are averaged only if they 
differ from the central pixel by less than a given 
threshold: 
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Nonlinear image smoothing
Conditional mean

l Example with L=3, 
th=32



Nonlinear image smoothing
Bilateral filter [Tomasi 1998]

l Space and range are treated in a similar way
l Space and range similarity is required for the averaged pixels
l Tomasi and Manduchi [1998] introduced soft weights to penalize the 

space and range dissimilarity.
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functions of the Euclidian distance between their arguments).



Nonlinear image smoothing
Bilateral filter

l The filter can be seen as weighted averaging in the 
joint space-range space (3D for monochromatic 
images and 5D – x,y,R,G,B - for colour images)

l The vector components are supposed to be properly 
normalized (divide by variance for example)

l The weights are given by:
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Nonlinear image smoothing
Bilateral filter

l Example of Bilateral filtering
l Low contrast texture has been removed
l Yet edges are well preserved



Bilateral filtering
Step edge image

Left: noisy step image. Right: kernel weights near the edge



Nonlinear image smoothing
Mean shift filtering [Comaniciu 1999, 2002]

l Mean shift filtering replaces each pixel’s value with 
the most probable local value, given the observed 
pixel. 

l The multivariate pdf can be found by a 
nonparametric probability density estimation
method.

l The closest maxima of the pdf to the current pixel 
is found through the mean shift algorithm without 
having to estimate the whole pdf.

l The mean shift filter is related to the bilateral filter



Mean shift filtering
Brief introduction to nonparametric density 
estimation 
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x, inside the small domain D as



Mean shift filtering
Brief introduction to nonparametric density 
estimation 

The best size of the domain D is an important issue.
•If the volume V tends to 0, the estimate is infinite at all 
data sample points and 0 elsewhere (Dirac pulses).
•If the volume V tends to infinity, the estimate is the same 
(constant) everywhere.
•None of these extremes is desirable
•Statistics literature solutions [Duda 2000]: 

•Parzen window – V=1/sqrt (n)
•knn estimator – inflate D until obtaining k samples 



Mean shift filtering
Brief introduction to nonparametric density 
estimation 

The Parzen estimator is using a hipercube shaped 
window of radius h, having the volume

VpdpP
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Define the Parzen window function:
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Mean shift filtering
Brief introduction to nonparametric density 
estimation 
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The multivariate kernel density estimate obtained at the
point x with the kernel K(x) and window radius h is:

Note, the estimate is continuous: 
x is not supposed to belong to the data set, S

The number of samples in a hypercube 
with edge length h centered on x is
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Mean shift filtering
Brief introduction to nonparametric density 
estimation 

Note: p(x) is a superposition (weighted average) of the contributions 
of all saples at x. Example: Epanechnikov kernel  (minimize MISE). 
Also Gaussian window (trunctated) used frequently.

The last equation suggests a generalization: K() can have different shapes.
Mild conditions: K() has to be nonnegative and integrate to 1.
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Mean shift filtering 
[Comaniciu 1999, 2002]
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S is a sphere of radius h, centered on x and nx is the number of 
samples inside the sphere. More generally, for any kernel,

For the Epanechnikov kernel, the estimated normalized density 
gradient is proportional to the mean shift: 
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Mean shift filtering 
[Comaniciu 1999, 2002]

l The mean shift procedure is 
a gradient ascent method to 
find local modes (maxima) 
of the probability density 
and is guaranteed to 
converge.

l Step1: compute of the mean 
shift vector mh(x).

l Step2: translate the window 
by mh(x).

l Iterations start for each pixel 
(5D point) and tipically
converge in 2-3 steps.



Mean shift filtering 
[Comaniciu 1999, 2002]

Compute the closest local mode of the pdf to any location, x

Set initially y1=x and j=1, then:

The mean shift algorithm: 
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Step2: Make j=j+1and repeat step 1 until convergence:
||m(y)||=||yj+1-yj|| < epsilon. Then yj+1=yc is the location of the pdf local 
maxima closest to x.

Step1: compute

Mean shift filtering: change each xi to the corresponding yc
obtained by through mean shift algorithm. 

granted



Mean shift filtering 
[Comaniciu 1999, 2002]

l Example1.



Mean shift filtering
examples

Detail of a 24x40
window from the
cameraman image
a) Original data
b) Mean shift paths for 

some points
c) Filtered data
d) Segmented data



Mean shift filtering
examples

l Example 2



Mean shift filtering
comparisons

Comparison to bilateral filtering
l Both methods based on simultaneous processing of both the 

spatial and range domains
l While the bilateral filtering uses a static window, the mean shift 

window is dynamic, moving in the direction of the maximum 
increase of the density gradient.



Mean shift segmentation

Step1. Mean shift filter the image
Step2. Link all pixels converging to the same 

mode.
Optional: merge regions with close modes
Optional: clear small regions



Segmentation example

Video image segmentation 



Background estimation and 
subtraction for video surveillance



Thank you for your attention!
J
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