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LECTURE PLAN

1. Brief introduction to my group – Center for Machine Perception.

2. Mathematical model of a single perspective camera.

3. Epipolar constraint.

4. Correspondence problem.

5. Results: state-of-the-art stereo, uncalibrated 3D reconstruction, VR model.
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CENTER FOR MACHINE PERCEPTION

� Research group, head Prof. Václav Hlaváč, established 1986 as computer

vision lab, under the name CMP since 1996.

� 121
2 staff (11

2 Prof., 1 Assoc. Prof., 3 PhD, 7 MSc);

out of it 2 mathematicians, 2 physicists, 8 engineers)

+ 8 full time PhD students.

� Interests: computer vision, pattern recognition, mathematical models for

treating uncertainty.

� Links to industry mainly via a spin-off company Neovision Prague (10

people).

E.g. Samsung, Boeing, Texas Instruments, Robert Bosch, Kyocera,

Hitachi.

http://cmp.felk.cvut.cz
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MAIN RUNNING PROJECTS

� ActIPret (R&D, 2001-2003, IST-2001-32184) Interpreting and

Understanding Activities of Expert Operators for Teaching and Education

(V. Hlaváč, J. Matas).

� ISAAC (Trial, 2002, IST-2001-33266) Inspecting Sewerage Systems And

Image Analysis by Computer (V. Hlaváč).

� Reconstruction of 3D scene from multiple uncalibrated views (V. Hlaváč).

� Computational stereo (R. Šára).

� Omni-directional vision. (T. Pajdla).

� Authentication based on face recognition (J. Matas).

� Pattern recognition theory (V. Hlaváč).

http://cmp.felk.cvut.cz
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V. Hlaváč, books

Šonka M., Hlaváč V., Boyle R.B.: Image

Analysis, Processing and Machine Vision, 2nd

edition, PWS Boston, USA, 1999 (China

edition 2002), 800 p, USD 105.

Schlesinger M.I., Hlaváč V.: Ten Lectures on

Statistical and Structural Pattern Recognition

Kluwer, Dordrecht, May 2002, EUR 165.

http://cmp.felk.cvut.cz
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BASICS OF PROJECTIVE GEOMETRY

� Pinhole model - the simplest geometrical model of human eye,

photographic and TV camera.

� Perspective projection, also central projection.

� Parallel lines in the world do not remain parallel in the image (e.g., view

along the straight section of a railroad).
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PROJECTIVE SPACE

Consider (n + 1) dimensional vector space without its origin,

Rn+1 − {(0, . . . , 0)}.

Define an equivalence relation

[x1, . . . , xn+1]T ≡ [x′1, . . . , x
′
n+1]

T

iff ∃α 6= 0 : [x1, . . . , xn+1]T = α [x′1, . . . , x
′
n+1]

T

Projective space Pn is the quotient space of this equivalence relation.

Points in the projective space are expressed in homogeneous co-ordinates

(called also projective coordinates) x̃ = [x′1, . . . , x
′
n, 1]T .

http://cmp.felk.cvut.cz
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RELATION BETWEEN EUCLIDEAN AND PROJECTIVE
SPACES

Consider Euclidean space Rn.

The one-to-one mapping from the Rn into Pn

[x1, . . . , xn]T → [x1, . . . , xn, 1]T

Projective points [x1, . . . , xn, 0]T do not have an Euclidean counterpart and

represent points at infinity in a particular direction.

Consider [x1, . . . , xn, 0]T as a limiting case of [x1, . . . , xn, α]T that is

projectively equivalent to [x1/α, . . . , xn/α, 1]T , and assume that α → 0.

This corresponds to a point in Rn going to infinity in the direction of the

radius vector [x1/α, . . . , xn/α] ∈ Rn.

http://cmp.felk.cvut.cz
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PROJECTIVE TRANSFORMATION (also CO-LINEATION)

Co-lineation is any mapping Pn → Pn.

Defined by a regular (n + 1) × (n + 1) matrix A, ỹ = A x̃.

Matrix A is defined up to a scale factor.

Co-lineations map hyperplanes to hyperplanes.

A special case is the mapping of lines to lines that is often used in computer

vision.

http://cmp.felk.cvut.cz
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SINGLE PERSPECTIVE CAMERA, pinhole model
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CAMERA: P3 → P2

A scene point Xw in the world Euclidean co-ordinate system is a 3 × 1
vector.

The same point Xc in the camera Euclidean co-ordinate system is

transformed by translation t (vector) and rotation R (orthogonal matrix).

Xc =

 xc

yc

zc

 = R (Xw − t)

http://cmp.felk.cvut.cz
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CAMERA: P3 → P2 (2)

The point Xc is projected to the image plane π as point Uc.
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, U0a = [u0, v0, 0]T .
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CAMERA: P3 → P2 (3)

Projected point in the 2D image plane π in homogeneous co-ordinates

ũ =

 U

V

W

 =

 a b −u0

0 c −v0

0 0 1




−fxc
zc

−fyc
zc

1


=

 −fa −fb −u0

0 −fc −v0

0 0 1


 xc

zc
yc
zc

1


2D Euclidean counterpart is u = [u, v]T = [ U

W , V
W ]T .

http://cmp.felk.cvut.cz
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CALIBRATION MATRIX K

zc ũ = zc

 −fa −fb −u0

0 −fc −v0

0 0 1


 xc

zc
yc
zc

1


=

 −fa −fb −u0

0 −fc −v0

0 0 1


 xc

yc

zc


=

 −fa −fb −u0

0 −fc −v0

0 0 1

 R (Xw − t) = KR (Xw − t)

Calibration parameters:
intrinsic (matrix K) vs. extrinsic (vector t, matrix R).

http://cmp.felk.cvut.cz
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PROJECTION MATRIX M

ũ =

 U

V

W

 =
1
zc

KR (Xw − t)

= [KR | −K R t]
[

Xw

1

]
= M

[
Xw

1

]
= MX̃w

http://cmp.felk.cvut.cz
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SINGLE CAMERA CALIBRATION, overview

Intrinsic parameters only - seeking matrix K.

Intrinsic + extrinsic parameters - seeking matrix M .

1. Known scene: A set of n non-degenerate (not co-planar) points in the 3D

world (e.g., a calibration object), and the corresponding 2D image points

are known.

Each correspondence between a 3D scene and 2D image point provides

one equation

αjũj = M

[
Xj

1

]
.

2. Unknown scene: More views are needed to calibrate the camera. The

intrinsic camera parameters will not change for different views, and the

correspondence between image points in different views must be

established.

http://cmp.felk.cvut.cz
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CALIBRATION FROM UNKNOWN SCENE (cont.)

21

X

tK R, K

1. Known camera motion: Three cases according to the known motion

constraint:

(a) Both rotation and translation, general case.

(b) Pure rotation

(c) Pure translation, a linear solution proposed by [Pajdla, Hlaváč 1995].

2. Unknown camera motion: The most general case, sometimes called

camera self-calibration. At least three views are needed and the solution is

nonlinear. Numerically hard.

http://cmp.felk.cvut.cz
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CAMERA CALIBRATION FROM A KNOWN SCENE (1)

Typically a two stage process.

1. Estimate the projection matrix M is estimated from the co-ordinates of

points with known scene positions.

2. The extrinsic and intrinsic parameters are estimated from M .

Note: The second step is not always needed – the case of stereo vision is an
example.

http://cmp.felk.cvut.cz
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CAMERA CALIBRATION FROM A KNOWN SCENE (2)

Each correspondence between scene point X = [x, y, z]T and 2D image point

[u, v]T gives one equation

 αu

αv

α

 =

 m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34




x

y

z

1


 αu

αv

α

 =

 m11x + m12y + m13z + m14

m21x + m22y + m23z + m24

m31x + m32y + m33z + m34



http://cmp.felk.cvut.cz
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CAMERA CALIBRATION FROM A KNOWN SCENE (3)

u(m31x + m32y + m33z + m34) = m11x + m12y + m13z + m14

v(m31x + m32y + m33z + m34) = m21x + m22y + m23z + m24

Two linear equations, each in 12 unknowns m11, . . . ,m34, for each known

corresponding scene and image point (actually only 11 unknowns due to

unknown scaling). 6 corresponding points needed, at least.

If n such points are available, we can write it as a 2n× 12 matrix.

 x y z 1 0 0 0 0 −ux −uy −uz −u

0 0 0 0 x y z 1 −vx −vy −vz −v
...




m11

m12
...

m34

 = 0

Overconstraint linear system. Robust least squares. Result = M .

http://cmp.felk.cvut.cz
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SVD—Singular Value Decomposition

SVD is a linear algebra technique for solving linear equations in the least

square sense. SVD works for singular matrices or matrices numerically close

to singular. Contained, e.g., in MATLAB.

Any m× n matrix A, m ≥ n can be factorized as A = UDV T .

U has orthonormal columns, D is non-negative diagonal, and V T has

orthonormal rows.

SVD locates the closest possible solution in a least square sense.

Sometimes need for the ‘closest’ singular matrix to the original matrix A –
this decreases the rank from n to n− 1. Replace the smallest diagonal
element of D by zero. This new matrix is the closest to the original one with
respect to the Frobenius norm (which is calculated as a sum of the squared
values of all matrix elements).

http://cmp.felk.cvut.cz
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SEPARATION OF EXTRINSIC PARAMETERS FROM M

Given: projection matrix M

Output: rotation matrix R and translation vector t).

M = [KR | −KR t] = [A |b]

The 3× 3 submatrix is denoted as A, and the rightmost column as b.

Translation vector t is easy; A = KR, t = −A−1b.

Rotation matrix R. Recall that the calibration matrix K is upper triangular

and the rotation matrix is orthogonal.

The QR factorization method or SVD will decompose A into a product and
hence recover K and R.

http://cmp.felk.cvut.cz
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RADIAL DISTORTION AND DE-CENTERING

BARRELPINCUSHION

Often modelled as rotationally symmetric by polynomials.

u, v - correct image co-ordinates

ũ, ṽ - measured uncorrected image co-ordinates

û0, v̂0 - estimate of the position of the principal point

ũ = x− û0 , ṽ = y − v̂0

http://cmp.felk.cvut.cz
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RADIAL DISTORTION (2)

u = ũ + δu , v = ṽ + δv

δu = (ũ− up)(κ1r
2 + κ2r

4 + κ3r
6)

δv = (ṽ − vp)(κ1r
2 + κ2r

4 + κ3r
6)

r2 is the square of the radial distance from the center of the image.

r2 = (ũ− up)2 + (ũ− up)2

up, vp are corrections to û0, v̂0

u0 = û0 + up

v0 = v̂0 + vp

http://cmp.felk.cvut.cz
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GEOMETRY OF 2 CAMERAS

Epipoles e, e′, epipolar lines l, l′.

e, e′, l, l′, C, C ′, X lie in a single plane.

Epipolar geometry. Seeking correspondences between two 1D signals.

Bilinear relation between u, u′.

http://cmp.felk.cvut.cz
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FUNDAMENTAL MATRIX (1)

Left projection u and right projection u′ of the scene point X.

u ' [K|0]
[

X
1

]
= K X,

u′ ' [K ′R | −K ′R t]
[

X
1

]
= K ′(RX−R t) = K ′X′

Coplanarity of X, X′ and t.

Distinguish co-ordinates of the left and right cameras by the subscript L, R.

Vector product ×.

http://cmp.felk.cvut.cz
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FUNDAMENTAL MATRIX (2)

Coordinates rotation

X′
R = RX′

L, and hence X′
L = R−1X′

R.

Coplanarity constraint XT
L(t×X′

L) = 0.

Preparing for substitution

XL = K−1u, X′
R = (K ′)−1u′, and X′

L = R−1(K ′)−1u′.

Epipolar constraint in vector form

(K−1u)T (t×R−1 (K ′)−1u′) = 0 .

Equation is homogeneous with respect to t, so the scale is not determined.

Absolute scale cannot be recovered without ‘yardstick’.

http://cmp.felk.cvut.cz
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FUNDAMENTAL MATRIX (3)

Replacement of a vector product by a matrix multiplication.

The translation vector is t = [tx, ty, tz]T , and a skew symmetric matrix S(t)
(i.e., ST = −S) can be created from it if t 6= 0.

S(t) =

 0 −tz ty
tz 0 −tx

−ty tx 0


Note that rank(S) = 2 if and only if t 6= 0.

http://cmp.felk.cvut.cz
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FUNDAMENTAL MATRIX (4)

The vector product can be replaced by the multiplication of two matrices.

For any regular matrix A, we have

t×A = S(t) A .

Thus we can rewrite the epipolar constraint in a vector form

(K−1u)T (S(t) R−1 (K ′)−1u′) = 0 ,

uT (K−1)TS(t)R−1(K ′)−1u′ = 0 .

http://cmp.felk.cvut.cz
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FUNDAMENTAL MATRIX (5)

The middle part can be concentrated into a single matrix F called the

fundamental matrix of two views,

F = (K−1)TS(t)R−1(K ′)−1 .

With the substitution for F we finally get the bilinear relation (sometimes

named after Longuet-Higgins) between any two views

uT F u′ = 0 .

It can be seen that the fundamental matrix F captures all information that
can be recovered from a pair of images if the correspondence problem is
solved.

http://cmp.felk.cvut.cz
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