
MILP: modeling tricks

Alternative sets of constraints

Consider two set of constraints

f 1i (x) ≤ b1i , i = 1, . . . ,m1

f 2i (x) ≤ b2i , i = 1, . . . ,m2

A set of constraints stating that at least one of the two above sets of
constraints must be satisfied can be written as

f 1i (x)− δ1M
1
i ≤ b1i , i = 1, . . . ,m1

f 2i (x)− δ2M
2
i ≤ b2i , i = 1, . . . ,m2

δ1 + δ2 ≤ 1
δ1, δ2 ∈ {0, 1}

provided that the parameters M j
i satisfy

f ji (x) ≤ bji +M j
i , i = 1, . . . ,mj , j = 1, 2
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Alternative sets of constraints

Consider two set of constraints

f 1i (x) ≤ b1i , i = 1, . . . ,m1

f 2i (x) ≤ b2i , i = 1, . . . ,m2

A set of constraints stating that only one set of contraints must be
satisfied can be written as

f 1i (x)− δ1M
1
i ≤ b1i , i = 1, . . . ,m1

f 2i (x)− δ2M
2
i ≤ b2i , i = 1, . . . ,m2

δ1 + δ2 = 1
δ1, δ2 ∈ {0, 1}

provided that the parameters M j
i satisfy

f ji (x) ≤ bji +M j
i , i = 1, . . . ,mj , j = 1, 2

This can be used to define nonconvex polygonal feasible sets.
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Conditional constraints 1

A conditional constraint of the form

f (x) > a =⇒ g(x) ≤ b

can be modeled with the alternative set of constraints

f (x) ≤ a and/or g(x) ≤ b

which in turn can be modeled as explained before (see more equivalences
for conditional statements later on).
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K out of N constraints must hold

If we have a set of N constraints

f1(x) ≤ b1, . . . , fN(x) ≤ bN

and only K out of the N constraints must hold, this can be modeled as
follows:

f1(x) ≤ b1 +M1δ1
. . .

fN(x) ≤ bN +MNδN
NX

i=1

δi = N − K

δi ∈ {0, 1}, i = 1, . . . ,N

where Mi is an upper bound for fi(x)− bi .
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Modeling fixed costs

The discontinuous function to be minimized

min f (x) =

�
0 if x = 0
k + g(x) if 0 < x ≤ b

which sets a fixed cost k in case the variable x is used (in case x > 0) can
be written as

min kδ + g(x)
s.t. x ≤ bδ

x ≥ 0
δ ∈ {0, 1}

Notice that

δ =

(
0 if x = 0

1 if x > 0



MILP: modeling tricks

Let x be a continuous variable such that L ≤ x ≤ U. And let δ ∈ {0, 1} be
a binary variable.
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Let x be a continuous variable such that L ≤ x ≤ U. And let δ ∈ {0, 1} be
a binary variable.

Conditional constraints 2

δ = 0 =⇒ x ≤ 0

can be modeled as
x ≤ δU.

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

x > 0 =⇒ δ = 1



MILP: modeling tricks

Let x be a continuous variable such that L ≤ x ≤ U. And let δ ∈ {0, 1} be
a binary variable.

Conditional constraints 3

δ = 0 =⇒ x ≥ 0

can be modeled as
x ≥ δL.

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

x < 0 =⇒ δ = 1
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 4 (type ≤)

δ = 1 =⇒ f (x) ≤ b

can be modeled as
f (x) ≤ b +M(1− δ).

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

f (x) > b =⇒ δ = 0



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 5 (type ≤)

f (x) ≤ b =⇒ δ = 1

is equivalent to
δ = 0 =⇒ f (x) > b

which can be tranformed into

δ = 0 =⇒ f (x) ≥ b + ǫ.

The previous expressions can be both modeled as

f (x) ≥ b + ǫ+ (m − ǫ)δ
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δ = 1 =⇒ f (x) ≥ b
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 7 (type ≥)

f (x) ≥ b =⇒ δ = 1

is equivalent to
δ = 0 =⇒ f (x) < b

which can be transformed into

δ = 0 =⇒ f (x) ≤ b − ǫ.

The previous expressions can be both modeled as

f (x) ≤ b − ǫ+ (M + ǫ)δ
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 8 (type =)

δ = 1 =⇒ f (x) = b is equivalent to δ = 1 =⇒

(
f (x) ≤ b

f (x) ≥ b

Hence, it can be modeled by the constraints

f (x) ≤ b +M(1− δ)
f (x) ≥ b +m(1− δ)

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

f (x) 6= b =⇒ δ = 0
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 9 (type =)

f (x) = b =⇒ δ = 1 is equivalent to

f (x) ≤ b =⇒ δ1 = 1
f (x) ≥ b =⇒ δ2 = 1
δ1 = 1
δ2 = 1

�
=⇒ δ = 1

δ1, δ2 ∈ {0, 1}

which can be modeled as

f (x) ≥ b + ǫ+ (m − ǫ)δ1
f (x) ≤ b − ǫ+ (M + ǫ)δ2

δ1 + δ2 − δ ≤ 1
δ1, δ2 ∈ {0, 1}
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 9 (type =)

Since f (x) = b =⇒ δ = 1 is equivalent to δ = 0 =⇒ f (x) 6= b

this last conditional constraint can also be modeled as

f (x) ≥ b + ǫ+ (m − ǫ)δ1
f (x) ≤ b − ǫ+ (M + ǫ)δ2

δ1 + δ2 − δ ≤ 1
δ1, δ2 ∈ {0, 1}
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 10: double implications

Double implications can be transformed into two unidirectional
implications. For instance

δ = 1 ⇐⇒ f (x) ≤ b

is equivalent to �
δ = 1 =⇒ f (x) ≤ b

f (x) ≤ b =⇒ δ = 1

Hence, it can be modeled as

f (x) ≤ b +M(1− δ)
f (x) ≥ b + ǫ+ (m − ǫ)δ



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 10: double implications

δ = 1 ⇐⇒ f (x) ≥ b

can be modeled as
f (x) ≥ b +m(1− δ)

f (x) ≤ b − ǫ+ (M + ǫ)δ



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 10: double implications

δ = 1 ⇐⇒ f (x) = b

can be modeled as

f (x) ≤ b +M(1− δ)
f (x) ≥ b +m(1− δ)

f (x) ≥ b + ǫ+ (m − ǫ)δ1
f (x) ≤ b − ǫ+ (M + ǫ)δ2

δ1 + δ2 − δ ≤ 1
δ1, δ2 ∈ {0, 1}
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Equivalences for conditional propositions

The following equivalences can be used before converting them into
constraints:

P ⇒ Q ¬P ∨ Q

P ⇒ (Q ∧ R) (P ⇒ Q) ∧ (P ⇒ R)

P ⇒ (Q ∨ R) (P ⇒ Q) ∨ (P ⇒ R)

(P ∧ Q) ⇒ R (P ⇒ R) ∨ (Q ⇒ R)

(P ∨ Q) ⇒ R (P ⇒ R) ∧ (Q ⇒ R)

¬(P ∨ Q) (¬P) ∧ (¬Q)

¬(P ∧ Q) (¬P) ∨ (¬Q)
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Assume that the indicator variable δi is equal to 1 when the constraint Ci

holds:

δi =

(
1 if Ci holds

0 otherwise

Simple conditional or composed statements

C1 ∨ C2 δ1 + δ2 ≥ 1

C1 ∧ C2 δ1 + δ2 = 2

¬C1 δ1 = 0

C1 =⇒ C2 δ1 ≤ δ2
C1 ⇐⇒ C2 δ1 = δ2
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Complex conditional or composed statements

Complex conditional or composed statements are decomposed into two
implications in order to model them easier.

Example

(C1 ∨ C2) =⇒ (C3 ∨ C4 ∨ C5)

is modeled as
(δ1 + δ2 ≥ 1) =⇒ (δ3 + δ4 + δ5 ≥ 1)

which, in turn, can be transformed into

(δ1 + δ2 ≥ 1) ⇒ δ = 1 ⇒ (δ3 + δ4 + δ5 ≥ 1)

or more clearly,(
(δ1 + δ2 ≥ 1) ⇒ δ = 1

δ = 1 ⇒ (δ3 + δ4 + δ5 ≥ 1)
which becomes

(
δ1 + δ2 ≤ 2δ

δ ≤ δ3 + δ4 + δ5
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Example

(x ≤ b) ∧ (x ≥ 1) =⇒ (y = z + 1)

is first transformed into

(x ≤ b) ∧ (x ≥ 1) =⇒ δ = 1 =⇒ (y = z + 1)

and this in turn is written as

(x ≤ b) ⇒ δ1 = 1
(x ≥ 1) ⇒ δ2 = 1
(δ1 = 1) ∧ (δ1 = 1) ⇒ δ = 1
(δ = 1) ⇒ (y ≥ z + 1)
(δ = 1) ⇒ (y ≤ z + 1)

which becomes

x ≥ b + ǫ+ (m1 − ǫ)δ1
x ≤ 1− ǫ+ (M1 + ǫ)δ2
δ1 + δ2 − δ ≤ 1
y − z ≥ 1 +m2(1− δ)
y − z ≤ 1 +M2(1− δ)

where ǫ > 0 is a small number and m1 ≤ x − b, M1 ≥ x − 1,
m2 ≤ y − z − 1 ≤ M2.
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More tricks have been designed to:

Define nonconvex polygonal regions throught a set of constraints.

Work with Special Ordered Sets of type 1 (SOS1), where in a set of
variables only one of them can have a value different from 0, and
SOS2, where in a set a variables at most two of them can be different
from 0 and they must be consecutive variables.
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objective value than the solution of the LP relaxation of ‘B’, so its gap
(the difference between the solution of the linear relaxation and the integer
solution) will be smaller.
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More tricks have been designed to:

Define nonconvex polygonal regions throught a set of constraints.

Work with Special Ordered Sets of type 1 (SOS1), where in a set of
variables only one of them can have a value different from 0, and
SOS2, where in a set a variables at most two of them can be different
from 0 and they must be consecutive variables.

Sometimes the same problem can be modeled in different ways. A
formulation ‘A’ is said to be better (stronger) than another formulation ‘B’
if the feasible set of ‘A’ is included in the feasible set of ‘B’. In this way,
the solution of the LP relaxation of ‘A’ will have a better (or equal)
objective value than the solution of the LP relaxation of ‘B’, so its gap
(the difference between the solution of the linear relaxation and the integer
solution) will be smaller.
Interestingly, in MILP sometimes it is better a formulation with a bigger
number of variables and constraints!


