
4 th International Conference on Applied Informatics

Eger–Noszvaj, Hungary, August 30–September 3, 1999.

An overview of the OASIS speech recognition

project

András Kocsor, Kornél Kovács, András Kuba Jr., László Tóth

Research Group on Artificial Intelligence, József Attila University
e-mail: kocsor@inf.u-szeged.hu

e-mail: coree@rgai00.inf.u-szeged.hu
e-mail: kandras@rgai00.inf.u-szeged.hu

e-mail: tothl@inf.u-szeged.hu

Abstract

This paper presents an overview of the “OASIS” segment-based speech recognition
system developed at the Research Group on Artificial Intelligence of the Hungarian
Academy of Sciences. We present the preprocessing method, the features extracted
from its output, and how segmentation of the input signal is done based on those fea-
tures. We also describe the two types of evaluation functions we applied for phoneme
recognition, namely a C4.5 and an instance-based learning technique. In our system,
the recognition of words from a vocabulary means a special search in a hypothesis
space; we present how this search space is handled and the search is performed.

Our results demonstrate that for small vocabularies we obtained acceptable recog-
nition rates of about 90% even with the very few features and small training database
used. It is now a matter of further investigation to see how much these methods could
be extended to be applicable to large vocabulary speech recognition.

Key Words: speech recognition, acoustic features, C4.5

1 Introduction

After early attempts in the 70’s to build knowledge-based speech recognition systems engi-
neers in the 80’s turned to much simpler, mathematically tractable (numerical) statistical
learning techniques. These systems, built on Hidden Markov Models (HMM) and Artificial
Neural Nets (ANN), dominate both the market and researches since then. At the end of
the 90’s, automatic speech recognition (ASR) finally reached the level of practical usability.
However, in the last ten years there have been only a few improvements in the underlying
technology, and the sceptics say this success is rather due to the increase in processor power
and the amount of training speech corpora available. Many experts say that these numer-
ical models have reached a limit, and further radical improvements are possible only if the
underlying model is changed [1] in order to incorporate a lot of new information we con-
cieved about human speech perception.This means, more knowledge has to be integrated
into the recognition technique in a way that keeps the possibility of extracting additional
knowledge, with the aid of learning methods.

In our experimental speech recognition system “OASIS” (which stands for “Our Acoustics-
based Speaker-Independent Speech recognizer”) we try both to bring back AI into speech

1

Kocsor, A. et al.: An overview of the OASIS speech recognition project 2

recognition, and incorporate new knowledge about human speech perception. There are
only a few similar systems we know, the closest being the SUMMIT system of MIT [2].

Since building a whole ASR system is an enormous task, we chose a relatively easy first
goal: to recognize Hungarian numbers such as “two-hundred and sixty five”. This leads to
a continuous speech recognition task over a dictionary of 26 words. Both the training and
testing database was recorded in office quality (at a sampling rate of 22050Hz), containing
carefully pronounced (read-out) speech. Our first results show that at this quality and with
such a small dictionary even with quite few and simple features and a little training the
system can reach an acceptable recognition rate. It is now a matter of further research to
decide whether this approach could handle bad quality spontaneous speech with a large
dictionary.

Recognition starts with a preprocessing phase in which the spectral representation of
the signal is calculated and acoustic features are extracted from the spectrogram. We espe-
cially kept in mind those new results which claim that humans process frequency channels
independently, and integration occurs only at a higher stage [3]. Thus our main features
were the energies in reasonably chosen frequency bands.

Following this we get a rudimentary segmentation. Information over segments are in-
tegrated, in the form of what we call “interval-features”. Since the segmentation is not
reliable (it is supposed to give an over-segmentation), possibilities of fusing these segments
have to be examined. This leads to a search problem which is solved by a depth-first search
over the possible strings provided by a dictionary. We use punishment-values to distinguish
among possible solutions and the result of the recognition is the string that has the smallest
accumulated punishment.

2 Preprocessing

In the preprocessing phase the system converts the speech signal into the traditional (wide-
band) spectrogram, that is, calculates its short-time Fourier spectrum (using a Hamming
window). The intensity of the spectrum is, as traditional, taken on a logarithmic (decibel)
scale. Occasional smoothing, Bark-warping and other similar transformations take place
in the feature extraction phase, where necessary.

For the sake of clarity we shall briefly formalize the preprocessing step. For simplicity
we use continuous notation, but in the practice both the signal and its spectrum are given
by their samples, of course. In our system we calculate 512 samples from the spectrum
between 0 and 11025Hz in every 10ms.

2.0.1 Notations

Let us denote the moments of time by Tpnt where Tpnt := IR+ the non-negative real
numbers. We introduce the notation Tintv for time intervals: Tintv := {(t1, t2) ∈ Tpnt ×
Tpnt : t1 < t2}. The input speech is given by v : Tpnt → IR which represents the signal as a
function of time. After decomposition of the signal into sinusoid waves the valid range of
frequencies is denoted by H. (Usually, H = [0, 11025])

Definition 2.1 We define the result of preprocessing as an Spc : Tpnt ×H → IR+ function

for which:

Spc(t, h) :=

∣

∣

∣

∣

∫ ∞

−∞

v(l)w(l − t)e−ihldl

∣

∣

∣

∣

Kocsor, A. et al.: An overview of the OASIS speech recognition project 3

holds. This function determines the intensity of frequency h at the moment t. w is the

Hamming window employed by the system.

3 Acoustic features

This phase is absent in standard speech recognizers; there the values of the smoothed
spectrum are considered as ”features”. In our system we made, and plan to make more
experiments with extraction of phonetically meaningful features like “sonorancy”, “voiced-
ness” and such [5], but currently the energies of four spectral bands serve as our main
features, which is a very coarse representation, but surprisingly it yielded quite good re-
sults. We use two types of features in the system; the ones belonging in the first type
are called ”time-point features”, which means they are defined at each time point of the
signal and simulate the output of feature extractor neurons. After this, a coarse segmen-
tation of the signal is performed (also based on certain features). It is supposed that in
later stages the brain integrates information over these segments; this is simulated by our
”interval-features”, or ”cues”, which are defined in a time-interval. The values of these
interval-features form the basis of the recognition.

Definition 3.1 A f : Tpnt → IR+ function is called time-point feature by definition iff f(t)
depends only on the intensity of frequencies at the moment t.

Here we show some examples of time-point features some of which will be of special interest
later on:

f1
[a,b](t) :=

∫ b

a
Spc(t, h)dh, 0 ≤ a < b,

f2
[a,b](t) := maxa≤h≤b Spc(t, h)dh, 0 ≤ a < b,

f3
[a,b](t) := mina≤h≤b Spc(t, h)dh, 0 ≤ a < b.

Definition 3.2 A g : Tintv → IR+ function is called interval feature iff g(t1, t2) is defined

by the values of Spc(t, h), (t1 ≤ t ≤ t2).

Interval features generated from an arbitrary time-point feature f(t) are:

g1
f (t1, t2) := maxt∈[t1,t2] f(t) g3

f (t1, t2) := g1
f (t1, t2) − g2

f (t1, t2)

g2
f (t1, t2) := mint∈[t1,t2] f(t) g4

f (t1, t2) :=

∫

t2

t1
f(t)dt

t2−t1

Features for later use are:

κ1(t1, t2) :=

∫

t2

t1
f1
[0,800](t)dt

t2−t1
κ2(t1, t2) :=

∫

t2

t1
f1
[800,1800](t)dt

t2−t1

κ3(t1, t2) :=

∫

t2

t1
f1
[1800,4500](t)dt

t2−t1
κ4(t1, t2) :=

∫

t2

t1
f1
[4500,11025](t)dt

t2−t1

κ5(t1, t2) :=

∫

t2

t1
f1
[0,11025](t)dt

t2−t1
κ6(t1, t2) := t2 − t1

κ7(t1, t2) :=

(

max
t∈[t1,t2]

f1
[0,11025](t)

)

−

(

min
t∈[t1,t2]

f1
[0,11025](t)

)

During the empirical investigation we used the interval features denoted by κ. All,
except from, κ6(t1, t2) were derived from f1

[a,b] (defined above). κ6(t1, t2) is a trivial interval-

feature.

Kocsor, A. et al.: An overview of the OASIS speech recognition project 4

4 Segmentation of speech

Definition 4.1 An array of sk = [t0, t1, · · · , tk] is called segmentation if 0 = t0 < t1 <

· · · < tk holds.

A segmentation is called ideal if every phoneme in the speech fits onto one [ti, tj] interval
where i, j ∈ {0, · · · , k}, i < j. Our aim is to produce an ideal segmentation where j− i < 6
holds for every phoneme. This restriction reduces the size of the search space significantly
and it should not be a difficult task for any segmenting algorithm.
In our system the segmentation is obtained with the help of the following algorithm:

• We divide the spectra into four part and take one time-point feature for each that
characterizes it, namely: α1 = f1

[0,800](t), α2 = f1
[800,1800](t), α3 = f1

[1800,4500](t) and

α4 = f1
[4500,11025](t).

• Then we construct the function lc(t) = max1≤i≤4 |αi(t − c) − αi(t + c)| with an ap-
propriate constant c. In general c = 20 millisecond was found satisfactory.

• Then the segment bounds are placed at the local maxima of lc(t).

This method results in a segmentation that can be regarded as ideal from the point of view
of the application.

5 Hypothesis space

The method presented below is suitable for any type of dictionary and any kind of language.
However for a concrete practical application we sought to focus on a particular problem.
We chose to develop a system that recognizes spoken numbers in the Hungarian language.
From now on, word means series of phonemes. Phonemes are denoted by p, for instance
p1 · · · pj means a word containing j phonemes.

5.1 Dictionary

The dictionary contains the spoken forms of the words we plan to recognise. The words are
stored as phoneme series. According to the particular goal we wanted to achieve (i.e. to
identify spoken numbers) our dictionary was built from words and word parts that allow us
to phonetically describe all the numbers between 0 and 999,999,999 using the concatenation
operator. In the Hungarian language this meant 26 different dictionary entries.

5.2 Hypothesis space

Let W be the set of words meaning numbers between 0 and 109 − 1. Let Prefk(W) mean
the set of the k-long prefixes of all the words in W that contain at least k phonemes.
For a given sn = [t0, t1, · · · , tn] segmentation which defines n intervals we can make the
set Sk = {[ti0 , ti1 , · · · , tik

] : 0 = i0 < i1 < · · · < ik ≤ n} which we call the set of sub-
segmentations over sn with k elements (intervals). Furthermore, to reduce the number of
elements in Sk we can assume that il+1 − il < 6, 0 ≤ l ≤ k − 1.

Now we shall recursively define the search tree. Let us denote the root by v0 and link
it to every element of the set Pref1(W) × S1. These are the first level vertices.

Kocsor, A. et al.: An overview of the OASIS speech recognition project 5

m

m m mm

Q
Q

Q
Q

QQ

PPPPPPPPPPP

XXXXXXXXXXXXXX

"
"

"
"

""

mmmmmmmmmmmm

T
T
TT

¤
¤
¤¤

·
·

··

½
½

½
½½

©©©©©©©

Z
Z

Z
ZZ

S
S

SS

·
·

··

½
½

½
½½

©©©©©©©

k k k k k k k l k k k k

J
J

JJ

T
T
TT

T
T
TT

e
e

ee

B
B
BB

A
A
AA

¦
¦
¦¦

·
·

··

¡
¡

¡¡

v0

v1 v2 v3 v4

v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28

Figure 1: Tree representation of the hypothesis space with s4 = [0, 100, 160, 200, 270] seg-
mentation and W = {p1p2p3, p1p2p4, p1p3p4} as a dictionary

Having a particular (p1p2 · · · pj , [ti0 , · · · , tij
]) leaf given, add all

(p1p2 · · · pjpj+1, [ti0 , · · · , tij
, tij+1

]) ∈ Prefj+1(W) × Sj+1

points to the tree as descendants of the given leaf. Repeat this step until there are no
points to be added. Then the tree is complete. Please note that every vertex in the tree at
level n has n phonemes and n interval. Ancestors are similar to their descendants except
the last phoneme and the last interval.

During recognition our aim is to reach a leaf (p1p2 · · · pj , [ti0 , · · · , tij
]) such that p1p2 · · · pj ∈

W holds. We will call this kind of leaves terminating leaves.
In Figure 1 we present a hypothesis space with four different phonemes: p1, p2, p3 and

p4. Let us suppose a segmentation s4 = [0, 100, 160, 200, 270] and a dictionary consisting
of the words p1p2p3, p1p2p4 and p1p3p4. The table below works as a legend for figure 1; it
describes the vertices vi, (1 ≤ i ≤ 28) on the figure.

v1 := (p1,[0,100]) v9 := (p1p3,[0,100,200]) v17 := (p1p2p3,[0,100,160,200])

v2 := (p1,[0,160]) v10 := (p1p3,[0,100,270]) v18 := (p1p2p3,[0,100,160,270])

v3 := (p1,[0,200]) v11 := (p1p2,[0,160,200]) v19 := (p1p2p4,[0,100,160,200])

v4 := (p1,[0,270]) v12 := (p1p2,[0,160,270]) v20 := (p1p2p4,[0,100,160,270])

v5 := (p1p2,[0,100,160]) v13 := (p1p3,[0,160,200]) v21 := (p1p2p3,[0,100,200,270])

v6 := (p1p2,[0,100,200]) v14 := (p1p3,[0,160,270]) v22 := (p1p2p4,[0,100,200,270])

v7 := (p1p2,[0,100,270]) v15 := (p1p2,[0,200,270]) v23 := (p1p3p4,[0,100,160,200])

v8 := (p1p3,[0,100,160]) v16 := (p1p3,[0,200,270]) v24 := (p1p3p4,[0,100,160,270])

v25 := (p1p3p4,[0,100,200,270])

v26 := (p1p2p3,[0,160,200,270])

v27 := (p1p2p4,[0,160,200,270])

v28 := (p1p3p4,[0,160,200,270])

While v4, v7, v10, v12, v14, · · · , v28 are leaves of the tree, only v17, · · · , v28 are terminating
leaves.

Kocsor, A. et al.: An overview of the OASIS speech recognition project 6

5.3 Evaluation function

We shall define a δ function that maps a non-negative real value to any arbitrary [t1, t2]
time interval and p phoneme. The value of δ is lower if p fits well onto the input signal
between [t1, t2] and is higher if p does not fit. How such a function is obtained is discussed
in the next section of the paper.

Assuming we have this δ we can define a weight function named ∆ on every node of
the search tree as follows: ∆(p1p2 · · · pj , [ti0 , · · · , tij

]) :=
∑j

k=1 δ(tik−1
, tik

, pk). Our task
will be to search among the terminating leaves and find the one that has a minimal weight
(according to ∆).

5.4 Search method

Naturally there are many methods to scan the hypothesis space with. However, two basic
ideas are worth considering:

• During the search we should mark the best solution so far.

• If the node under investigation has a greater weight than the best solution presently
we can skip over this node and all its descendants. This is due to the monotonicity
of ∆.

Our method was a slightly modified version of depth-first search algorithm in which we used
the ideas above. At any node of the search tree the algorithm dives to the most promising
unvisited child. If there are no more unvisited child nodes the back-track step pops up to
the parent node. If a terminating leaf is reached then the value is compared to the best
value so far, and optionally stored. During diving and back-track we lock node v as a dead
end if ∆(v) is better than the best result so far.

6 Various evaluation functions

Up to this point we have described a fairly general system. As soon as we define one
particular evaluator function, however, it determines the behaviour of the whole application.
We will address two essentially different evaluator functions in this section but they have
one thing in common, namely they require a database which we use to build them.

6.1 Database

As mentioned above, 26 words are enough to build the Hungarian number names from 0
to 109 − 1 with concatenation. Our group made a small but to some degree representative
database from these words. 10 people (males, females and children) were asked to pronounce
those 26 words twice, and we recorded them at 22050Hz sampling rate. The created files
together then constituted our sample base.

This base went through the pre-processing phase and segmentation was done manually.
In this way we obtained a database that has phonemes as the smallest entries. The total
number of the phonemes was about 2000, there being 32 different kind of them. Denoting
the database with A, it could be described as follows:

A :={ [(t
i1
1
,t

i1
1
+1

),(t
i1
2
,t

i1
2
+1

),···,(t
i1
l1

,t
i1
l1

+1
),p1],

...

[(t
i32
1

,t
i32
1

+1
),(t

i32
2

,t
i32
2

+1
),···,(t

i32
l32

,t
i32
l32

+1
),p32]}

Kocsor, A. et al.: An overview of the OASIS speech recognition project 7

A has a single line for every pj , and the (ti, tk) intervals are the locations in A where pj

occurs.

6.2 Evaluation functions

First we have to choose r different interval features, namely τ1(t1, t2), · · · , τ r(t1, t2). The
more they characterise the phonemes the better they are. In our case which is described
in the results section we used κ1, · · · , κ7 as they are defined in Section 3. We have to show
how to generate δ from these. With a given δ, ∆ is to be computed as mentioned in 5.3.

6.2.1 Statistical averages based weighting function

Let

δ(t1, t2, pj) :=

r
∑

c=1

(

exp

(

(τ c(t1, t2) − o(pj , c))
2

σ2(pj , c)

)

− 1

)

,

where o(pj , c) is the average of τ c values for a given pj phoneme at every occurrence of pj

in the database and σ2(pj , c) defines the standard deviation of the same values:

o(pj , c) :=

∑

lj

s=1
τc(t

i
j
s

,t
i
j
s+1

)

lj
, σ2(pj , c) :=

∑lj
s=1

(

o(pj ,c)−τc(t
i
j
s

,t
i
j
s+1

)

)2

lj
.

6.2.2 C4.5 based weighting function

We used a dedicated software package with built-in C4.5 capabilities [4]. The training
database was a restricted version of A, one speaker being left out. The output of the C4.5
learning mechanism was a T̂ decision tree. For a given (t1, t2) interval of the pre-processed

speech signal T̂ results in one phoneme of the phoneme set according to the values of
τ1(t1, t2), · · · , τ

r(t1, t2). Let us denote the result phoneme with T̂ (τ1(t1, t2), · · · , τ
r(t1, t2)).

As the learning process is not 100 percent accurate we defined a conditional probability
matrix (confusion matrix) P with the aid of the database A. A Pjk element in the matrix

represents the probability of that T̂ maps the pk phonemes in A into pj . Obviously higher
values in the diagonal of P mean better learning results.

By definition:

Pjk :=

∣

∣

∣

{

j : pj = T̂ (τ1(tik
s
, tik

s+1), · · · , τ
r(tik

s
, tik

s+1)), 1 ≤ s ≤ lj

}∣

∣

∣

lj
, 1 ≤ j, k ≤ 32.

δ is defined, using the values of P , as:

δ(t1, t2, pj) := 1 − Pjk, where T̂ (τ1(t1, t2), · · · , τ
r(t1, t2)) = pk.

7 Results

We should recall that database A contains samples from 10 different speaker. By taking
out the samples belonging to one particular speaker, we created A1, · · · , A10 restricted
databases. The databases were segmented manually. For each of these databases we created
the statistical average-based evaluator function (SABEF, see 6.2.1) and the C4.5 based

Kocsor, A. et al.: An overview of the OASIS speech recognition project 8

evaluator function (see 6.2.2). Then we run a recognizer with every evaluator function on
the training database and on the words that were left out, as well. The table below contains
the results achieved with the different evaluator functions obtained from A1, · · · , A5. The
values show the percentage of the correct identification of words using a specific ∆ on
two test inputs: on one hand the database that was used for obtaining ∆ (marked as
“TRAINING”) and on the other hand the words that were omitted from the training
database (marked as “TEST”).

SABEF TEST TRAINING C4.5 TEST TRAINING

∆1
1 94.23 92.03 ∆2

1 96.15 92.58

∆1
2 94.23 92.30 ∆2

2 94.23 92.86

∆1
3 92.30 93.13 ∆2

3 92.30 93.13

∆1
4 90.38 92.03 ∆2

4 90.38 93.40

∆1
5 76.92 93.96 ∆2

5 82.69 94.50

averages 89,61 92.69 averages 91.15 93.29

7.1 Conclusion

Summarizing the results, we can say that the present system produces correct output in
90-92% of cases on both type of inputs (test & training). This is true regardless whether
we use C4.5 learning or the average-based functions. Considering the present (slightly
artificial) conditions that manifests in relatively small database and few interval features
we consider these results satisfactory.

There are some promising results with automatic segmentation as well. However, it
is one of our most important tasks to make an exhaustive investigation concerning the
efficiency of the segmentation algorithm. We also plan a slight modification in the aver-
age based weight function, namely to use weighting factors when cumulating the interval
features. The weights are to be defined by the training set so that they could reinforce
the characterising power of the interval features. Finally, addition of new interval fea-
tures would be necessary to increase the discrimination power of the system. Currently
we exploit the fact that the dictionary does not contain very similar words, but for such a
case introducing special interval features that allow of fine phonetic distinctions would be
crucial.

References

[1] H. Bourlard, H. Hermansky, N. Morgan: Towards Increasing Speech Recognition Error Rates,
Speech Communication, Vol. 18 (1996), 205-231.

[2] J. Glass, J. Chang, M. McCandless: A Probabilistic Framework for Features-Based Speech
Recognition, Proc. Int. Conf. on Spoken Language Processing, October 1996, Philadelphia,
PA, 2277-2280

[3] J.B. Allen: How do Humans Process and Recognize Speech? IEEE Trans. Speech Audio

Process., Vol. 2. No. 4, 567-577.

[4] J.R. Quinlan: C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA,
1993.

[5] A.V. Hansen: Acoustic-Phonetic Features used in Automatic Speech Recognition, Ph.D.

dissertation, Aalborg University, Denmark, 1999.

