
Code Factoring in GCC

Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes
Department of Software Engineering

Institute of Informatics
University of Szeged, Hungary

{loki,akiss,jasy,beszedes}@inf.u-szeged.hu

Abstract

Though compilers usually focus on optimizing
for performance, the size of the generated code
has only received attention recently. On gen-
eral desktop systems the code size is not the
biggest concern, but on devices with a limited
storage capacity compilers should strive for as
small a code as possible. GCC already con-
tains some very useful algorithms for optimiz-
ing code size, but code factoring – a very pow-
erful approach to reducing code size – has not
been implemented yet in GCC. In this paper we
will provide an overview of the possibilities of
using code factoring in GCC. Two code fac-
toring algorithms have been implemented so
far. These algorithms, using CSiBE as a bench-
mark, produced a maximum of 27% in code
size reduction and an average of 3%.

1 Introduction

In the recent years handheld devices such as
PDAs, telephones and smartphones are becom-
ing more important. With these systems the
amount of runtime memory and storage capac-
ity is often very limited but at the same time
the need for more sophisticated software is in-
creasing. Hence powerful size reducing meth-

ods are required to cram new features into the
applications.

Although GCC already contains size reducing
algorithms, further optimization techniques are
needed since GCC is already used for compil-
ing for handheld devices. The official com-
piler for the increasingly popular Symbian OS-
based mobile phones is GCC [8], some PDAs
like the iPAQs already have Linux ports [9]
(where, needless to say, the default compiler is
GCC) and Linux-based mobile phones are also
available.

In this paper we will provide an overview on
code factoring, a class of powerful optimiza-
tion techniques for code size reduction, and
present a new, enhanced algorithm for proce-
dural abstraction. These algorithms have been
implemented in GCC and have resulted in 3%
code size reductions on average, while achiev-
ing a 27% reduction in the best cases, based on
the CSiBE benchmark [5].

The rest of the paper is organized as follows.
In Section 2 we introduce code factoring and
present a new enhancement for procedural ab-
straction. In Section 3 we discuss some de-
tails of the implementation of the algorithms
in GCC, while in Section 4 we give our experi-
mental results. Finally, in Section 5 we present
our conclusions and future plans.



2 Code Factoring

Code factoring is the name of a class of use-
ful optimization techniques developed explic-
itly for code size reduction [1, 2, 3, 4]. These
approaches aim to reduce size by restructur-
ing the code. The following subsections will
discuss two code factoring algorithms, one
of which works with individual instructions,
while the other handles longer instructions se-
quences.

2.1 Local Factoring

The optimization strategy of local factoring
(also known as local code motion, code hoist-
ing and code sinking) is to move identical in-
structions from basic blocks to their common
predecessor or successor, if they have any. The
semantics of the program have to be preserved
of course, thus only those instructions which
neither invalidate any existing dependences nor
introduce new ones may be moved. Figure 1a
shows a control-flow graph (CFG) with basic
blocks containing identical instructions. To ob-
tain the best size reduction some of the instruc-
tions are moved upwards to the common pre-
decessor, while some are moved downwards to
the common successor. Figure 1b shows the
result of the transformation.

Let us now consider some more complicated
cases. While not frequent, it may occur that
multiple basic blocks have more than one pre-
decessors, all of which are common. In this
case, if the basic blocks in question have iden-
tical instructions and the number of predeces-
sors is less than the number of the examined
blocks, then the instructions shall be moved to
all the predecessors. Figure 2 depicts this case.
A similar situation is when basic blocks have
more than one common successors (see Figure
3.) Furthermore, in the case of sinking even

?
A
B

��� HHj
C
D
E
F
G
H

I
E
H
G
J

?
A
GXXXXz?

����9
K
L
?

?
A
E
H
B

��� HHj
C
D
F

I
J ?

AXXXXz?
����9

G
K
L
?

(a) (b)

Figure 1: Local code factoring. CFG (a) be-
fore and (b) after the transformation. Identical
letters denote identical instructions.

?
A
B

?
C
D

�
�	

@
@R

PPPPPPq

������)
�

�	
@

@R
E
F
G
H
?

I
F
J
?

F
K
?

?
A
F
B

?
C
F
D

�
�	

@
@R

PPPPPPq

������)
�

�	
@

@R
E
G
H
?

I
J
?

K
?

(a) (b)

Figure 2: Basic blocks with multiple common
predecessors (a) before and (b) after local fac-
toring.

those instructions that are not present in all of
the blocks may be moved by creating a new
successor block for them. Figure 4 shows an
example CFG for this case.

Except for this last case, which involves the
creation of a new basic block, local factoring
has an additional benefit of being good for per-
formance also.

2.2 Procedural Abstraction

Procedural abstraction is a size optimization
method which, unlike local factoring, works



?
A
B
C

?
D
C
E

?
F
G
C

@
@R

PPPPPPq
�

�	
@

@R

������)
�

�	
H
?

I
?

?
A
B

?
D
E

?
F
G

@
@R

PPPPPPq
�

�	
@

@R

������)
�

�	
C
H
?

C
I
?

(a) (b)

Figure 3: Basic blocks with multiple common
successors (a) before and (b) after local factor-
ing.

?
A
B
C
D

?
E
A
C
D

?
F
G
C
HXXXXz?

����9
I
?

?
B

?
E

HHj ���
A
D

?
F
G
HPPPq

���)
C
I
?

(a) (b)

Figure 4: Basic blocks with multiple common
successors but only partially common instruc-
tions (a) before and (b) after local factoring.

with whole single-entry single-exit code frag-
ments (instruction sequences smaller than a ba-
sic block, whole blocks or even larger units)
instead of single instructions. The main idea
of this technique is to find identical regions of
code, which can be turned into procedures, and
then replace all occurrences with calls to the
newly created subroutine.

The existing solutions [2, 4] can only deal with
such code fragments that are either identical
or equivalent in some sense or can be trans-
formed somehow (e. g. by means of register re-
naming) to an equivalent form. However, these
approaches fail to find an optimal solution for
those cases where an instruction sequence is
equivalent to another one, while a third one is
only identical with its suffix (as shown in Fig-
ure 5a). The current solutions either choose
to abstract the longest possible sequence into a

function and leave the shorter one unabstracted
(Figure 5b) or turn the instructions common in
all sequences into a function and create another
new function from the remaining common part
of the longer sequences, thus introducing the
overhead of the inserted extra call/return code
(Figure 5c).

In this paper we propose to create multiple-
entry functions in the cases described above to
allow the abstraction of instruction sequences
of differing lengths without the overhead of su-
perfluous call/return code. The longest possi-
ble sequence shall be chosen as the body of
the new function and entry points need to be
defined according to the length of the match-
ing sequences. Each matching sequence has to
be replaced with a call to the appropriate en-
try point of the new function. Figure 5d shows
the optimal solution for the problem depicted
in Figure 5a.

Needless to say, procedural abstraction intro-
duces some performance overhead with the ex-
ecution of the inserted call and return code.
Moreover, the size overhead of the inserted
code must also be taken into account. The ab-
straction shall only be carried out if the gain
resulting from the elimination of duplicates ex-
ceeds the loss arising from the insertion of ex-
tra instructions.

3 Implementation details

GCC already contains some algorithms similar
to those discussed in Section 2, but they usu-
ally reduce code size only if the transformation
does not introduce a (significant) performance
overhead. Furthermore, they are usually of less
potential than the previously described ones.
The cross-jumpingalgorithm merges identical
tails of basic blocks, but this approach can only
deal with a very limited subset of the generic



?

A

B

C
?

?

D

E

B

F
?

?
G

E

B

H
?

?

A

B

C
?

?

D

call

?
G

call
HHj ���

E

B

ret
HHj���

F
?

H
?

(a) (b)
?

D

call

?
G

call
HHj ���

E
ret
HHj���

?

A
call call callXXXXz?

����9

B

ret����9 ?
XXXXz

C
?

F
?

H
?

?

A
callXXXXz

����9
C
?

?

D

call
?

E
?

B

ret
?

F
?

?
G

call����9

XXXXz
H
?

(c) (d)

Figure 5: Abstraction of (a) instruction se-
quences of differing lengths to procedures us-
ing different strategies (b,c,d). Identical letters
denote identical sequences.

problems of procedural abstraction. Another
algorithm, calledif conversion, has a similar
effect on the code as local factoring when fol-
lowed by acombinephase . As contrast to local
factoring,if conversionis bound to conditional
jumps.

Both of the new algorithms have been imple-
mented as new RTL optimization phases in
GCC (a snapshot taken from mainline on 2004-
03-10 12:00:00 UTC.) Using the RTL rep-
resentation algorithms can optimize only one
function at a time. Although procedural ab-

straction is inherently an interprocedural op-
timization technique, it can be adapted to in-
traprocedural operation. Instead of creating
a new function from the identical code frag-
ments, one representative instance of them has
to be retained in the body of the processed
function and all the other occurrences will be
replaced by code transferring control to the
retained instance. To preserve the semantics
of the original program, however, the point
where control has to be returned after the exe-
cution of the retained instance must be remem-
bered somehow, thus the subroutine call/return
mechanism has to be mimed. In the current im-
plementation we use labels to mark the return
addresses, registers to store references to them
and jumps on registers to transfer control back
to the “callers.”

Unfortunately, the current implementation of
the enhanced procedural abstraction algorithm
suffers from the problem of increasing the
compilation time by a factor of 2–4 on aver-
age. This stems from the complex problem of
finding the optimal candidates for abstraction.
However, we hope that by applying more effi-
cient algorithms we will be able to bring down
the compilation time factor to a manageable
level.

For the sake of simplicity, local factoring has
been split into two parts and implemented in
GCC as two individual algorithms. One of the
algorithms implements the hoisting of instruc-
tions, i. e. moving them upwards to their pre-
decessor blocks, while the other one is respon-
sible for the sinking of the instructions, that is
move them downwards to their successor ba-
sic blocks. A central problem for both algo-
rithms is to decide whether an instruction may
be moved freely out from its block. An in-
struction cannot be moved across instructions,
which use parameters defined by the instruc-
tion or define parameters used or defined by the
instruction. GCC provides methods for gather-



ing the required definition/use information for
the whole processed function. However, from
a local factoring point of view, these methods
are too expensive since only a small portion of
the computed information is used. Therefore
the implementation contains a “slim” version
of the definition/use calculation code. Being
sensitive to the compilation time in the imple-
mentation, we also made it possible to parame-
terize the maximum number of instructions the
algorithms should analyze starting from the top
or bottom of the basic blocks when looking for
candidates of motion.

The implementation of the two algorithms are
publicly available. They have been sent in form
of patches to the appropriate mailing list [6, 7].

4 Results

On examining code size we found the code fac-
toring algorithms had impressive effects. We
evaluated the discussed algorithms with the
help of CSiBE, the GCC Code Size Bench-
mark Environment, version 1.1.1, and found
that a 3% code-size reduction can be achieved
on average, but in some cases they are able to
produce reduction ratios as high as 27%. Ta-
ble 1 details the average code size reduction
achieved by each algorithms on some relevant
targets. The table also shows the combined ef-
fect of the techniques. The figures are relative
to the unmodified GCC optimizing for size, i. e.
optimizing with -Os . Table 2 shows the best
figures for each algorithm.

5 Conclusion and future plans

In this paper we gave an overview of two code
factoring algorithms and provided an enhance-
ment to procedural abstraction, which provides

Target Local Procedural Combined
Factoring Abstraction

arm-elf 0.148% 2.785% 3.120%
i386-elf 0.701% 1.356% 2.052%
i686-linux 0.696% 1.448% 2.143%
m68k-elf 0.092% 2.312% 2.401%

Table 1: Average code size reduction achieved
by code factoring algorithms.

Target Local Procedural Combined
Factoring Abstraction

arm-elf 3.794% 27.230% 27.342%
i386-elf 14.621% 13.210% 16.795%
i686-linux 11.592% 13.261% 17.389%
m68k-elf 1.468% 23.174% 23.174%

Table 2: Maximum code size reduction
achieved by code factoring algorithms.

superior results compared to the existing so-
lutions. We implemented the discussed al-
gorithms in GCC and achieved a 3% code-
size reduction on average, based on the CSiBE
benchmark. In the best cases the optimizations
yielded reduction ratios as high as 27%.

From the nature of procedural abstraction it
follows that it can optimize larger inputs bet-
ter than small ones. To be able to utilize the
full potential of the algorithm the current im-
plementation has to be modified so that it can
work interprocedurally, which means a unit-at-
a-time in GCC terminology instead of working
intraprocedurally, i. e. transforming only one
function at a time. This may necessitate rewrit-
ing the implementation so it can work on the
GIMPLE representation, as some feedback al-
ready suggested. We are also aware of the algo-
rithm complexity problem and have been striv-
ing to improve the implementation in order to
reduce the compilation time by applying more
efficient algorithms.

We are already investigating the possibility
of making the local factoring implementation



work on GIMPLE also, even if the algorithm
cannot be extended to work interprocedurally,
since GIMPLE is now preferred over RTL. Our
preliminary results are very promising.

When we have finished with our ongoing re-
search, we also plan to consider the adapta-
tion and implementation of other algorithms
in GCC such as the procedural abstraction of
single-entry single-exit regions larger than a
basic block or the compaction of matching
single-entry multiple-exit regions.

References

[1] Wen-Ke Chen, Bengu Li, and Rajiv Gupta.
Code compaction of matching single-entry
multiple-exit regions. InProc. 10th Annual
International Static Analysis Symposium,
pages 401–417, June 2003.

[2] Keith D. Cooper and Nathaniel McIntosh.
Enhanced code compression for embed-
ded RISC processors. InProc. ACM SIG-
PLAN Conference on Programming Lan-
guage Design and Implementation, pages
139–149, 1999.

[3] Bjorn de Sutter, Bruno de Bus, Koen
de Bosschere, and Saumya Debray. Com-
bining global code and data compaction. In
Proc. ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Tools for Embed-
ded Systems, 2001.

[4] Saumya K. Debray, William Evans, Robert
Muth, and Bjorn de Sutter. Compiler tech-
niques for code compaction.ACM Trans-
actions on Programming Languages and
Systems, 22(2):378–415, 2000.

[5] Department of Software Engineering, Uni-
versity of Szeged. GCC code-size bench-
mark environment (CSiBE). http://
www.inf.u-szeged.hu/CSiBE .

[6] Department of Software Engineering,
University of Szeged. [patch] Local fac-
toring algorithms. http://gcc.gnu.
org/ml/gcc-patches/2004-03/
msg01907.html .

[7] Department of Software Engineering,
University of Szeged. [patch] Sequence
abstraction. http://gcc.gnu.
org/ml/gcc-patches/2004-03/
msg01921.html .

[8] Symbian Ltd. Symbian OS.http://
www.symbian.com .

[9] The Familiar Project. Familiar dis-
tribution. http://familiar.
handhelds.org .


