
Mathematical Programming:
Modelling and Software

Leo Liberti

LIX, École Polytechnique, France

INF572/ISC610A – p. 1



Introduction

INF572/ISC610A – p. 4



Example: Set covering
There are 12 possible geographical positions A1, . . . , A12 where some
discharge water filtering plants can be built. These plants are supposed to
service 5 cities C1, . . . , C5; building a plant at site j (j ∈ {1, . . . , 12}) has
cost cj and filtering capacity (in kg/year) fj ; the total amount of discharge
water produced by all cities is 1.2× 1011 kg/year. A plant built on site j can
serve city i if the corresponding (i, j)-th entry is marked by a ‘*’ in the
table below.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

C1 * * * * * *
C2 * * * * * *
C3 * * * * *
C4 * * * * * *
C5 * * * * * * *
cj 7 9 12 3 4 4 5 11 8 6 7 16
fj 15 39 26 31 34 24 51 19 18 36 41 34

What is the best placement for the plants?

INF572/ISC610A – p. 5



Example: Sudoku

Given the Sudoku grid below, find a solution or prove that
no solution exists

2 1
4 1 9 2 8 6

5 8 2 7
5 1 3

9
7 8 6

3 2 6 4 9
1 9 4 5 2 8

8 6

INF572/ISC610A – p. 6



Example: Kissing Number

How many unit balls with disjoint interior can be placed
adjacent to a central unit ball in Rd?

In R2

2 1 0 -1 -2210-1-2

-2

-1

0

1

2

In R3

(D = 3: problem proposed by Newton in 1694, settled by
[Schütte and van der Waerden 1953] and [Leech 1956])

INF572/ISC610A – p. 7



Mathematical programming

The above three problems seemingly have nothing in
common!
Yet, there is a formal language that can be used to
describe all three: mathematical programming (MP)
Moreover, the MP language comes with a rich supply of
solution algorithms so that problems can be solved right
away

Problem
formulation
in MP

→
Reformulation
and choice of so-
lution algorithm

→ Solution process

AMPL → Human intelligence
(for now)

→ Solver

INF572/ISC610A – p. 8



Modelling questions
Asking yourself the following questions should help you get started with
your MP model

The given problem is usually a particular instance of a
problem class; you should model the whole class, not just
the instance (replace given numbers by parameter
symbols)
What are the decisions to be taken? Are they logical,
integer or continuous?
What is the objective function? Is it to be minimized or
maximized?
What constraints are there in the problem? Beware —
some constraints may be “hidden” in the problem text

If expressing objective and constraints is overly difficult, go
back and change your variable definitions

INF572/ISC610A – p. 9



Analysis

What category does this mathematical program belong
to?

Linear Programming (LP)
Mixed-Integer Linear Programming (MILP)
Nonlinear Programming (NLP)
Mixed-Integer Nonlinear Programming (MINLP)

Does it have any notable mathematical property?
If an NLP, are the functions/constraints convex?
If a MILP, is the constraint matrix Totally Unimodular
(TUM)?
Does it have any apparent symmetry?

Can it be reformulated to a form for which a fast solver is
available?

INF572/ISC610A – p. 14



Solvers

INF572/ISC610A – p. 40



Solvers
In order of solver reliability / effectiveness:

1. LPs: use an LP solver (O(106) vars/constrs, fast, e.g. CPLEX, CLP,
GLPK)

2. MILPs: use a MILP solver (O(104) vars/constrs, can be slow,
e.g. CPLEX, Symphony, GLPK)

3. NLPs: use a local NLP solver to get a local optimum (O(104)

vars/constrs, quite fast, e.g. SNOPT, MINOS, IPOPT)

4. NLPs/MINLPs: use a heuristic solver to get a good local optimum
(O(103), quite fast, e.g. BONMIN, MINLP_BB)

5. NLPs: use a global NLP solver to get an (approximated) global
optimum (O(103) vars/constrs, can be slow, e.g. COUENNE, BARON)

6. MINLPs: use a global MINLP solver to get an (approximated) global
optimum (O(103) vars/constrs, can be slow, e.g. COUENNE, BARON)

Not all these solvers are available via AMPL

INF572/ISC610A – p. 41



Solution algorithms (linear)
LPs: (convex)
1. simplex algorithm (non-polynomial complexity but

very fast in practice, reliable)
2. interior point algorithms (polynomial complexity,

quite fast, fairly reliable)
MILPs: (nonconvex because of integrality)
1. Local (heuristics): Local Branching, Feasibility Pump

[Fischetti&Lodi 05], VNS [Hansen et al. 06] (quite
fast, reliable)

2. Global: Branch-and-Bound (exact algorithm,
non-polynomial complexity but often quite fast,
heuristic if early termination, reliable)

INF572/ISC610A – p. 42



Solution algorithms (nonlinear)
NLPs: (may be convex or nonconvex)

1. Local: Sequential Linear Programming (SLP), Sequential
Quadratic Programming (SQP), interior point methods
(linear/polynomial convergence, often quite fast, unreliable)

2. Global: spatial Branch-and-Bound [Smith&Pantelides 99]
(ε-approximate, nonpolynomial complexity, often quite slow,
heuristic if early termination, unreliable)

MINLPs: (nonconvex because of integrality and terms)

1. Local (heuristics): Branching explorations [Fletcher&Leyffer 99],
Outer approximation [Grossmann 86], Feasibility pump [Bonami
et al. 06] (nonpolynomial complexity, often quite fast, unreliable)

2. Global: spatial Branch-and-Bound [Sahinidis&Tawarmalani 05]
(ε-approximate, nonpolynomial complexity, often quite slow,
heuristic if early termination, unreliable)

INF572/ISC610A – p. 43



MP language implementations
Software packages implementing (sub/supersets of the) MP language:

AMPL (our software of choice, mixture of MP and near-C language)

commercial, but student version limited to 300 vars/constrs is
available from www.ampl.com

quite a lot of solvers are hooked to AMPL

GNU MathProg (subset of AMPL)
free, but only the GLPK solver (for LPs and MILPs) can be used
it is a significant subset of AMPL but not complete

GAMS (can do everything AMPL can, but looks like COBOL — ugh!)
commercial, limited demo available from www.gams.com

quite a lot of solvers are hooked to GAMS

Zimpl (free, C++ interface, linear modelling only)

LINDO, MPL, . . . (other commercial modelling/solution packages)

INF572/ISC610A – p. 34



AMPL Basics

INF572/ISC610A – p. 16



AMPL
AMPL means “A Mathematical Programming
Language”
AMPL is an implementation of the Mathematical
Programming language
Many solvers can work with AMPL
AMPL works as follows:
1. translates a user-defined model to a low-level

formulation (called flat form) that can be understood
by a solver

2. passes the flat form to the solver
3. reads a solution back from the solver and interprets

it within the higher-level model (called structured form)

INF572/ISC610A – p. 17



Model, data, run
AMPL usually requires three files:

the model file (extension .mod) holding the MP formulation
the data file (extension .dat), which lists the values to be
assigned to each parameter symbol
the run file (extension .run), which contains the (imperative)
commands necessary to solve the problem

The model file is written in the MP language

The data file simply contains numerical data together with the
corresponding parameter symbols

The run file is written in an imperative C-like language (many notable
differences from C, however)

Sometimes, MP language and imperative language commands can
be mixed in the same file (usually the run file)

To run AMPL, type ampl < problem.run from the command line

INF572/ISC610A – p. 18



AMPL Grammar

INF572/ISC610A – p. 35



AMPL MP Language
There are 5 main entities: sets, parameters, variables, objectives and
constraints

In AMPL, each entity has a name and can be quantified
set name [{quantifier}] attributes ;

param name [{quantifier}] attributes ;

var name [{quantifier}] attributes ;

minimize | maximize name [{quantifier}]: iexpr ;

subject to name [{quantifier}]: iexpr <= | = | >= iexpr ;

Attributes on sets and parameters is used to validate values read
from data files

Attributes on vars specify integrality (binary, integer) and limit
constraints (>= lower, <= upper)

Entities indices: square brackets (e.g. y[1], x[i,k])

The above is the basic syntax — there are some advanced options
INF572/ISC610A – p. 36



AMPL data specification

In general, syntax is in map-like form; a
param p{i in S} integer;

is a map S → Z, and each pair (domain, codomain) must be
specified:
param p :=

1 4
2 -3
3 0;

The grammar is simple but tedious, best way is
learning by example or trial and error

INF572/ISC610A – p. 37



LP example: .mod
# lp.mod

param n integer, default 3;

param m integer, default 4;

set N := 1..n;

set M := 1..m;

param a{M,N};

param b{M};

param c{N};

var x{N} >= 0;

minimize objective: sum{j in N} c[j]*x[j];

subject to constraints{i in M} :

sum{j in N} a[i,j]*x[j] <= b[i];

INF572/ISC610A – p. 44



LP example: .dat
# lp.dat

param n := 3; param m := 4;

param c :=

1 1

2 -3

3 -2.2 ;

param b :=

1 -1

2 1.1

3 2.4

4 0.8 ;

param a : 1 2 3 :=

1 0.1 0 -3.1

2 2.7 -5.2 1.3

3 1 0 -1

4 1 1 0 ;

INF572/ISC610A – p. 45



LP example: .run
# lp.run

model lp.mod;
data lp.dat;
option solver cplex;
solve;
display x;

INF572/ISC610A – p. 46



LP example: output
CPLEX 11.0.1: optimal solution; objective -11.30153
0 dual simplex iterations (0 in phase I)
x [*] :=
1 0
2 0.8
3 4.04615
;

INF572/ISC610A – p. 47



AMPL imperative language
model model filename.mod ;

data data filename.dat ;

option option name literal string, ... ;

solve ;

display [{quantifier}]: iexpr ; / printf (syntax similar to C)

let [{quantifier}] ivar :=number;

if (clist) then { commands } [else {commands}]

for {quantifier} {commands} / break; / continue;

shell ’command line’; / exit number; / quit;

cd dir name; / remove file name;

In all output commands, screen output can be redirected to a file by
appending > output filename.txt before the semicolon

These are basic commands, there are some advanced ones
INF572/ISC610A – p. 38


