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Faculdade de Ciências
Universidade do Porto

Porto, Portugal

http://www.fc.up.pt/cmup/jalmeida

Algebraic Theory of Automata and Logic
(ESF Programme AutoMathA)

Szeged, 30 September, 2006

1 / 15

http://www.fc.up.pt/
http://www.fc.up.pt/cmup/
http://www.fc.up.pt/mp/
http://www.fc.up.pt/
http://www.up.pt/
http://www.fc.up.pt/cmup/jalmeida
http://www.fc.up.pt/
http://www.inf.u-szeged.hu/~csl06/ws.php
http://www.esf.org/automatha


PSEUDOVARIETIES AND OPERATORS

Recall that a pseudovariety (of semigroups) is a class of finite
semigroups closed under H,S,Pfin.
The pseudovariety generated by a class C of finite semigroups is
HSPfin(C).
Pseudovarieties are often defined by generators, namely by
applying natural algebraic operations to members of given
pseudovarieties.
Operators of special interest are

algebraic operation operator notation
direct product

join V ∨ W
semidirect/wreath product

semidirect product V ∗ W
extensions with prescribed
idempotent classes Mal’cev product V©m W

power semigroup
power PV
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MAIN PROBLEM

Say that a pseudovariety V is decidable if there is an algorithm to
effectively test whether a given finite semigroup belongs to V
(membership problem).

PROBLEM

Given an operator O and (decidable) pseudovarieties V1, . . . ,Vn,
determine whether O(V1, . . . ,Vn) is decidable and, in the affirmative
case, find efficient algorithms to test the membership problem.

THEOREM (ALBERT-BALDINGER-RHODES’1992, AUINGER-STEINBERG’2003)

None of the above operators preserves decidability.
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THE PROFINITE APPROACH

In general, pseudovarieties do not have free objects.
Yet, in the context of topological semigroups, there are structures
which play such a role, namely relatively free profinite semigroups.
A profinite semigroup is a residually finite compact semigroup.
A pro-V semigroup is a residually-V compact semigroup.
A free pro-V semigroup over X :

X //

ϕ
!!B

BB
BB

BB
BB

F̂X V

ϕ̂

���
�
�

S

where S is an arbitrary pro-V semigroup
Each u ∈ F̂X V defines an operation uS : SX → S by uS(ϕ) = ϕ̂(u).
Pseudoidentities: write S |= u = v if uS = vS.
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PROPERTIES OF F̂X V

F̂X V encodes a lot of information about the pseudovariety V:
I the X -generated members of V are the finite continuous

homomorphic images of F̂X V;
I the rational languages L ⊆ X+ whose syntactic semigroups belong

to V are those such that ι(L) is open, where

X //

  B
BB

BB
BB

B X+

ι

���
�
�

F̂X V

X //

  A
AA

AA
AA

A F̂X S

p V

���
�
�

F̂X V

I a finite X -generated semigroup S belongs to V if and only if
S |= u = v for all u, v ∈ F̂X S such that p V(u) = p V(v);

I ∴ Reiterman’s Theorem: pseudovarieties are defined by
pseudoidentities.
−→ pseudoidentity bases, [[ Σ ]] .
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LOOKING FOR PSEUDOIDENTITY BASES

Provided pseudoidentities in a basis can be (collectively)
effectively checked, the pseudovariety is decidable.

THEOREM (PIN-WEIL’1994)

Suppose that V = [[ ui = vi : i ∈ I ]]. Then V©m W is defined by the
pseudoidentities of the form

ui(w1, . . . ,wni ) = vi(w1, . . . ,wni ) (i ∈ I)

where the wj are such that W |= w2
1 = w1 = · · · = wni .
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DERIVING DECIDABLITY RESULTS

All operators we are considering are such that the generating
class is recursively enumerable provided the argument
pseudovarieties are recursively enumerable.
Hence decidability follows if we can show O(V,W) is
co-recursively enumerable.
So, if we have a recursively enumerable basis of pseudoidentities,
the problem is to enumerate the finite semigroups which fail at
least one of them.
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Abstracting from the Mal’cev case, this leads to the following
problem for a pseudovariety W:

I given a finite system of equations Uk = Vk (k = 1, . . . ,m) in the set
X of variables and a continuous homomorphism ϕ : F̂X S → S into a
finite semigroup S;

I we wish to decide whether there exist continuous homomorphisms
ψ and δ such that the following diagram commutes

F̂X S
ψ //___

ϕ
""E

EE
EE

EE
EE

F̂AS
p V //

δ

���
�
� F̂AV

S

and p Vψ(Uk ) = p Vψ(Vk ) for k = 1, . . . ,m.

A first reduction consists in observing that it suffices to fix δ to be
an onto continuous homomorphism F̂AS → S, which means
choosing a finite set of generators for S.
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A reformulation:
I given a finite system of equations Uk = Vk (k = 1, . . . ,m) in the set

X of variables and the choice of a clopen constraint Kx ⊆ F̂AS for
each x ∈ X ;

I we wish to decide whether it is possible to evaluate each variable
x ∈ X to an element of the set Kx so that the equations Uk = Vk
(k = 1, . . . ,m) become pseudoidentities valid in W.
We call this a V-solution of the system in F̂AS satisfying the
constraints.

Note that the Kx are closures of rational languages Lx ⊆ X+.
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IMPLICIT SIGNATURES

By an implicit signature we mean a set of members of
⋃

n≥1 F̂nS,
which includes x1x2 ∈ F̂2S.
We assume that σ is an implicit signature which has the following
properties:

I σ is recursively enumerable;
I for each w ∈ σ there is an algorithm such that, given a finite

semigroup S, computes the operation wS.

Since each w ∈ σ has a natural interpretation wS on each profinite
semigroup S, profinite semigroups have a natural structure as
σ-algebras.
Denote by Fσ

A V the σ-subalgebra of F̂AV generated by A.
Note that Fσ

A V is the V-free σ-algebra on the set A.
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TAMENESS

We say that the pseudovariety V is σ-reducible with respect to a
system of equations E if it satisfies the following property:

I if there is a V-solution of E in F̂AS satisfying a given choice of
clopen constraints, then there is also a V-solution of E in Fσ

A S
satisfying the constraints.

We say that V is σ-tame with respect to a system of equations E
if:

I V is recursively enumerable;
I the word problem in Fσ

A V is decidable;
I V is σ-reducible with respect to E .

It is easy to show that if W is σ-tame for some σ with respect to
the system of equations Uk = Vk (k = 1, . . . ,m), then the earlier
co-recursive enumerability property holds.
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SUMMARY OF MOST IMPORTANT TAMENESS RESULTS

Say that V is completely σ-tame if it is σ-tame with respect to
arbitrary finite systems of equations in the signature σ.

ASH’1991 (+ JA-STEINBERG’2000): G is κ-tame for systems of equations
associated with finite directed graphs.

JA’2002: Gp is σ-tame for systems of equations associated with
finite directed graphs, where σ is a certain infinite
signature constructed by dynamical methods.

JA-COSTA-ZEITOUN’2005: R is completely κ-tame.
RHODES ANNOUNCEMENT, 1997: A is κ-tame for systems of equations

associated with finite directed graphs.
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RELATED RESULTS AND PROBLEMS

THEOREM (JA-WEIL’1998)

Suppose that gV = [[ ui = vi ; i ∈ I ]], where the ui = vi are semigroupoid
pseudoidentities over finite digraphs Γi with a bounded number of
vertices. Then V ∗W is defined by the pseudoidentities of the form

zūi = zv̄i (i ∈ I)

where the ūi , v̄i are obtained from ui , vi by an evaluation of the vertices
and edges of Γi , the initial vertex being assigned the value z, which
provides a W-solution of the system of equations determined by the
graph.

PROBLEM

Can the finiteness condition (in red) be dropped?
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EXAMPLE

For example,

I since gCom = [[ xyz = zyx
y //

x

XX

z

��
]] (Thérien-Weiss’1985),

I Com ∗W is defined by the pseudoidentities of the form

tuvw = twvu

such that W satisfies the pseudoidentities

tu = s, tw = s, sv = t s v // t

u

\\

w

��
. (1)

I Hence, if W is tame with respect to the system (1), then Com ∗W is
decidable.
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FURTHER PROBLEMS

PROBLEM

Is G completely tame?

PROBLEM

Is A is completely tame.

PROBLEM

Is DS completely tame?
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