THE PROFINITE APPROACH TO DECIDABILITY QUESTIONS

Jorge Almeida

Centro de Matemática Departamento de Matemática Pura Faculdade de Ciências Universidade do Porto Porto, Portugal

http://www.fc.up.pt/cmup/jalmeida

Algebraic Theory of Automata and Logic (ESF Programme AutoMathA)

Szeged, 30 September, 2006

- Recall that a *pseudovariety* (of semigroups) is a class of finite semigroups closed under *H*, *S*, *P*_{fin}.
- The pseudovariety generated by a class C of finite semigroups is HSP_{fin}(C).
- Pseudovarieties are often defined by generators, namely by applying natural algebraic operations to members of given pseudovarieties.
- Operators of special interest are

・ロン・(部・・国・・国・) 通	

- Recall that a *pseudovariety* (of semigroups) is a class of finite semigroups closed under H, S, P_{fin}.
- The pseudovariety generated by a class C of finite semigroups is HSP_{fin}(C).
- Pseudovarieties are often defined by generators, namely by applying natural algebraic operations to members of given pseudovarieties.
- Operators of special interest are

- Recall that a *pseudovariety* (of semigroups) is a class of finite semigroups closed under H, S, P_{fin}.
- The pseudovariety generated by a class C of finite semigroups is HSP_{fin}(C).
- Pseudovarieties are often defined by generators, namely by applying natural algebraic operations to members of given pseudovarieties.

Operators of special interest are

<ロ><週><見><見><見><見><見><見><	

- Recall that a *pseudovariety* (of semigroups) is a class of finite semigroups closed under H, S, P_{fin}.
- The pseudovariety generated by a class C of finite semigroups is HSP_{fin}(C).
- Pseudovarieties are often defined by generators, namely by applying natural algebraic operations to members of given pseudovarieties.
- Operators of special interest are

algebraic operation	operator	notation
direct product	join	$\mathbf{V} \lor \mathbf{W}$
semidirect/wreath product	semidirect product	V * W
extensions with prescribed idempotent classes	Mal'cev product	V @ W
power semigroup	power	PV
▲ □ ▶ ■ ■ ■ □ ▶ ■ □ ▶ ■ ■ ■ ■ □ ▶ ■ ■ ■ ■		· 문 · · 문 · · 문

• Say that a pseudovariety **V** is *decidable* if there is an algorithm to effectively test whether a given finite semigroup belongs to **V** (membership problem).

PROBLEM

Given an operator **O** and (decidable) pseudovarieties V_1, \ldots, V_n , determine whether $O(V_1, \ldots, V_n)$ is decidable and, in the affirmative case, find efficient algorithms to test the membership problem.

THEOREM (ALBERT-BALDINGER-RHODES' 1992, AUINGER-STEINBERG' 2003) None of the above operators preserves decidability. • Say that a pseudovariety **V** is *decidable* if there is an algorithm to effectively test whether a given finite semigroup belongs to **V** (membership problem).

PROBLEM

Given an operator **O** and (decidable) pseudovarieties V_1, \ldots, V_n , determine whether $O(V_1, \ldots, V_n)$ is decidable and, in the affirmative case, find efficient algorithms to test the membership problem.

THEOREM (ALBERT-BALDINGER-RHODES'1992, AUINGER-STEINBERG'2003) None of the above operators preserves decidability. • Say that a pseudovariety **V** is *decidable* if there is an algorithm to effectively test whether a given finite semigroup belongs to **V** (membership problem).

PROBLEM

Given an operator **O** and (decidable) pseudovarieties V_1, \ldots, V_n , determine whether $O(V_1, \ldots, V_n)$ is decidable and, in the affirmative case, find efficient algorithms to test the membership problem.

THEOREM (Albert-Baldinger-Rhodes'1992, Auinger-Steinberg'2003)

None of the above operators preserves decidability.

- In general, pseudovarieties do not have free objects.
- Yet, in the context of topological semigroups, there are structures which play such a role, namely relatively free profinite semigroups.
- A profinite semigroup is a residually finite compact semigroup.
- A pro-V semigroup is a residually-V compact semigroup.
- A free pro-V semigroup over X:

- Each $u \in \hat{F}_X V$ defines an operation $u_S : S^X \to S$ by $u_S(\varphi) = \hat{\varphi}(u)$.
- *Pseudoidentities*: write $S \models u = v$ if $u_S = v_S$.

- In general, pseudovarieties do not have free objects.
- Yet, in the context of topological semigroups, there are structures which play such a role, namely relatively free profinite semigroups.
- A profinite semigroup is a residually finite compact semigroup.
- A pro-V semigroup is a residually-V compact semigroup.

• A free pro-V semigroup over X:

- Each $u \in \hat{F}_X V$ defines an operation $u_S : S^X \to S$ by $u_S(\varphi) = \hat{\varphi}(u)$.
- Pseudoidentities: write $S \models u = v$ if $u_S = v_S$.

- In general, pseudovarieties do not have free objects.
- Yet, in the context of topological semigroups, there are structures which play such a role, namely relatively free profinite semigroups.
- A profinite semigroup is a residually finite compact semigroup.
- A *pro-V* semigroup is a residually-V compact semigroup.

• A free pro-V semigroup over X:

- Each $u \in \hat{F}_X V$ defines an operation $u_S : S^X \to S$ by $u_S(\varphi) = \hat{\varphi}(u)$.
- Pseudoidentities: write $S \models u = v$ if $u_S = v_S$.

- In general, pseudovarieties do not have free objects.
- Yet, in the context of topological semigroups, there are structures which play such a role, namely relatively free profinite semigroups.
- A profinite semigroup is a residually finite compact semigroup.
- A pro-V semigroup is a residually-V compact semigroup.

• A free pro-V semigroup over X:

- Each $u \in \hat{F}_X V$ defines an operation $u_S : S^X \to S$ by $u_S(\varphi) = \hat{\varphi}(u)$.
- Pseudoidentities: write $S \models u = v$ if $u_S = v_S$.

- In general, pseudovarieties do not have free objects.
- Yet, in the context of topological semigroups, there are structures which play such a role, namely relatively free profinite semigroups.
- A profinite semigroup is a residually finite compact semigroup.
- A pro-V semigroup is a residually-V compact semigroup.
- A free pro-V semigroup over X:

- Each $u \in \hat{F}_X V$ defines an operation $u_S : S^X \to S$ by $u_S(\varphi) = \hat{\varphi}(u)$.
- *Pseudoidentities*: write $S \models u = v$ if $u_S = v_S$.

- In general, pseudovarieties do not have free objects.
- Yet, in the context of topological semigroups, there are structures which play such a role, namely relatively free profinite semigroups.
- A profinite semigroup is a residually finite compact semigroup.
- A pro-V semigroup is a residually-V compact semigroup.
- A free pro-V semigroup over X:

- Each $u \in \hat{F}_X V$ defines an operation $u_S : S^X \to S$ by $u_S(\varphi) = \hat{\varphi}(u)$.
- *Pseudoidentities*: write $S \models u = v$ if $u_S = v_S$.

- In general, pseudovarieties do not have free objects.
- Yet, in the context of topological semigroups, there are structures which play such a role, namely relatively free profinite semigroups.
- A profinite semigroup is a residually finite compact semigroup.
- A pro-V semigroup is a residually-V compact semigroup.
- A free pro-V semigroup over X:

- Each $u \in \hat{F}_X V$ defines an operation $u_S : S^X \to S$ by $u_S(\varphi) = \hat{\varphi}(u)$.
- *Pseudoidentities*: write $S \models u = v$ if $u_S = v_S$.

PROPERTIES OF $\hat{F}_X \mathbf{V}$

• $\hat{F}_X V$ encodes a lot of information about the pseudovariety V:

- the X-generated members of V are the finite continuous homomorphic images of *F_XV*;
- ▶ the rational languages $L \subseteq X^+$ whose syntactic semigroups belong to V are those such that i(L) is open, where

- ▶ a finite X-generated semigroup S belongs to V if and only if $S \models u = v$ for all $u, v \in \hat{F}_X S$ such that $p_V(u) = p_V(v)$;
- Reiterman's Theorem: pseudovarieties are defined by pseudoidentities.
 - \rightarrow pseudoidentity bases, $[\![\Sigma]\!]$.

PROPERTIES OF $\hat{F}_X \mathbf{V}$

• $\hat{F}_X V$ encodes a lot of information about the pseudovariety V:

- the X-generated members of V are the finite continuous homomorphic images of *F*_XV;
- ▶ the rational languages $L \subseteq X^+$ whose syntactic semigroups belong to V are those such that i(L) is open, where

- ▶ a finite X-generated semigroup S belongs to V if and only if $S \models u = v$ for all $u, v \in \hat{F}_X S$ such that $p_V(u) = p_V(v)$;
- Reiterman's Theorem: pseudovarieties are defined by pseudoidentities.
 - \rightarrow pseudoidentity bases, $[\![\Sigma]\!]$.

Properties of $\hat{F}_X \mathbf{V}$

• $\hat{F}_X V$ encodes a lot of information about the pseudovariety V:

- the X-generated members of V are the finite continuous homomorphic images of *F_XV*;
- ► the rational languages $L \subseteq X^+$ whose syntactic semigroups belong to **V** are those such that $\overline{\iota(L)}$ is open, where

- ▶ a finite X-generated semigroup S belongs to V if and only if $S \models u = v$ for all $u, v \in \hat{F}_X S$ such that $p_V(u) = p_V(v)$;
- Reiterman's Theorem: pseudovarieties are defined by pseudoidentities.
 - \rightarrow pseudoidentity bases, $[\![\Sigma]\!]$.

PROPERTIES OF $\hat{F}_X \mathbf{V}$

• $\hat{F}_X V$ encodes a lot of information about the pseudovariety V:

- the X-generated members of V are the finite continuous homomorphic images of *F_XV*;
- ► the rational languages $L \subseteq X^+$ whose syntactic semigroups belong to **V** are those such that $\overline{\iota(L)}$ is open, where

▶ a finite X-generated semigroup S belongs to V if and only if $S \models u = v$ for all $u, v \in \hat{F}_X S$ such that $p_V(u) = p_V(v)$;

 Reiterman's Theorem: pseudovarieties are defined by pseudoidentities.

 \rightarrow pseudoidentity bases, $[\![\Sigma]\!]$.

PROPERTIES OF $\hat{F}_X \mathbf{V}$

• $\hat{F}_X V$ encodes a lot of information about the pseudovariety V:

- the X-generated members of V are the finite continuous homomorphic images of *F_XV*;
- ► the rational languages $L \subseteq X^+$ whose syntactic semigroups belong to **V** are those such that $\overline{\iota(L)}$ is open, where

- ► a finite X-generated semigroup S belongs to V if and only if $S \models u = v$ for all $u, v \in \hat{F}_X S$ such that $p_V(u) = p_V(v)$;
- Reiterman's Theorem: pseudovarieties are defined by pseudoidentities.

 \rightarrow pseudoidentity bases, $\llbracket \Sigma \rrbracket$.

• Provided pseudoidentities in a basis can be (collectively) effectively checked, the pseudovariety is decidable.

THEOREM (PIN-WEIL'1994)

Suppose that $V = [[u_i = v_i : i \in I]]$. Then $V \oplus W$ is defined by the pseudoidentities of the form

$$U_i(W_1,\ldots,W_{n_i})=V_i(W_1,\ldots,W_{n_i}) \qquad (i \in I)$$

where the w_i are such that $\mathbf{W} \models w_1^2 = w_1 = \cdots = w_{n_i}$.

• Provided pseudoidentities in a basis can be (collectively) effectively checked, the pseudovariety is decidable.

THEOREM (PIN-WEIL'1994)

Suppose that $\mathbf{V} = \llbracket u_i = v_i : i \in I \rrbracket$. Then $\mathbf{V} \textcircled{m} \mathbf{W}$ is defined by the pseudoidentities of the form

$$u_i(w_1,\ldots,w_{n_i})=v_i(w_1,\ldots,w_{n_i}) \qquad (i \in I)$$

where the w_i are such that $\mathbf{W} \models w_1^2 = w_1 = \cdots = w_{n_i}$.

- All operators we are considering are such that the generating class is recursively enumerable provided the argument pseudovarieties are recursively enumerable.
- Hence decidability follows if we can show O(V, W) is co-recursively enumerable.
- So, if we have a recursively enumerable basis of pseudoidentities, the problem is to enumerate the finite semigroups which fail at least one of them.

- All operators we are considering are such that the generating class is recursively enumerable provided the argument pseudovarieties are recursively enumerable.
- Hence decidability follows if we can show O(V, W) is co-recursively enumerable.
- So, if we have a recursively enumerable basis of pseudoidentities, the problem is to enumerate the finite semigroups which fail at least one of them.

- All operators we are considering are such that the generating class is recursively enumerable provided the argument pseudovarieties are recursively enumerable.
- Hence decidability follows if we can show O(V, W) is co-recursively enumerable.
- So, if we have a recursively enumerable basis of pseudoidentities, the problem is to enumerate the finite semigroups which fail at least one of them.

- Abstracting from the Mal'cev case, this leads to the following problem for a pseudovariety **W**:
 - given a finite system of equations U_k = V_k (k = 1,..., m) in the set X of variables and a continuous homomorphism φ : F̂_XS → S into a finite semigroup S;
 - we wish to decide whether there exist continuous homomorphisms ψ and δ such that the following diagram commutes

and $p_V \psi(U_k) = p_V \psi(V_k)$ for $k = 1, \dots, m$.

 A first reduction consists in observing that it suffices to fix δ to be an onto continuous homomorphism F_AS → S, which means choosing a finite set of generators for S.

- Abstracting from the Mal'cev case, this leads to the following problem for a pseudovariety W:
 - given a finite system of equations U_k = V_k (k = 1,..., m) in the set X of variables and a continuous homomorphism φ : F̂_XS → S into a finite semigroup S;
 - we wish to decide whether there exist continuous homomorphisms
 ψ and δ such that the following diagram commutes

and $p_V \psi(U_k) = p_V \psi(V_k)$ for $k = 1, \dots, m$.

 A first reduction consists in observing that it suffices to fix δ to be an onto continuous homomorphism F_AS → S, which means choosing a finite set of generators for S.

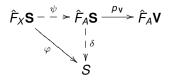
- Abstracting from the Mal'cev case, this leads to the following problem for a pseudovariety W:
 - given a finite system of equations U_k = V_k (k = 1,..., m) in the set X of variables and a continuous homomorphism φ : F̂_XS → S into a finite semigroup S;
 - we wish to decide whether there exist continuous homomorphisms ψ and δ such that the following diagram commutes



and $p_{\mathbf{V}}\psi(U_k) = p_{\mathbf{V}}\psi(V_k)$ for $k = 1, \ldots, m$.

 A first reduction consists in observing that it suffices to fix δ to be an onto continuous homomorphism F_AS → S, which means choosing a finite set of generators for S.

- Abstracting from the Mal'cev case, this leads to the following problem for a pseudovariety **W**:
 - given a finite system of equations U_k = V_k (k = 1,..., m) in the set X of variables and a continuous homomorphism φ : F̂_XS → S into a finite semigroup S;
 - we wish to decide whether there exist continuous homomorphisms ψ and δ such that the following diagram commutes



and $p_{\mathbf{V}}\psi(U_k) = p_{\mathbf{V}}\psi(V_k)$ for $k = 1, \dots, m$.

• A first reduction consists in observing that it suffices to fix δ to be an onto continuous homomorphism $\hat{F}_A \mathbf{S} \to S$, which means choosing a finite set of generators for *S*.

• A reformulation:

- given a finite system of equations U_k = V_k (k = 1,..., m) in the set X of variables and the choice of a clopen constraint K_x ⊆ F̂_AS for each x ∈ X;
- we wish to decide whether it is possible to evaluate each variable *x* ∈ *X* to an element of the set *K_x* so that the equations *U_k* = *V_k* (*k* = 1,..., *m*) become pseudoidentities valid in W.
 We call this a V-solution of the system in *F_AS* satisfying the constraints.
- Note that the K_x are closures of rational languages $L_x \subseteq X^+$.

• A reformulation:

- given a finite system of equations U_k = V_k (k = 1,..., m) in the set X of variables and the choice of a clopen constraint K_x ⊆ F̂_AS for each x ∈ X;
- we wish to decide whether it is possible to evaluate each variable *x* ∈ *X* to an element of the set *K_x* so that the equations *U_k* = *V_k* (*k* = 1,..., *m*) become pseudoidentities valid in W.
 We call this a V-solution of the system in *F_AS* satisfying the constraints.
- Note that the K_x are closures of rational languages $L_x \subseteq X^+$.

- A reformulation:
 - given a finite system of equations U_k = V_k (k = 1,..., m) in the set X of variables and the choice of a clopen constraint K_x ⊆ F̂_AS for each x ∈ X;
 - we wish to decide whether it is possible to evaluate each variable *x* ∈ *X* to an element of the set *K_x* so that the equations *U_k* = *V_k* (*k* = 1,...,*m*) become pseudoidentities valid in **W**.
 We call this a V-solution of the system in *F_AS* satisfying the constraints.

• Note that the K_x are closures of rational languages $L_x \subseteq X^+$.

- A reformulation:
 - given a finite system of equations U_k = V_k (k = 1,..., m) in the set X of variables and the choice of a clopen constraint K_x ⊆ F̂_AS for each x ∈ X;
 - we wish to decide whether it is possible to evaluate each variable *x* ∈ *X* to an element of the set *K_x* so that the equations *U_k* = *V_k* (*k* = 1,...,*m*) become pseudoidentities valid in **W**.
 We call this a V-solution of the system in *F_AS* satisfying the constraints.
- Note that the K_x are closures of rational languages $L_x \subseteq X^+$.

- By an *implicit signature* we mean a set of members of $\bigcup_{n\geq 1} \hat{F}_n \mathbf{S}$, which includes $x_1 x_2 \in \hat{F}_2 \mathbf{S}$.
- We assume that σ is an implicit signature which has the following properties:

- Since each w ∈ σ has a natural interpretation w_S on each profinite semigroup S, profinite semigroups have a natural structure as σ-algebras.
- Denote by $F_A^{\sigma} V$ the σ -subalgebra of $\hat{F}_A V$ generated by A.
- Note that $F_A^{\sigma} V$ is the V-free σ -algebra on the set A.

- By an *implicit signature* we mean a set of members of $\bigcup_{n\geq 1} \hat{F}_n \mathbf{S}$, which includes $x_1 x_2 \in \hat{F}_2 \mathbf{S}$.
- We assume that σ is an implicit signature which has the following properties:
 - \bullet σ is recursively enumerable;
 - for each w ∈ σ there is an algorithm such that, given a finite semigroup S, computes the operation w_S.
- Since each w ∈ σ has a natural interpretation w_S on each profinite semigroup S, profinite semigroups have a natural structure as σ-algebras.
- Denote by F^σ_AV the σ-subalgebra of F_AV generated by A.
- Note that $F_A^{\sigma} V$ is the V-free σ -algebra on the set A.

- By an *implicit signature* we mean a set of members of $\bigcup_{n\geq 1} \hat{F}_n \mathbf{S}$, which includes $x_1 x_2 \in \hat{F}_2 \mathbf{S}$.
- We assume that σ is an implicit signature which has the following properties:
 - σ is recursively enumerable;
 - for each w ∈ σ there is an algorithm such that, given a finite semigroup S, computes the operation w_S.
- Since each w ∈ σ has a natural interpretation w_S on each profinite semigroup S, profinite semigroups have a natural structure as σ-algebras.
- Denote by F^σ_AV the σ-subalgebra of F_AV generated by A.
- Note that $F_A^{\sigma} V$ is the V-free σ -algebra on the set A.

- By an *implicit signature* we mean a set of members of $\bigcup_{n\geq 1} \hat{F}_n \mathbf{S}$, which includes $x_1 x_2 \in \hat{F}_2 \mathbf{S}$.
- We assume that σ is an implicit signature which has the following properties:
 - σ is recursively enumerable;
 - For each w ∈ σ there is an algorithm such that, given a finite semigroup S, computes the operation w_S.
- Since each w ∈ σ has a natural interpretation w_S on each profinite semigroup S, profinite semigroups have a natural structure as σ-algebras.
- Denote by $F_A^{\sigma} V$ the σ -subalgebra of $\hat{F}_A V$ generated by A.
- Note that $F_A^{\sigma} V$ is the V-free σ -algebra on the set A.

- By an *implicit signature* we mean a set of members of $\bigcup_{n\geq 1} \hat{F}_n \mathbf{S}$, which includes $x_1 x_2 \in \hat{F}_2 \mathbf{S}$.
- We assume that σ is an implicit signature which has the following properties:
 - σ is recursively enumerable;
 - For each w ∈ σ there is an algorithm such that, given a finite semigroup S, computes the operation w_S.
- Since each w ∈ σ has a natural interpretation w_S on each profinite semigroup S, profinite semigroups have a natural structure as σ-algebras.
- Denote by $F_A^{\sigma} V$ the σ -subalgebra of $F_A V$ generated by A.
- Note that F^σ_AV is the V-free σ-algebra on the set A.

- By an *implicit signature* we mean a set of members of $\bigcup_{n\geq 1} \hat{F}_n \mathbf{S}$, which includes $x_1 x_2 \in \hat{F}_2 \mathbf{S}$.
- We assume that *σ* is an implicit signature which has the following properties:
 - σ is recursively enumerable;
 - For each w ∈ σ there is an algorithm such that, given a finite semigroup S, computes the operation w_S.
- Since each w ∈ σ has a natural interpretation w_S on each profinite semigroup S, profinite semigroups have a natural structure as σ-algebras.
- Denote by $F_A^{\sigma} V$ the σ -subalgebra of $\hat{F}_A V$ generated by A.

• Note that $F^{\sigma}_{A}V$ is the V-free σ -algebra on the set A.

- By an *implicit signature* we mean a set of members of $\bigcup_{n\geq 1} \hat{F}_n \mathbf{S}$, which includes $x_1 x_2 \in \hat{F}_2 \mathbf{S}$.
- We assume that *σ* is an implicit signature which has the following properties:
 - σ is recursively enumerable;
 - For each w ∈ σ there is an algorithm such that, given a finite semigroup S, computes the operation w_S.
- Since each w ∈ σ has a natural interpretation w_S on each profinite semigroup S, profinite semigroups have a natural structure as σ-algebras.
- Denote by $F_A^{\sigma} V$ the σ -subalgebra of $\hat{F}_A V$ generated by A.
- Note that $F_A^{\sigma} V$ is the V-free σ -algebra on the set A.

- We say that the pseudovariety V is *σ*-reducible with respect to a system of equations E if it satisfies the following property:
 - if there is a V-solution of E in F_AS satisfying a given choice of clopen constraints, then there is also a V-solution of E in F_A^gS satisfying the constraints.
- We say that V is σ-tame with respect to a system of equations E if:

 It is easy to show that if W is σ-tame for some σ with respect to the system of equations U_k = V_k (k = 1,...,m), then the earlier co-recursive enumerability property holds.

- We say that the pseudovariety V is *σ*-reducible with respect to a system of equations E if it satisfies the following property:
 - If there is a V-solution of E in F_AS satisfying a given choice of clopen constraints, then there is also a V-solution of E in F_A^σS satisfying the constraints.
- We say that V is *σ*-tame with respect to a system of equations E if:

 It is easy to show that if W is σ-tame for some σ with respect to the system of equations U_k = V_k (k = 1,..., m), then the earlier co-recursive enumerability property holds.

- We say that the pseudovariety V is *σ*-reducible with respect to a system of equations E if it satisfies the following property:
 - if there is a V-solution of E in F_AS satisfying a given choice of clopen constraints, then there is also a V-solution of E in F_A^σS satisfying the constraints.
- We say that V is *σ*-tame with respect to a system of equations E if:
 - V is recursively enumerable;
 - ► the word problem in F^σ_AV is decidable;
 - V is σ-reducible with respect to E.
- It is easy to show that if W is σ-tame for some σ with respect to the system of equations U_k = V_k (k = 1,..., m), then the earlier co-recursive enumerability property holds.

- We say that the pseudovariety V is *σ*-reducible with respect to a system of equations E if it satisfies the following property:
 - if there is a V-solution of E in F_AS satisfying a given choice of clopen constraints, then there is also a V-solution of E in F_A^σS satisfying the constraints.
- We say that V is *σ*-tame with respect to a system of equations E if:
 - V is recursively enumerable;
 - the word problem in F^σ_AV is decidable;
 - V is σ -reducible with respect to E.
- It is easy to show that if W is σ-tame for some σ with respect to the system of equations U_k = V_k (k = 1,..., m), then the earlier co-recursive enumerability property holds.

- We say that the pseudovariety V is *σ*-reducible with respect to a system of equations E if it satisfies the following property:
 - ► if there is a V-solution of E in F_AS satisfying a given choice of clopen constraints, then there is also a V-solution of E in F_A^σS satisfying the constraints.
- We say that V is *σ*-tame with respect to a system of equations E if:
 - V is recursively enumerable;
 - the word problem in $F_A^{\sigma} \mathbf{V}$ is decidable;
 - V is σ-reducible with respect to E.
- It is easy to show that if W is σ-tame for some σ with respect to the system of equations U_k = V_k (k = 1,..., m), then the earlier co-recursive enumerability property holds.

- We say that the pseudovariety V is *σ*-reducible with respect to a system of equations E if it satisfies the following property:
 - ► if there is a V-solution of E in F_AS satisfying a given choice of clopen constraints, then there is also a V-solution of E in F_A^σS satisfying the constraints.
- We say that V is *σ*-tame with respect to a system of equations E if:
 - V is recursively enumerable;
 - the word problem in $F_A^{\sigma} \mathbf{V}$ is decidable;
 - V is σ-reducible with respect to E.
- It is easy to show that if W is σ-tame for some σ with respect to the system of equations U_k = V_k (k = 1,...,m), then the earlier co-recursive enumerability property holds.

- We say that the pseudovariety V is *σ*-reducible with respect to a system of equations E if it satisfies the following property:
 - If there is a V-solution of E in F_AS satisfying a given choice of clopen constraints, then there is also a V-solution of E in F_A^σS satisfying the constraints.
- We say that V is *σ*-tame with respect to a system of equations E if:
 - V is recursively enumerable;
 - the word problem in $F_A^{\sigma} \mathbf{V}$ is decidable;
 - V is σ-reducible with respect to E.
- It is easy to show that if W is σ-tame for some σ with respect to the system of equations U_k = V_k (k = 1,..., m), then the earlier co-recursive enumerability property holds.

- Say that V is *completely σ*-tame if it is *σ*-tame with respect to arbitrary finite systems of equations in the signature *σ*.
- Ash'1991 (+ JA-STEINBERG'2000): **G** is κ -tame for systems of equations associated with finite directed graphs.
 - JA'2002: G_{ρ} is σ -tame for systems of equations associated with finite directed graphs, where σ is a certain infinite signature constructed by dynamical methods.

- Say that V is *completely σ*-tame if it is *σ*-tame with respect to arbitrary finite systems of equations in the signature *σ*.
- Ash'1991 (+ JA-STEINBERG'2000): **G** is κ -tame for systems of equations associated with finite directed graphs.
 - JA'2002: **G**_p is σ -tame for systems of equations associated with finite directed graphs, where σ is a certain infinite signature constructed by dynamical methods.

- Say that V is *completely σ*-tame if it is *σ*-tame with respect to arbitrary finite systems of equations in the signature *σ*.
- Ash'1991 (+ JA-STEINBERG'2000): **G** is κ -tame for systems of equations associated with finite directed graphs.
 - JA'2002: **G**_{ρ} is σ -tame for systems of equations associated with finite directed graphs, where σ is a certain infinite signature constructed by dynamical methods.

- Say that V is *completely σ*-tame if it is *σ*-tame with respect to arbitrary finite systems of equations in the signature *σ*.
- Ash'1991 (+ JA-STEINBERG'2000): **G** is κ -tame for systems of equations associated with finite directed graphs.
 - JA'2002: **G**_{ρ} is σ -tame for systems of equations associated with finite directed graphs, where σ is a certain infinite signature constructed by dynamical methods.

- Say that V is *completely σ*-tame if it is *σ*-tame with respect to arbitrary finite systems of equations in the signature *σ*.
- Ash'1991 (+ JA-STEINBERG'2000): **G** is κ -tame for systems of equations associated with finite directed graphs.
 - JA'2002: **G**_{ρ} is σ -tame for systems of equations associated with finite directed graphs, where σ is a certain infinite signature constructed by dynamical methods.

JA-COSTA-ZEITOUN'2005: **R** is completely κ -tame.

THEOREM (JA-WEIL'1998)

Suppose that $g\mathbf{V} = \llbracket u_i = v_i$; $i \in I \rrbracket$, where the $u_i = v_i$ are semigroupoid pseudoidentities over finite digraphs Γ_i with a bounded number of vertices. Then $\mathbf{V} * \mathbf{W}$ is defined by the pseudoidentities of the form

 $z\bar{u}_i=z\bar{v}_i$ $(i\in I)$

where the \bar{u}_i , \bar{v}_i are obtained from u_i , v_i by an evaluation of the vertices and edges of Γ_i , the initial vertex being assigned the value *z*, which provides a **W**-solution of the system of equations determined by the graph.

PROBLEM

Can the finiteness condition (in red) be dropped?

THEOREM (JA-WEIL'1998)

Suppose that $g\mathbf{V} = \llbracket u_i = v_i$; $i \in I \rrbracket$, where the $u_i = v_i$ are semigroupoid pseudoidentities over finite digraphs Γ_i with a bounded number of vertices. Then $\mathbf{V} * \mathbf{W}$ is defined by the pseudoidentities of the form

 $z\bar{u}_i=z\bar{v}_i$ $(i\in I)$

where the \bar{u}_i , \bar{v}_i are obtained from u_i , v_i by an evaluation of the vertices and edges of Γ_i , the initial vertex being assigned the value *z*, which provides a **W**-solution of the system of equations determined by the graph.

PROBLEM

Can the finiteness condition (in red) be dropped?

• since g**Com** = [xyz = zyx]

Thérien-Weiss'1985),

Com * W is defined by the pseudoidentities of the form

tuvw = twvu

such that W satisfies the pseudoidentities

$$tu = s, tw = s, sv = t$$

Hence, if W is tame with respect to the system (1), then Com * W is decidable.

• since
$$gCom = [xyz = zyx] \xrightarrow{x} y$$
 (Thérien-Weiss'1985),

Com * W is defined by the pseudoidentities of the form

tuvw = twvu

such that W satisfies the pseudoidentities

$$tu = s, tw = s, sv = t$$

Hence, if W is tame with respect to the system (1), then Com * W is decidable.

• since
$$g\mathbf{Com} = [xyz = zyx]$$

(Thérien-Weiss'1985),

Com * W is defined by the pseudoidentities of the form

tuvw = twvu

such that W satisfies the pseudoidentities

$$tu = s, tw = s, sv = t$$
 $s = t$ (1)

Hence, if W is tame with respect to the system (1), then Com * W is decidable.

• since
$$g\mathbf{Com} = [xyz = zyx]$$
 (Théri

Thérien-Weiss'1985),

Com * W is defined by the pseudoidentities of the form

tuvw = twvu

such that W satisfies the pseudoidentities

$$tu = s, tw = s, sv = t$$
 $s = t$ (1)

Hence, if W is tame with respect to the system (1), then Com * W is decidable.

PROBLEM

Is G completely tame?

Problem

Is A is completely tame.

Problem

Is **DS** completely tame?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PROBLEM

Is G completely tame?

PROBLEM

Is A is completely tame.

Problem

Is DS completely tame?

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > の Q (C) 15/15

PROBLEM

Is G completely tame?

PROBLEM

Is A is completely tame.

PROBLEM

Is **DS** completely tame?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □