
Proceedings of the
12th International Conference on Applied Informatics
Eger, Hungary, 2023

Reinterpretation of FAIR Guidelines for
Program Slicing Tools

Péter Attila Sohaa

aUniversity of Szeged,
psoha@inf.u-szeged.hu

Abstract. Program Slicing is one of the most important uses of source code
analysis. Over the years, different variations of it have been implemented
in many tools, depending on the goal to be achieved. However, what these
programs have in common is that they are not intended for publication, and
their subsequent use may be problematic. In this paper, we present a set
of principles that builds on the FAIR guidelines and describes the basics
and common criteria for publishing research software in a more accurate and
informative way.

Keywords: Program Slicing, FAIR, Slicer Tools

AMS Subject Classification: 𝐷.2.12 Software and its engineering — In-
teroperability: 𝐷.2.13 Software and its engineering — Reusable Software

1. Introduction

Since the Program Slicing method had been originally published [8], it was inter-
preted and implemented in many different ways to solve various problems. The
FAIR guidelines were published in 2016 by Mark Wilkinson et al. [9] with the aim
of providing a unified framework for the publication of scientific databases. The
FAIR principles mean that data and algorithms should be accessible, transparent,
and reproducible to ensure equal access and responsible use. They are intended
to help ensure that data are not only used by scientists but are also accessible to
the general public and can be applied in scientific research and practice. FAIR de-
fines four main principles covering the main criteria for data, namely Findability,
Accessibility, Interoperability, and Reusability. However, the main draw-
back of the original guidelines was that it was made for data, not for programs,
which (although can be considered as data) require a different point of view. This

1

mailto:psoha@inf.u-szeged.hu


Manuscript for the Proceedings of the 12th ICAI January 13, 2023

recognition led Anna-Lena Lamprecht et al. in 2019 [7] and in 2022 [4] to modify
the original principles to cover research software more precisely. In this paper, we
present a FAIR interpretation that better separates the relevant properties of the
tool itself from those that define the data that describe it, thus overcoming the
drawback of the previous approaches about falsely failing principles.

2. Reinterpretation of the FAIR Guidelines

The main objection to the previous interpretations is that they follow the origi-
nal structure too closely, so that in the event of an evaluation, the software may
perform poorly even if it meets the requirements that directly affect its use. An
example of this are the R1-R1.3 points in the approach described in [7], where the
declared criteria must be satisfied for both the software and its associated meta-
data. If 1 published tool has incomplete metadata, it cannot satisfy these points
(for example, the GitHub interface does not allow us to edit the metadata of our
software). From this point of view, our approach is based on clustering that sep-
arates metadata requirements from software-related ones. The two categories are
labelled Availability and Content. In the former, we defined three subcategories
covering identifiers, metadata, and protocols used for access, while under Content,
we included properties such as attachments, version control, and documentation.

3. Results

To prove the usability of our approach, we focused on program slicing applications
and evaluated them with the new method. In this case, we have evaluated three
popular slicers that are currently in use. The first was JavaSlicer [3], which is
a static slicer for the Java language, especially version 6. The second choice was
also a static slicer, JavaSDGSlicer [6][5], which, however, supports newer language
versions. Finally, the third choice was a dynamic slicer tool, namely Slicer4J [2][1].
The advantage of evaluating the approach is that all three tools are published on
GitHub and have publications, except for JavaSlicer, which simplifies the process
of testing the Availability. The existence of a repository automatically provides
unique identification and a full version history, as well as independent metadata
management. Positive results were found in these areas. However, gaps were found
in the analysis of the Content, such as replication packages, external dependencies,
or user documentation, which are not mandatory elements of a GitHub repository.
For example, in the case of JavaSlicer, there were serious obstacles due to incom-
plete or outdated dependencies.
To summarize the results, our approach gives a more accurate picture of the real-
world usability of a research tool than previously published solutions on this topic.
We have achieved this by separating the principles that directly describe usability
from those that define accessibility.

2



Manuscript for the Proceedings of the 12th ICAI January 13, 2023

4. Conclusions and Future Work
In this article, we have examined a new approach to the FAIR guidelines, which
aims to separate the principles that describe the availability of software from those
that describe the content, giving a more accurate picture of usability. For the
analysis we employed widely used software slicing tools, freely available on GitHub.
The aim of this publication is to lay the foundations for a more extensive evaluation
involving more software and for a more detailed guideline to achieve more precise
results.

References
[1] K. Ahmed, M. Lis, J. Rubin: resess/Slicer4J: Slicer4J is an accurate, low-overhead dynamic

slicer for Java programs. Accessed: 2022-09-18, url: https://github.com/resess/Slicer4J.
[2] K. Ahmed, M. Lis, J. Rubin: Slicer4J: A Dynamic Slicer for Java, in: Proceedings of the

29th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2021, Athens, Greece: Association for
Computing Machinery, 2021, pp. 1570–1574, isbn: 9781450385626, doi: 10.1145/3468264.34
73123.

[3] C. Backes: Backes/javaslicer: JavaSlicer is an open-source dynamic slicing tool developed at
Saarland University, Accessed: 2022-09-18, url: https://github.com/backes/javaslicer.

[4] M. Barker, N. P. Chue Hong, D. S. Katz, A.-L. Lamprecht, C. Martinez-Ortiz, F.
Psomopoulos, J. Harrow, L. J. Castro, M. Gruenpeter, P. A. Martinez, et al.: In-
troducing the FAIR Principles for research software, Scientific Data 9.1 (2022), pp. 1–6, doi:
https://doi.org/10.1038/s41597-022-01710-x.

[5] C. Galindo: mistupv/JavaSlicer: A program slicer for Java, based on the system dependence
graph (SDG). Accessed: 2022-09-18, url: https://github.com/mistupv/JavaSlicer.

[6] C. Galindo, S. Pérez, J. Silva: Slicing Unconditional Jumps with Unnecessary Control
Dependencies, in: Logic-Based Program Synthesis and Transformation: 30th International
Symposium, LOPSTR 2020, Bologna, Italy, September 7–9, 2020, Proceedings, Bologna, Italy:
Springer-Verlag, 2020, pp. 293–308, isbn: 978-3-030-68445-7, doi: 10.1007/978-3-030-68446
-4_15.

[7] A.-L. Lamprecht, L. Garcia, M. Kuzak, C. Martinez, R. Arcila, E. M. del Pico, V. D. D.
Angel, S. van de Sandt, J. C. Ison, P. A. Martínez, P. McQuilton, A. Valencia,
J. L. Harrow, F. Psomopoulos, J. L. Gelpi, N. P. C. Hong, C. A. Goble, S. Capella-
Gutiérrez: Towards FAIR principles for research software, Data Sci. 3 (2020), pp. 37–59,
doi: DOI10.3233/DS-190026.

[8] M. Weiser: Program Slicing, IEEE Transactions on Software Engineering SE-10.4 (1984),
pp. 352–357, doi: 10.1109/TSE.1984.5010248.

[9] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al.: The FAIR
Guiding Principles for scientific data management and stewardship, Scientific data 3.1 (2016),
pp. 1–9, doi: 10.1038/sdata.2016.18.

3

https://github.com/resess/Slicer4J
10.1145/3468264.3473123
10.1145/3468264.3473123
https://github.com/backes/javaslicer
https://doi.org/10.1038/s41597-022-01710-x
https://github.com/mistupv/JavaSlicer
10.1007/978-3-030-68446-4_15
10.1007/978-3-030-68446-4_15
DOI 10.3233/DS-190026
10.1109/TSE.1984.5010248
10.1038/sdata.2016.18

