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Fuzzy SetsFuzzy SetsFuzzy Sets

The original Zadeh’s definition of a fuzzy set is:

A fuzzy subset of a set A is any mapping f : A → [0, 1], where [0, 1]

is the real unit closed interval.

For x ∈ A, the value f(x) is interpreted as

the degree of membership of x to f

that is

the truth value of the proposition ’x ∈ f ’

Of course, if f takes values only in the set {0, 1}, then it is treated as

an ordinary crisp subset of A.
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Structures of Truth ValuesStructures of Truth ValuesStructures of Truth Values

Nowadays, various more general structures of truth values are used

instead of [0, 1].

➠ Gödel algebras (algebraic counterpart of the Gödel logic)

➠ MV-algebras or Wajsberg algebras ( Lukasiewicz logic)

➠ Product algebras (Product logic)

➠ BL-algebras (Basic fuzzy logic)

➠ Heyting algebras (Intuitionistic logic)

➠ Complete residuated lattices (Residuated logic)

➠ Complete orthomodular lattices (Quantum logic), and others.

Here we work with complete residuated lattices, which include the first

five kinds of the above mentioned algebras as special cases.
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Complete Residuated LatticesComplete Residuated LatticesComplete Residuated Lattices

A residuated lattice is an algebra L = (L, ∧, ∨, ⊗, →, 0, 1) satisfying

the following conditions

(L1) (L, ∧, ∨, 0, 1) is a lattice with the least element 0 and the greatest

element 1,

(L2) (L, ⊗, 1) is a commutative monoid with the unit 1,

(L3) ⊗ and → form an adjoint pair, i.e., they satisfy the adjunction

property: for all x, y, z ∈ L,

x ⊗ y 6 z ⇔ x 6 y → z.

If, in addition, (L, ∧, ∨, 0, 1) is a complete lattice, then L is called a

complete residuated lattice.
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Complete Residuated LatticesComplete Residuated LatticesComplete Residuated Lattices

The operation ⊗ is called a multiplication, and → a residuum.

They are intended for modeling the conjunction and implication of the

corresponding logical calculus.

Supremum
∨

and infimum
∧

are intended for modeling of the general

and existential quantifier, respectively.

A biresiduum or biimplication in L is an operation ↔ defined by

x ↔ y = (x → y) ∧ (y → x),

It is used for modeling the equivalence of truth values.

A negation in L is a unary operation ¬ defined by

¬x = x → 0.
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Łukasiewicz, Product and Gödel OperationsŁukasiewicz, Product and Gödel OperationsŁukasiewicz, Product and Gödel Operations

The most studied and applied set of truth values is the real unit interval

[0, 1] with

x ∧ y = min(x, y), x ∨ y = max(x, y),

and three important pairs of adjoint operations:

➠  Lukasiewicz operations

x ⊗ y = max(x + y − 1, 0), x → y = min(1 − x + y, 1),

x ↔ y = 1 − |x − y|, ¬x = 1 − x;
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Łukasiewicz, Product and Gödel OperationsŁukasiewicz, Product and Gödel OperationsŁukasiewicz, Product and Gödel Operations

➠ Product operations

x ⊗ y = x · y, x → y =

{
1 if x 6 y

y/x otherwise
,

x ↔ y =
min(x, y)

max(x, y)
, ¬x =

{
1 for x = 0

0 for x > 0
;

➠ Gödel operations

x ⊗ y = min(x, y), x → y =

{
1 if x 6 y

y otherwise
,

x ↔ y =

{
1 for x = y

min(x, y) otherwise
, ¬x =

{
1 for x = 0

0 for x > 0
;
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Łukasiewicz, Product and Gödel OperationsŁukasiewicz, Product and Gödel OperationsŁukasiewicz, Product and Gödel Operations

Another important set of truth values is

{a0, a1, . . . , an}, 0 = a0 < · · · < an = 1,

with

ak ⊗ al = amax(k+l−n,0), ak → al = amin(n−k+l,n).

A special case of the latter algebras is the two-element Boolean algebra

of classical logic with the support {0, 1}.

The only adjoint pair on it consist of the classical conjunction and

implication operations.
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Fuzzy Sets RevisitedFuzzy Sets RevisitedFuzzy Sets Revisited

Let L will be a complete residuated lattice.

A fuzzy subset of a set A over L , or simply a fuzzy subset of A, is

any mapping f : A → L.

The set F (A) of all fuzzy subsets of A we call the fuzzy power set of A.

For f, g ∈ F (A) we define

Equality: f = g if and only if f(x) = g(x), for every x ∈ A

Inclusion: f 6 g if and only if f(x) 6 g(x), for every x ∈ A

The meet or intersection
∧

i∈I fi and the join or union
∨

i∈I fi of a

family {fi}i∈I ⊆ F (A) are mappings from A into L defined by
(
∧

i∈I

fi

)
(x) =

∧

i∈I

fi(x),

(
∨

i∈I

fi

)
(x) =

∨

i∈I

fi(x).
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Fuzzy Sets RevisitedFuzzy Sets RevisitedFuzzy Sets Revisited

The crisp part of a fuzzy subset f ∈ F (A) is a crisp set defined by

f̂ = {x ∈ A | f(x) = 1}.

A fuzzy relation on A is any mapping µ : A × A → L, i.e., any fuzzy

subset of A × A.

Hence, the equality, inclusion, joins, meets and ordering of fuzzy rela-

tions are defined as for fuzzy sets.
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Fuzzy Equivalence RelationsFuzzy Equivalence RelationsFuzzy Equivalence Relations

A fuzzy relation µ on A is said to be

(R) reflexive or fuzzy reflexive if µ(x, x) = 1, for every x ∈ A;

(S) symmetric or fuzzy symmetric if µ(x, y) = µ(y, x), for all x, y ∈ A;

(T) transitive or fuzzy transitive if for all x, a, y ∈ A

µ(x, a) ⊗ µ(a, y) 6 µ(x, y).

A reflexive, symmetric and transitive fuzzy relation on A is called a

fuzzy equivalence relation, or just a fuzzy equivalence, on A.

With respect to the ordering of fuzzy relations, the set E (A) of all

fuzzy equivalence relations on a set A is a complete lattice.
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Fuzzy Equivalence RelationsFuzzy Equivalence RelationsFuzzy Equivalence Relations

Let µ be a fuzzy equivalence relation on A.

For each a ∈ A we define µa ∈ F (A), i.e., µa : A → L, by:

µa(x) = µ(a, x), for every x ∈ A.

We call µa a fuzzy equivalence class, or just an equivalence class, of µ

determined by the element a.

The set A/µ = {µa | a ∈ A} is called the factor set of A w.r.t. µ.

Its cardinality |A/µ| is called the index of µ, in notation ind(µ).

A fuzzy subset f ∈ F (A) is said to be extensional w.r.t. µ if

f(x) ⊗ µ(x, y) 6 f(y),

for all x, y ∈ A.
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Fuzzy AutomataFuzzy AutomataFuzzy Automata

A fuzzy automaton over L , or simply a fuzzy automaton, is a triple

A = (A, X, δ), where

➠ A and X are sets, called respectively a set of states and an input

alphabet,

➠ δ : A ×X ×A → L is a fuzzy subset of A ×X ×A, called a fuzzy

transition function.

We will always assume that the input alphabet X is finite, but from

methodological reasons we will allow the set of states A to be infinite.

A fuzzy automaton whose set of states is finite is called a finite fuzzy

automaton.
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Fuzzy AutomataFuzzy AutomataFuzzy Automata

Let X∗ denote the free monoid over the alphabet X.

The mapping δ can be extended up to a mapping δ∗ : A×X∗×A → L

as follows: If a, b ∈ A and e ∈ X∗ is the empty word, then

δ∗(a, e, b) =

{
1 if a = b

0 otherwise
,

and if a, b ∈ A, u ∈ X∗ and x ∈ X, then

δ∗(a, ux, b) =
∨

c∈A

δ∗(a, u, c) ⊗ δ(c, x, b).

We have that for all a, b ∈ A and u, v ∈ X∗,

δ∗(a, uv, b) =
∨

c∈A

δ∗(a, u, c) ⊗ δ∗(c, v, b).
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Fuzzy AutomataFuzzy AutomataFuzzy Automata

If δ is a crisp subset of A × X × A, i.e., δ : A × X × A → {0, 1},

then A is an ordinary crisp nondeterministic automaton.

Moreover, if δ is a mapping of A × X into A, then A is an ordinary

deterministic automaton.

Evidently, in these two cases we have that δ∗ is also a crisp subset of

A × X∗ × A, and a mapping of A × X∗ into A, respectively.

Let A = (A, X, δ) be a fuzzy automaton.

Then δ̂, the crisp part of δ, is a crisp subset of A × X × A, and

Â = (A, X, δ̂) is a nondeterministic automaton, called the crisp part

of the fuzzy automaton A .
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Fuzzy LanguagesFuzzy LanguagesFuzzy Languages

A fuzzy language is any fuzzy subset of a free monoid.

A fuzzy automaton A = (A, X, δ) is said to recognize a fuzzy language

f ∈ F (X∗), by a fuzzy set σ of initial states and a fuzzy set τ of final

states, if for any u ∈ X∗,

f(u) =
∨

a,b∈A

σ(a) ⊗ δ∗(a, u, b) ⊗ τ (b).

Here we consider only those fuzzy automata having a single crisp initial

state {a0}.

In this case, A is said to recognize a fuzzy language f ∈ F (X∗) by a

crisp initial state a0 and a fuzzy set τ of final states, if for any u ∈ X∗,

f(u) =
∨

b∈A

δ∗(a0, u, b) ⊗ τ (b).
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Fuzzy LanguagesFuzzy LanguagesFuzzy Languages

In particular, if A is a deterministic automaton, i.e., δ : A × X → A,

then it recognizes a fuzzy language f ∈ F (X∗) by a crisp initial state

a0 and a fuzzy set τ of final states, if for any u ∈ X∗,

f(u) = τ (δ∗(a0, u)).
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Fuzzy Right Congruence AutomataFuzzy Right Congruence AutomataFuzzy Right Congruence Automata

A fuzzy equivalence relation µ on a semigroup S is

➠ a fuzzy left congruence, if µ(a, b) 6 µ(xa, xb), for all a, b, x ∈ S,

➠ a fuzzy right congruence, if µ(a, b) 6 µ(ax, bx), for all a, b, x ∈ S,

➠ a fuzzy congruence, if it is both fuzzy left and right congruence.

For a fuzzy equivalence relation µ on a semigroup S we define fuzzy

relations µ0
l
, µ0

r
and µ0 on S by

µ0
l
(a, b) =

∧

x∈S1

µ(xa, xb), µ0
r
(a, b) =

∧

x∈S1

µ(ax, bx),

µ0(a, b) =
∧

x,y∈S1

µ(xay, xby),

for all a, b ∈ S.
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Fuzzy Right Congruence AutomataFuzzy Right Congruence AutomataFuzzy Right Congruence Automata

We have that

➠ µ0
l

is the largest fuzzy left congruence on S contained in µ;

➠ µ0
r is the largest fuzzy right congruence on S contained in µ;

➠ µ0 is the largest fuzzy congruence on S contained in µ;

➠ if µ is a fuzzy right (left) congruence, then µ0 = µ0
l

(µ0 = µ0
r
).

Therefore, the mappings µ 7→ µ0
l
, µ 7→ µ0

r
and µ 7→ µ0 are opening

operators on the lattice of fuzzy equivalence relations on S, so

➠ µ0
l

is called the fuzzy left congruence opening of µ,

➠ µ0
r is the fuzzy right congruence opening of µ,

➠ µ0 is the fuzzy congruence opening of µ.
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Fuzzy Right Congruence AutomataFuzzy Right Congruence AutomataFuzzy Right Congruence Automata

Now, we will consider fuzzy right congruences on free monoids.

Let µ be a fuzzy right congruence on a free monoid X∗ and let

Aµ = X∗/µ. We define a mapping δµ : Aµ × X × Aµ → L by

(1) δµ(µu, x, µv) = µux(v),

for all u, v ∈ X∗ and x ∈ X.

The mapping δµ is well-defined, and Aµ = (Aµ, X, δµ) is a fuzzy auto-

maton, called a fuzzy right congruence automaton associated with µ.

The transition function can be extended to a function

δ∗

µ
: Aµ × X∗ × Aµ → L by:

(2) δ∗

µ
(µu, p, µv) = µup(v) = µ(up, v),

for all u, v ∈ X∗ and p ∈ X+.
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Fuzzy Right Congruence AutomataFuzzy Right Congruence AutomataFuzzy Right Congruence Automata

Note that δ∗

µ
can be also characterized as follows:

δ∗

µ
(µu, p, µv) =

∧

w∈X∗

µup(w) ↔ µv(w) =
∨

w∈X∗

µup(w) ⊗ µv(w),

for all u, v, p ∈ X∗.

These equalities can be interpreted as

”δ∗

µ
(µu, p, µv) is the degree of equality of the classes µup and µv”, or

”δ∗

µ(µu, p, µv) is the degree of intersection of the classes µup and µv”

A fuzzy right congruence automaton Aµ is usually considered as a fuzzy

automaton with a crisp initial state µe, and then we write

Aµ = (Aµ, X, µe, δµ).
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Fuzzy Right Congruence AutomataFuzzy Right Congruence AutomataFuzzy Right Congruence Automata

When we recognize fuzzy languages by Aµ we always assume that Aµ

starts from the crisp initial state µe.

We say that the automaton Aµ recognizes a fuzzy language f ∈ F (X∗)

by a fuzzy set of final states τ ∈ F (Aµ) if

f(u) =
∨

ξ∈Aµ

δ∗

µ(µe, u, ξ) ⊗ τ (ξ) =
∨

w∈X∗

δ∗

µ(µe, u, µw) ⊗ τ (µw),

for each u ∈ X∗.

Our main result is

Theorem 2. Let µ be a fuzzy right congruence on a free monoid X∗.

A fuzzy language f ∈ F (X∗) is recognized by Aµ if and only if f is

extensional with respect to µ.
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Fuzzy Right Congruence AutomataFuzzy Right Congruence AutomataFuzzy Right Congruence Automata

As known, to any crisp right congruence π on a free monoid X∗ we can

associate a crisp deterministic automaton Aπ = (Aπ, X, λπ), where

Aπ = X∗/π and a mapping λπ : Aπ × X → Aπ is defined by

(3) λπ(πu, x) = πux,

for all u ∈ X∗ and x ∈ X.

Also, λπ can be extended up to λ∗

π : Aπ × X∗ → Aπ so that

(4) λ∗

π
(πu, v) = πuv,

for all u, v ∈ X∗.
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Fuzzy Right Congruence AutomataFuzzy Right Congruence AutomataFuzzy Right Congruence Automata

We prove the following:

Theorem 3. Let µ be a fuzzy right congruence on X∗ and let µ̂ be its

crisp part. Then

(a) Aµ̂ is the crisp part of Aµ;

(b) any f ∈ F (X∗) recognized by Aµ is also recognized by Aµ̂.

Theorem 4. For any fuzzy language f ∈ F (X∗) the following is true:

(a) A fuzzy relation ̺f on X∗ defined by

̺f(u, v) =
∧

w∈X∗

f(uw) ↔ f(vw), for any u, v ∈ X∗,

is the greatest fuzzy right congruence on X∗ such that f is extensional

w.r.t. to it;

(b) A ̺̂f
is a minimal deterministic automaton recognizing f .
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Derivatives of Fuzzy LanguagesDerivatives of Fuzzy LanguagesDerivatives of Fuzzy Languages

For a fuzzy language f ∈ F (X∗) and u ∈ X∗, a fuzzy language

fu ∈ F (X∗) defined by

fu(v) = f(uv), for each v ∈ X∗,

is called a derivative or a (right quotient) of f with respect to u.

Let Af be the set of all derivatives of f , i.e., Af = {fu | u ∈ X∗},

and define a mapping δf : Af × X × Af → L by

(5) δf(fu, x, fv) =
∧

w∈X∗

fux(w) ↔ fv(w),

for all u, v ∈ X∗ and x ∈ X.
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Derivatives of Fuzzy LanguagesDerivatives of Fuzzy LanguagesDerivatives of Fuzzy Languages

We prove:

Theorem 5. For any f ∈ F (X∗), the mapping δf is well-defined and

Af = (Af , X, δf) is a fuzzy automaton isomorphic to A̺f
.

For a fuzzy language f ∈ F (X∗), we also define a mapping

λf : Af × X → Af by

(6) λf(fu, x) = fux,

for any u ∈ X∗ and x ∈ X.

Evidently, λf can be extended up to λ∗

f
: Af × X∗ → Af so that

(7) λ∗

f
(fu, v) = fuv,

for all u, v ∈ X∗.
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Derivatives of Fuzzy LanguagesDerivatives of Fuzzy LanguagesDerivatives of Fuzzy Languages

We also prove:

Theorem 6. For any fuzzy language f ∈ F (X∗), the mapping λf

is well-defined and B = (Af , X, λf) is a deterministic automaton

isomorphic to A ̺̂f
.

Moreover, B is the crisp part of Af , that is B = Âf .

Theorem 7. For any fuzzy language f ∈ F (X∗), both Af and Âf

recognize f with the crisp initial state f and the fuzzy set of final

states τ ∈ F (Af) defined by

τ (g) = g(e),

for any derivative g ∈ Af .

Myhill-Nerode Theory for Fuzzy Languages and Automata – 26 –Myhill-Nerode Theory for Fuzzy Languages and Automata – 26 –Myhill-Nerode Theory for Fuzzy Languages and Automata – 26 –



Nerode’s and Myhill’s Fuzzy RelationsNerode’s and Myhill’s Fuzzy RelationsNerode’s and Myhill’s Fuzzy Relations

Given a fuzzy automaton A = (A, X, δ) and a state a ∈ A.

A fuzzy relation ̺a on the free monoid X∗ defined by

(8) ̺a(u, v) =
∧

b∈A

δ∗(a, u, b) ↔ δ∗(a, v, b),

for u, v ∈ X∗, is called Nerode’s fuzzy relation determined by a.

If A is an initial fuzzy automaton with a crisp initial state a0, then

the fuzzy relation ̺a0
is denoted by ̺A and called a Nerode’s fuzzy

relation of the fuzzy automaton A .

We prove the following:

Theorem 8. For any state a of a fuzzy automaton A = (A, X, δ), the

Nerode’s fuzzy relation ̺a is a fuzzy right congruence on X∗.
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Nerode’s and Myhill’s Fuzzy RelationsNerode’s and Myhill’s Fuzzy RelationsNerode’s and Myhill’s Fuzzy Relations

Theorem 9. Any fuzzy language f ∈ F (X∗) recognized by a fuzzy

automaton A is also recognized by the fuzzy automaton A̺A
.

To a fuzzy automaton A = (A, X, δ), we also assign a fuzzy relation

ϑA on the free monoid X∗ defined by

(9) ϑA (u, v) =
∧

a∈A

̺a(u, v) =
∧

a,b∈A

δ∗(a, u, b) ↔ δ∗(a, v, b),

for u, v ∈ X∗, which is called Myhill’s fuzzy relation of the fuzzy

automaton A .

Theorem 10. For any fuzzy automaton A = (A, X, δ), the Myhill’s

fuzzy relation ϑA is a fuzzy congruence on X∗.
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Nerode’s and Myhill’s Fuzzy RelationsNerode’s and Myhill’s Fuzzy RelationsNerode’s and Myhill’s Fuzzy Relations

Theorem 11. Let µ be a fuzzy right congruence on X∗. Then

(a) Nerode’s fuzzy right congruence of Aµ coincide with µ;

(b) Muhill’s fuzzy congruence of Aµ is the fuzzy congruence opening

of µ.
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Minimality and Finiteness ConditionsMinimality and Finiteness ConditionsMinimality and Finiteness Conditions

Let A = (A, X, a0, δ) be a fuzzy automaton with a crisp initial state a0.

We denote by (LA , ∨, ⊗) the subalgebra of the reduct (L, ∨, ⊗) of L

generated by the set {δ(a, x, b) | a, b ∈ A, x ∈ X}.

For any u ∈ X∗ let a mapping ∆u : A → LA be defined by

∆u(a) = δ∗(a0, u, a),

for each a ∈ A, let A∆ = {∆u | u ∈ X∗} and let λ∆ : A∆ ×X → A∆

be defined by

λ∆(∆u, x) = ∆ux,

for all u ∈ X∗ and x ∈ X.
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Minimality and Finiteness ConditionsMinimality and Finiteness ConditionsMinimality and Finiteness Conditions

We have the following

Theorem 12. Let A = (A, X, a0, δ) be a fuzzy automaton with a

crisp initial state a0. Then

(a) the mapping λ∆ is well-defined and A∆ = (A∆, X, λ∆) is an

automaton isomorphic to A ̺̂A
;

(b) ind(̺A ) = ind( ̺̂A ) 6 |LA
A

|.
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Minimality and Finiteness ConditionsMinimality and Finiteness ConditionsMinimality and Finiteness Conditions

By this we deduce the following:

Theorem 13. The following conditions are equivalent:

(i) The reduct (L, ∨, ⊗) of L is a locally finite algebra;

(ii) Nerode’s fuzzy right congruence of any finite fuzzy automaton over

L has a finite index;

(iii) Myhill’s fuzzy congruence of any finite fuzzy automaton L has a

finite index.

As a consequence, a result of Li and Pedrycz (Fuzzy Sets and Systems

156 (2005), 68–92) one obtains, which says that (i) is equivalent to

(iv) Any fuzzy language recognizable by a finite fuzzy automaton, is

also recognizable by a finite deterministic automaton (over L ).
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Finally, the second main result is:

Theorem 14. For a fuzzy language f ∈ F (X∗), the following five

conditions are equivalent if and only if the algebra (L, ∨, ⊗) is locally

finite:

(i) f is a recognizable fuzzy language;

(ii) f is extensional with respect to a fuzzy right congruence of finite

index;

(iii) f is extensional with respect to a fuzzy congruence of finite index;

(iv) the syntactic fuzzy right congruence ̺f has a finite index;

(v) the syntactic fuzzy congruence ϑf has a finite index.
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Concluding RemarksConcluding RemarksConcluding Remarks

(1) Syntactic right congruences, syntactic congruences and derivatives

of fuzzy languages have been considered in

➠ Shen (Information Sciences 88 (1996), 149-168)

➠ Malik, Mordeson and Sen (Inform. Sciences 88 (1996), 263-273)

➠ Mordeson and Malik’s book (Chapman & Hall / CRC, 2002)

Here, fuzzy languages were studied in terms of fuzzy right congruences

and fuzzy congruences for the first time.

Nerode’s fuzzy right congruence and Myhill’s fuzzy congruence of a

fuzzy automaton are also new concepts.

(2) The concept of extensionality, which play an outstanding role in our

research, has important applications in fuzzy control, fuzzy clustering,

and other fields.
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