Algebraic Theory of Automata and Logic Workshop

Myhill-Nerode theory for fuzzy languages and automata

Jelena Ignjatović and Miroslav Ćirić University of Niš, Serbia

Szeged, Hungary

October 1, 2006

Fuzzy Sets

The original Zadeh's definition of a fuzzy set is:

A fuzzy subset of a set A is any mapping $f : A \rightarrow [0, 1]$, where [0, 1] is the real unit closed interval.

For $x \in A$, the value f(x) is interpreted as

the degree of membership of x to f

that is

the truth value of the proposition ' $x \in f$ '

Of course, if f takes values only in the set $\{0,1\}$, then it is treated as an ordinary crisp subset of A.

Nowadays, various more general structures of truth values are used instead of [0, 1].

- Gödel algebras (algebraic counterpart of the Gödel logic)
- MV-algebras or Wajsberg algebras (Łukasiewicz logic)
- Product algebras (Product logic)
- **BL**-algebras (Basic fuzzy logic)
- Heyting algebras (Intuitionistic logic)
- Complete residuated lattices (Residuated logic)
- Complete orthomodular lattices (Quantum logic), and others.

Here we work with complete residuated lattices, which include the first five kinds of the above mentioned algebras as special cases.

A residuated lattice is an algebra $\mathscr{L} = (L, \land, \lor, \otimes, \rightarrow, 0, 1)$ satisfying the following conditions

(L1) $(L, \land, \lor, 0, 1)$ is a lattice with the least element 0 and the greatest element 1,

(L2) $(L, \otimes, 1)$ is a commutative monoid with the unit 1,

(L3) \otimes and \rightarrow form an adjoint pair, i.e., they satisfy the adjunction property: for all $x, y, z \in L$,

 $x\otimes y\leqslant z \ \Leftrightarrow \ x\leqslant y
ightarrow z.$

If, in addition, $(L, \land, \lor, 0, 1)$ is a complete lattice, then \mathscr{L} is called a complete residuated lattice.

The operation \otimes is called a multiplication, and \rightarrow a residuum.

They are intended for modeling the conjunction and implication of the corresponding logical calculus.

Supremum \bigvee and infimum \bigwedge are intended for modeling of the general and existential quantifier, respectively.

A biresiduum or biimplication in \mathscr{L} is an operation \leftrightarrow defined by

$$x \leftrightarrow y = (x
ightarrow y) \wedge (y
ightarrow x),$$

It is used for modeling the equivalence of truth values.

A negation in \mathscr{L} is a unary operation \neg defined by

$$\neg x = x \rightarrow 0.$$

Łukasiewicz, Product and Gödel Operations

The most studied and applied set of truth values is the real unit interval [0,1] with

 $x \wedge y = \min(x,y), \qquad x \vee y = \max(x,y),$

and three important pairs of adjoint operations:

Łukasiewicz operations

 $egin{aligned} &x\otimes y=\max(x+y-1,0), & x o y=\min(1-x+y,1),\ &x\leftrightarrow y=1-|x-y|, &
onumber
onumber \
onumb$

Product operations

$$egin{aligned} x\otimes y &= x\cdot y, & x o y &= egin{cases} 1 & ext{if } x\leqslant y\ y/x & ext{otherwise}, \ x\leftrightarrow y &= rac{\min(x,y)}{\max(x,y)}, &
egin{aligned} &
egin{aligned} x & o y &= egin{aligned} 1 & ext{for } x &= 0\ 0 & ext{for } x &> 0; \ \end{pmatrix}, &
egin{aligned} &
egin{aligned} &
ext{scalar} &$$

Gödel operations

Łukasiewicz, Product and Gödel Operations

Another important set of truth values is

$$\{a_0, a_1, \dots, a_n\}, \quad 0 = a_0 < \dots < a_n = 1,$$

with

$$a_k\otimes a_l=a_{\max(k+l-n,0)},\qquad a_k o a_l=a_{\min(n-k+l,n)}.$$

A special case of the latter algebras is the two-element Boolean algebra of classical logic with the support $\{0, 1\}$.

The only adjoint pair on it consist of the classical conjunction and implication operations.

Let ${\mathscr L}$ will be a complete residuated lattice.

A fuzzy subset of a set A over \mathscr{L} , or simply a fuzzy subset of A, is any mapping $f : A \to L$.

The set $\mathscr{F}(A)$ of all fuzzy subsets of A we call the fuzzy power set of A.

For
$$f,g\in \mathscr{F}(A)$$
 we define

Equality: f = g if and only if f(x) = g(x), for every $x \in A$

Inclusion: $f \leqslant g$ if and only if $f(x) \leqslant g(x)$, for every $x \in A$

The meet or intersection $\bigwedge_{i \in I} f_i$ and the join or union $\bigvee_{i \in I} f_i$ of a family $\{f_i\}_{i \in I} \subseteq \mathscr{F}(A)$ are mappings from A into L defined by

$$\left(igwedge_{i\in I}f_i
ight)(x)=igwedge_{i\in I}f_i(x), \qquad \left(igwedge_{i\in I}f_i
ight)(x)=igwedge_{i\in I}f_i(x).$$

Myhill-Nerode Theory for Fuzzy Languages and Automata

The crisp part of a fuzzy subset $f\in \mathscr{F}(A)$ is a crisp set defined by $\widehat{f}=\{x\in A\,|\,f(x)=1\}.$

A fuzzy relation on A is any mapping $\mu : A \times A \rightarrow L$, i.e., any fuzzy subset of $A \times A$.

Hence, the equality, inclusion, joins, meets and ordering of fuzzy relations are defined as for fuzzy sets. A fuzzy relation μ on A is said to be

- (R) reflexive or fuzzy reflexive if $\mu(x,x)=1$, for every $x\in A$;
- (S) symmetric or fuzzy symmetric if $\mu(x,y)=\mu(y,x)$, for all $x,y\in A$;

(T) transitive or fuzzy transitive if for all $x, a, y \in A$

 $\mu(x,a)\otimes\mu(a,y)\leqslant\mu(x,y).$

A reflexive, symmetric and transitive fuzzy relation on A is called a fuzzy equivalence relation, or just a fuzzy equivalence, on A.

With respect to the ordering of fuzzy relations, the set $\mathscr{E}(A)$ of all fuzzy equivalence relations on a set A is a complete lattice.

Let μ be a fuzzy equivalence relation on A.

For each $a \in A$ we define $\mu_a \in \mathscr{F}(A)$, i.e., $\mu_a : A \to L$, by:

 $\mu_a(x)=\mu(a,x), \;\; ext{for every}\; x\in A.$

We call μ_a a fuzzy equivalence class, or just an equivalence class, of μ determined by the element a.

The set $A/\mu = \{\mu_a \mid a \in A\}$ is called the factor set of A w.r.t. μ . Its cardinality $|A/\mu|$ is called the index of μ , in notation $\operatorname{ind}(\mu)$.

A fuzzy subset $f \in \mathscr{F}(A)$ is said to be extensional w.r.t. μ if

 $f(x)\otimes \mu(x,y)\leqslant f(y),$

for all $x, y \in A$.

Myhill-Nerode Theory for Fuzzy Languages and Automata

A fuzzy automaton over \mathscr{L} , or simply a fuzzy automaton, is a triple $\mathscr{A} = (A, X, \delta)$, where

- \blacksquare A and X are sets, called respectively a set of states and an input alphabet,
- \bullet $\delta: A \times X \times A \rightarrow L$ is a fuzzy subset of $A \times X \times A$, called a fuzzy transition function.

We will always assume that the input alphabet X is finite, but from methodological reasons we will allow the set of states A to be infinite.

A fuzzy automaton whose set of states is finite is called a finite fuzzy automaton.

Fuzzy Automata

Let X^* denote the free monoid over the alphabet X.

The mapping δ can be extended up to a mapping $\delta^* : A \times X^* \times A \to L$ as follows: If $a, b \in A$ and $e \in X^*$ is the empty word, then

$$\delta^*(a,e,b) = \left\{egin{array}{cc} 1 & ext{if} \; a=b \ 0 & ext{otherwise} \end{array}
ight.,$$

and if $a,b\in A$, $u\in X^*$ and $x\in X$, then

$$\delta^*(a,ux,b) = igvee_{c\in A} \delta^*(a,u,c) \otimes \delta(c,x,b).$$

We have that for all $a,b\in A$ and $u,v\in X^*$,

$$\delta^*(a,uv,b) = igvee_{c\in A} \delta^*(a,u,c) \otimes \delta^*(c,v,b).$$

If δ is a crisp subset of $A \times X \times A$, i.e., $\delta : A \times X \times A \rightarrow \{0,1\}$, then \mathscr{A} is an ordinary crisp nondeterministic automaton.

Moreover, if δ is a mapping of $A \times X$ into A, then \mathscr{A} is an ordinary deterministic automaton.

Evidently, in these two cases we have that δ^* is also a crisp subset of $A \times X^* \times A$, and a mapping of $A \times X^*$ into A, respectively.

Let
$$\mathscr{A} = (A, X, \delta)$$
 be a fuzzy automaton.

Then $\hat{\delta}$, the crisp part of δ , is a crisp subset of $A \times X \times A$, and $\widehat{\mathscr{A}} = (A, X, \widehat{\delta})$ is a nondeterministic automaton, called the crisp part of the fuzzy automaton \mathscr{A} .

A fuzzy language is any fuzzy subset of a free monoid.

A fuzzy automaton $\mathscr{A} = (A, X, \delta)$ is said to recognize a fuzzy language $f \in \mathscr{F}(X^*)$, by a fuzzy set σ of initial states and a fuzzy set τ of final states, if for any $u \in X^*$,

$$f(u) = igvee_{a,b\in A} \sigma(a) \otimes \delta^*(a,u,b) \otimes au(b).$$

Here we consider only those fuzzy automata having a single crisp initial state $\{a_0\}$.

In this case, \mathscr{A} is said to recognize a fuzzy language $f \in \mathscr{F}(X^*)$ by a crisp initial state a_0 and a fuzzy set τ of final states, if for any $u \in X^*$,

$$f(u) = igvee_{b\in A} \delta^*(a_0,u,b) \otimes au(b).$$

Fuzzy Languages

In particular, if \mathscr{A} is a deterministic automaton, i.e., $\delta : A \times X \to A$, then it recognizes a fuzzy language $f \in \mathscr{F}(X^*)$ by a crisp initial state a_0 and a fuzzy set τ of final states, if for any $u \in X^*$,

 $f(u)= au(\delta^*(a_0,u)).$

A fuzzy equivalence relation μ on a semigroup S is

- a fuzzy left congruence, if $\mu(a,b) \leq \mu(xa,xb)$, for all $a,b,x \in S$, a fuzzy right congruence, if $\mu(a,b) \leq \mu(ax,bx)$, for all $a,b,x \in S$,
- → a fuzzy congruence, if it is both fuzzy left and right congruence.

For a fuzzy equivalence relation μ on a semigroup S we define fuzzy relations μ_l^0 , μ_r^0 and μ^0 on S by

$$egin{aligned} \mu_l^0(a,b) &= igwedge _{x\in S^1} \mu(xa,xb), & \mu_r^0(a,b) = igwedge _{x\in S^1} \mu(ax,bx), \ & \mu^0(a,b) = igwedge _{x,y\in S^1} \mu(xay,xby), \end{aligned}$$

for all $a, b \in S$.

We have that

- \rightarrow μ_l^0 is the largest fuzzy left congruence on S contained in μ ;
- μ_r^0 is the largest fuzzy right congruence on S contained in μ ;
- \blacksquare μ^0 is the largest fuzzy congruence on S contained in μ ;
- if μ is a fuzzy right (left) congruence, then $\mu^0 = \mu_l^0$ ($\mu^0 = \mu_r^0$).

Therefore, the mappings $\mu \mapsto \mu_l^0$, $\mu \mapsto \mu_r^0$ and $\mu \mapsto \mu^0$ are opening operators on the lattice of fuzzy equivalence relations on S, so

- \rightarrow μ_l^0 is called the fuzzy left congruence opening of μ ,
- \blacksquare μ_r^0 is the fuzzy right congruence opening of μ ,
- $\implies \mu^0$ is the fuzzy congruence opening of μ .

Now, we will consider fuzzy right congruences on free monoids. Let μ be a fuzzy right congruence on a free monoid X^* and let $A_{\mu} = X^*/\mu$. We define a mapping $\delta_{\mu} : A_{\mu} \times X \times A_{\mu} \to L$ by

(1)
$$\delta_{\mu}(\mu_{u}, x, \mu_{v}) = \mu_{ux}(v),$$

for all $u, v \in X^*$ and $x \in X$.

The mapping δ_{μ} is well-defined, and $\mathscr{A}_{\mu} = (A_{\mu}, X, \delta_{\mu})$ is a fuzzy automaton, called a fuzzy right congruence automaton associated with μ .

The transition function can be extended to a function

$$\begin{split} \delta^*_{\mu} &: A_{\mu} \times X^* \times A_{\mu} \to L \text{ by:} \\ (2) & \delta^*_{\mu}(\mu_u, p, \mu_v) = \mu_{up}(v) = \mu(up, v), \end{split}$$

for all $u, v \in X^*$ and $p \in X^+$.

Myhill-Nerode Theory for Fuzzy Languages and Automata

Note that δ^*_{μ} can be also characterized as follows:

$$\delta^*_\mu(\mu_u,p,\mu_v) = igwedge_{w\in X^*} \mu_{up}(w) \leftrightarrow \mu_v(w) = igvee_{w\in X^*} \mu_{up}(w) \otimes \mu_v(w),$$

for all $u, v, p \in X^*$.

These equalities can be interpreted as

" $\delta^*_{\mu}(\mu_u, p, \mu_v)$ is the degree of equality of the classes μ_{up} and μ_v ", or " $\delta^*_{\mu}(\mu_u, p, \mu_v)$ is the degree of intersection of the classes μ_{up} and μ_v "

A fuzzy right congruence automaton \mathscr{A}_{μ} is usually considered as a fuzzy automaton with a crisp initial state μ_e , and then we write

$$\mathscr{A}_{\mu} = (A_{\mu}, X, \mu_e, \delta_{\mu}).$$

When we recognize fuzzy languages by \mathscr{A}_{μ} we always assume that \mathscr{A}_{μ} starts from the crisp initial state μ_{e} .

We say that the automaton \mathscr{A}_{μ} recognizes a fuzzy language $f \in \mathscr{F}(X^*)$ by a fuzzy set of final states $\tau \in \mathscr{F}(A_{\mu})$ if

$$f(u) = igvee_{\xi \in A_\mu} \delta^*_\mu(\mu_e, u, \xi) \otimes au(\xi) = igvee_{w \in X^*} \delta^*_\mu(\mu_e, u, \mu_w) \otimes au(\mu_w),$$

for each $u \in X^*$.

Our main result is

Theorem 2. Let μ be a fuzzy right congruence on a free monoid X^* . A fuzzy language $f \in \mathscr{F}(X^*)$ is recognized by \mathscr{A}_{μ} if and only if f is extensional with respect to μ . As known, to any crisp right congruence π on a free monoid X^* we can associate a crisp deterministic automaton $\mathscr{A}_{\pi} = (A_{\pi}, X, \lambda_{\pi})$, where $A_{\pi} = X^*/\pi$ and a mapping $\lambda_{\pi} : A_{\pi} \times X \to A_{\pi}$ is defined by

(3)
$$\lambda_{\pi}(\pi_u, x) = \pi_{ux},$$

for all $u \in X^*$ and $x \in X$.

Also, λ_π can be extended up to $\lambda_\pi^*: A_\pi imes X^* o A_\pi$ so that

(4)
$$\lambda_{\pi}^*(\pi_u, v) = \pi_{uv},$$

for all $u, v \in X^*$.

We prove the following:

Theorem 3. Let μ be a fuzzy right congruence on X^* and let $\hat{\mu}$ be its crisp part. Then

(a) $\mathscr{A}_{\hat{\mu}}$ is the crisp part of \mathscr{A}_{μ} ;

(b) any $f\in \mathscr{F}(X^*)$ recognized by \mathscr{A}_μ is also recognized by $\mathscr{A}_{\widehat{\mu}}$.

Theorem 4. For any fuzzy language $f \in \mathscr{F}(X^*)$ the following is true: (a) A fuzzy relation ϱ_f on X^* defined by

$$arrho_f(u,v) = igwedge_{w\in X^*} f(uw) \leftrightarrow f(vw), \;\; ext{ for any } u,v\in X^*,$$

is the greatest fuzzy right congruence on X^* such that f is extensional w.r.t. to it;

(b) $\mathscr{A}_{\widehat{\varrho}_f}$ is a minimal deterministic automaton recognizing f.

For a fuzzy language $f\in \mathscr{F}(X^*)$ and $u\in X^*$, a fuzzy language $f_u\in \mathscr{F}(X^*)$ defined by

 $f_u(v)=f(uv), \;\;$ for each $v\in X^*$,

is called a derivative or a (right quotient) of f with respect to u.

Let A_f be the set of all derivatives of f, i.e., $A_f = \{f_u | u \in X^*\}$, and define a mapping $\delta_f : A_f \times X \times A_f \to L$ by

(5)
$$\delta_f(f_u, x, f_v) = \bigwedge_{w \in X^*} f_{ux}(w) \leftrightarrow f_v(w),$$

for all $u, v \in X^*$ and $x \in X$.

We prove:

Theorem 5. For any $f \in \mathscr{F}(X^*)$, the mapping δ_f is well-defined and $\mathscr{A}_f = (A_f, X, \delta_f)$ is a fuzzy automaton isomorphic to \mathscr{A}_{ϱ_f} . For a fuzzy language $f \in \mathscr{F}(X^*)$, we also define a mapping $\lambda_f : A_f \times X \to A_f$ by

(6)
$$\lambda_f(f_u, x) = f_{ux},$$

for any $u \in X^*$ and $x \in X$.

Evidently, λ_f can be extended up to $\lambda_f^*: A_f imes X^* o A_f$ so that

(7)
$$\lambda_f^*(f_u, v) = f_{uv},$$

for all $u, v \in X^*$.

We also prove:

Theorem 6. For any fuzzy language $f \in \mathscr{F}(X^*)$, the mapping λ_f is well-defined and $\mathscr{B} = (A_f, X, \lambda_f)$ is a deterministic automaton isomorphic to $\mathscr{A}_{\widehat{\varrho}_f}$.

Moreover, \mathscr{B} is the crisp part of \mathscr{A}_f , that is $\mathscr{B} = \widehat{\mathscr{A}_f}$.

Theorem 7. For any fuzzy language $f \in \mathscr{F}(X^*)$, both \mathscr{A}_f and $\widehat{\mathscr{A}_f}$ recognize f with the crisp initial state f and the fuzzy set of final states $\tau \in \mathscr{F}(A_f)$ defined by

au(g)=g(e),

for any derivative $g \in A_f$.

Given a fuzzy automaton $\mathscr{A}=(A,X,\delta)$ and a state $a\in A.$

A fuzzy relation $arrho_a$ on the free monoid X^* defined by

(8)
$$\varrho_a(u,v) = \bigwedge_{b \in A} \delta^*(a,u,b) \leftrightarrow \delta^*(a,v,b),$$

for $u, v \in X^*$, is called Nerode's fuzzy relation determined by a.

If \mathscr{A} is an initial fuzzy automaton with a crisp initial state a_0 , then the fuzzy relation ϱ_{a_0} is denoted by $\varrho_{\mathscr{A}}$ and called a Nerode's fuzzy relation of the fuzzy automaton \mathscr{A} .

We prove the following:

Theorem 8. For any state a of a fuzzy automaton $\mathscr{A} = (A, X, \delta)$, the Nerode's fuzzy relation ϱ_a is a fuzzy right congruence on X^* .

Theorem 9. Any fuzzy language $f \in \mathscr{F}(X^*)$ recognized by a fuzzy automaton \mathscr{A} is also recognized by the fuzzy automaton $\mathscr{A}_{\varrho_{\mathscr{A}}}$.

To a fuzzy automaton $\mathscr{A}=(A,X,\delta)$, we also assign a fuzzy relation $\vartheta_{\mathscr{A}}$ on the free monoid X^* defined by

(9)
$$\vartheta_{\mathscr{A}}(u,v) = \bigwedge_{a \in A} \varrho_a(u,v) = \bigwedge_{a,b \in A} \delta^*(a,u,b) \leftrightarrow \delta^*(a,v,b),$$

for $u,v \in X^*$, which is called Myhill's fuzzy relation of the fuzzy automaton \mathscr{A} .

Theorem 10. For any fuzzy automaton $\mathscr{A} = (A, X, \delta)$, the Myhill's fuzzy relation $\vartheta_{\mathscr{A}}$ is a fuzzy congruence on X^* .

Theorem 11. Let μ be a fuzzy right congruence on X^* . Then

- (a) Nerode's fuzzy right congruence of \mathscr{A}_{μ} coincide with μ ;
- (b) Muhill's fuzzy congruence of \mathscr{A}_{μ} is the fuzzy congruence opening of μ .

Let $\mathscr{A} = (A, X, a_0, \delta)$ be a fuzzy automaton with a crisp initial state a_0 . We denote by $(L_{\mathscr{A}}, \lor, \otimes)$ the subalgebra of the reduct (L, \lor, \otimes) of \mathscr{L} generated by the set $\{\delta(a, x, b) \mid a, b \in A, x \in X\}$.

For any $u\in X^*$ let a mapping $\Delta_u:A o L_{\mathscr{A}}$ be defined by

 $\Delta_u(a)=\delta^*(a_0,u,a),$

for each $a \in A$, let $A_\Delta = \{\Delta_u \, | \, u \in X^*\}$ and let $\lambda_\Delta : A_\Delta imes X o A_\Delta$ be defined by

$$\lambda_\Delta(\Delta_u,x)=\Delta_{ux},$$

for all $u \in X^*$ and $x \in X$.

We have the following

Theorem 12. Let $\mathscr{A} = (A, X, a_0, \delta)$ be a fuzzy automaton with a crisp initial state a_0 . Then

- (a) the mapping λ_{Δ} is well-defined and $\mathscr{A}_{\Delta} = (A_{\Delta}, X, \lambda_{\Delta})$ is an automaton isomorphic to $\mathscr{A}_{\widehat{\varrho}_{\mathscr{A}}}$;
- (b) $\operatorname{ind}(\varrho_{\mathscr{A}}) = \operatorname{ind}(\widehat{\varrho}_{\mathscr{A}}) \leqslant |L_{\mathscr{A}}^{A}|.$

By this we deduce the following:

Theorem 13. The following conditions are equivalent:

- (i) The reduct (L, \lor, \otimes) of \mathscr{L} is a locally finite algebra;
- (ii) Nerode's fuzzy right congruence of any finite fuzzy automaton over \mathscr{L} has a finite index;
- (iii) Myhill's fuzzy congruence of any finite fuzzy automaton \mathscr{L} has a finite index.

As a consequence, a result of Li and Pedrycz (Fuzzy Sets and Systems 156 (2005), 68–92) one obtains, which says that (i) is equivalent to

(iv) Any fuzzy language recognizable by a finite fuzzy automaton, is also recognizable by a finite deterministic automaton (over \mathscr{L}).

Finally, the second main result is:

Theorem 14. For a fuzzy language $f \in \mathscr{F}(X^*)$, the following five conditions are equivalent if and only if the algebra (L, \lor, \otimes) is locally finite:

- (i) *f* is a recognizable fuzzy language;
- (ii) *f* is extensional with respect to a fuzzy right congruence of finite index;
- (iii) f is extensional with respect to a fuzzy congruence of finite index;
- (iv) the syntactic fuzzy right congruence ρ_f has a finite index;
- (v) the syntactic fuzzy congruence ϑ_f has a finite index.

(1) Syntactic right congruences, syntactic congruences and derivatives of fuzzy languages have been considered in

- → Shen (Information Sciences 88 (1996), 149-168)
- Malik, Mordeson and Sen (Inform. Sciences 88 (1996), 263-273)
- Mordeson and Malik's book (Chapman & Hall / CRC, 2002)

Here, fuzzy languages were studied in terms of fuzzy right congruences and fuzzy congruences for the first time.

Nerode's fuzzy right congruence and Myhill's fuzzy congruence of a fuzzy automaton are also new concepts.

(2) The concept of extensionality, which play an outstanding role in our research, has important applications in fuzzy control, fuzzy clustering, and other fields.