
On the Stability and Applicability of Deep Learning
in Fault Localization

Viktor Csuvik∗, Roland Aszmann∗, Árpád Beszédes∗, Ferenc Horváth∗, Tibor Gyimóthy∗
∗Department of Software Engineering

University of Szeged, Szeged, Hungary

{csuvikv,aszmann,beszedes,hferenc,gyimi}@inf.u-szeged.hu

Abstract—Numerous Deep Learning (DL)-based fault localiza-
tion (FL) methods are developed with the aim of leveraging the
code coverage matrix and failure vector to identify the connection
between program elements and defects. The imbalanced data on
which these approaches train their models poses a substantial
challenge to the effectiveness of fault localization techniques. This
study explores the stability of fault localization models in deep
learning, specifically, their performance when trained repeatedly
using the same input but varying random initializations. Using
the Defect4J benchmark, we trained deep learning models (MLP,
CNN, and RNN) independently and found that 86 cases resulted
in (partly) consistent rankings among all five models and versions,
while 621 exhibited varying outcomes, meaning that 90% of
the produced ranks were different in subsequent trainings. The
models showed significant variability in ranking results, with
maximum ranks sometimes five times that of the minimum. We
also adapted the churn metric from DL research to evaluate
models, confirming their instability. To improve stability, meta-
parameter optimization, model simplification and resampling has
been applied. Although some of these techniques proved effective,
even with the improvements, the models remained insufficiently
stable to produce reliable results.

Index Terms—Spectrum Based Fault Localization, Deep Learn-
ing, Prediction Churn, SBFL, DL

I. INTRODUCTION

Efficient program fault localization techniques (FL) play
a crucial role in software development due to the time-
consuming and resource-intensive nature of identifying and
fixing defects in large, complex programs. Sophisticated meth-
ods are designed to streamline this process by analyzing code
coverage and failure data to pinpoint the potential sources of
errors. Spectrum-Based Fault Localization (SBFL) approaches
are among the most widely adopted ones [1].

In recent times, there have been results suggesting Deep
Learning (DL) based solutions, from which coverage matrix-
based approaches play a prominent role. Several noteworthy
outcomes in this direction have been achieved by, for in-
stance, authors of papers [2]–[9]. These researchers utilize
deep learning models, expecting them to reflect the complex
nonlinear relationship between the statements and test results.
The suspiciousness of each statement is obtained by training
a deep learning model on coverage information and then by
constructing a special input that makes the model to estimate
the faultiness of a single statement. This approach is often
referred as DLFL (Deep Learning Fault Localization), and to

the best of our knowledge it was introduced by Wong et al.
in 2009 [10]. Since then several other research groups have
investigated DLFL, achieving moderate success [8], [11], [12].

In DL approaches, stability is essential because only report-
ing a good DL performance may threaten the experimental
conclusions [13]. The basic requirement of a stable model is
that after re-training it, the obtained results are similar (ideally
nearly the same) as before using the original dataset. In our
study, we investigated the extent to which DLFL models fulfill
the stability criterion on the Defect4J benchmark. When train-
ing what we call a stable model multiple times on the same
input, we expect that despite different initialization values, the
resulting models provide similar or identical results for the
test cases. By examining publicly available DLFL models, we
found that the result rankings exhibited significant variation
between independent model trainings. To asses the stability
of these models, we adopted churn, a metric commonly used
in the ML literature [14], [15]. It measures the probability
that the output of two independently trained models will be
different. If this probability is high the models are likely to
produce different outputs, suggesting an error in model design
or implementation.

In our research, we used 230 versions from the Defecs4J
benchmark and applied DLFL by training each deep learning
model (Multi-Layer Perceptrons (MLP), Convolutional Neural
Networks (CNN), and Recurrent Neural Networks (RNN))
five times independently, using different random initializations.
Surprisingly, we found that in the case of the examined
versions, only in 86 instances did all five models produce
partly identical results, whereas for 621 cases, all five models
yielded different results. Notably, the result rankings exhibited
significant variation, with a substantial spread in some cases,
where the maximum rank value was five times as large as the
minimum value. On average, 90% of the produced ranks were
different in subsequent trainings. In terms of the churn results,
we found that, by the original definition the metric, it showed
a value of 0.95 on average (the probability that ranks between
two trainings differ is 95%). Our churn metric defined for the
FL problem showed a more nuanced picture, but still high
probabilities can be observed.

We attempted to enhance stability by making parameter
adjustments, but significant improvements proved elusive.
However, through more substantial modifications to the model,

such as reducing the number of layers, we achieved some
improvement in stability. We also explored whether improving
the coverage matrix through resampling could enhance stabil-
ity. It was found that there was a significant improvement, but
the model still remained insufficiently stable to provide reliable
and reproducible results. Combining these two methods led to
better stability results but still not acceptable.

In addition to the instability issues, the performance of deep
learning models barely approach that of standard methods.
Not mentioning the resources needed: while deep learning
models are very expensive to teach and evaluate, standard
approaches can be run quickly, calling into question the
validity of the former. The following points summarize our
main contributions:

• Model evaluation using different metrics: to test the
stability of DLFL models, we used several metrics: mean,
standard deviation and churn also showed that the results
of independent trainings are very different from each
other. By conducting a large-scale training we investigate
in detail the stability of DL-based FL method.

• Proposal of potential improvements: based on the DL
literature, we applied metaparameter optimization, model
simplification and oversampling. Although metaparame-
ter optimization is more demanding on the resource, this
technique did not improve the stability of the models. On
the other hand, with the combination of model simplifi-
cation and oversampling we achieved moderate success:
stability improved, but still remained unreliable.

In summary, our experiments show that DLFL approaches
are not stable, and furthermore, this may imply that similar
issues may arise in other DL application domains in software
engineering. Our approach to measure model stability could
be employed in many such other areas as well.

II. RESEARCH OBJECTIVES

We organize our experiment along the following:

RQ1: How stable is the training process of DLFL ap-
proaches and how does it affect reproducibility?

By conducting a large-scale training we investigate in detail
the stability of DL-based FL method. If the outputs of suc-
cessive model trainings are very different from each other, it
makes impossible to reproduce previous research findings, and
makes these approaches unusable in practice (since we cannot
provide reliable rankings).

RQ2: Can the stability and applicability be increased?

Stability is a prerequisite for reproducibility – using standard
techniques from DL literature (metaparameter optimization,
model simplification and resampling) we attempted to address
the stability problem of the models.

III. RELATED WORK

A. Related Work on Deep Learning Fault Localization

In the realm of DLFL, coverage matrix-based approaches
have emerged as pivotal contributions. Zhang et al. in their
seminal work [2] utilized three deep learning architectures
(MLP, CNN, RNN) for fault localization. Subsequent research
expanded on this foundation, employing oversampling [3] and
test generation [4] to address class imbalance. The results
demonstrated that these approaches enhanced fault localiza-
tion effectiveness, surpassing previous DLFL approaches. The
group later proposed Aeneas, synthesizing failing test cases
from a reduced feature space [5]. This approach statistically
outperformed baselines. To address class imbalance further,
subsequent works introduced cost-effective data augmenta-
tion approaches, such as between-class learning [6] and the
Lamont approach [7]. Additionally, the use of Generative
Adversarial Networks (GANs) in CGAN4FL [8] demonstrated
their efficacy in constructing a class-balanced dataset for fault
localization. While these publications share a common theme,
each introduces a unique improvement in fault localization.
Unfortunately, not all listed papers have online appendices
or repositories, but only one [5] provides source code. Also,
the lack of predefined seeds in the training process poses
challenges to the reproducibility of their experiments.

The issue of data imbalance in intelligent fault diagnosis
methods has garnered extensive attention, leading to numerous
publications [16]–[18]. For instance, Fang et al. [19] employ a
conditional variational autoencoder (CVAE) for synthesis and
apply fault localization techniques. GNet4FL [20] combines
static and dynamic features for more precise fault localization.
Other techniques, such as DeepFL [21] and FLUCCS [22],
leverage additional information, with DeepFL automatically
learning latent features and FLUCCS using Genetic Program-
ming and linear rank Support Vector Machines (SVMs) for
learning fault localization formulae.

B. Related Work on the Stability of Deep Learning

Conventional training methods for neural networks incor-
porate various sources of randomness, such as initialization,
mini-batch order, and data augmentation. Since neural net-
works tend to be significantly over-parameterized in practical
applications, this inherent randomness can lead to issues [23].
Situations when two models independently trained by the same
algorithm produce differing predictions for the same input are
referred to by literature as churn [14], [15]. Churn represents
the proportion of test samples where predictions of the models
do not match. One approach to mitigate churn involves eradi-
cating all forms of randomness within the training configura-
tion. However, even if one manages to control the seed used
for random initialization and the data ordering, which itself
presents challenges, it remains difficult to evade the inherent
non-determinism present in contemporary computing plat-
forms [24]. Distillation [25] transfers knowledge from larger to
smaller neural networks to reduce churn, while this paper does
not explore other properties of neural networks [26]. Having

stable models capable of generating predictions unaffected
by the random training factors is essential for developers to
trust deep learning approaches – a challange modern machine
learning still have to tackle with [27].

Liu et al. [13] examines the reproducibility of DL models
in the field of SE. The study reveals that only 10.2% of the
reviewed publications address replicability or reproducibility,
with over 62.6% not sharing high-quality source code or
complete data. Experimental results underscore the importance
of reproducibility and replicability, demonstrating challenges
in reproducing DL model performance due to an unstable
optimization process, non-convergence in model training, and
sensitivity to vocabulary and testing data size. While sharing a
reproduction package in deep learning supports reproducibil-
ity, the inherent randomness in model initialization and opti-
mization makes it challenging to guarantee that models trained
by different researchers will produce identical experimental
results even when re-running the provided source code and
data. Thus stable models are fundamental to have reliable and
applicable DL models in any domain.

In our work, we did not concentrate on general DL models,
but observed a special field: fault localization. We did not
seek to assess the actual performance of such models, we
only test how stable and reproducible these methods are. Our
methodology differs from what we saw in previous literature:
in addition to the classical statistical measures, we also used
the churn metric to support our findings. Furthermore all of
our experiment data is available in the online appendix [28],
[29] with fixed seed values and reproducible measurements.

IV. BACKGROUND

A. Coverage Matrix-Based DL Model

To the best of our knowledge, DL-enhanced coverage
matrix-based fault localization was introduced in 2009 by
Wong et al. [10]. In this section, we introduce their pro-
posed method in short. Suppose we have a program with m
executable statements and exactly one fault. Suppose also that
there are n executable test cases of which k tests are successful
and n - k are failed. This data is then organized into an n x
m sized matrix, where inside the matrix there is 1 if the test
covers the statement and 0 otherwise. An example of such a
matrix can be seen in Figure 1. The result of the test execution
is also organized into a vector form that has n rows, denoting
whether the test was successful (0) or failed (1).

0 0 0 0 0 1 1 0 0

1 1 1 0 1 0 1 1 1

1 1 1 0 1 1 1 1 1

0 0 1 0 0 1 1 1 0

1 1 1 1 0 1 0 1 1

0

0

0

1

1

3 successful tests

2 failed tests

Statement coverage

Fig. 1: Coverage matrix with 9 statements and 5 test cases.

1

1

0

1

Statement coverage

0 - 1

Probability of

an execution

being failed

(a) High-level illustration of the neural
network used for fault localization.

1 0 0

0 1 0

0 0 1

cv1

cv2

cvm

=

(b) Virtual test simulating
coverage of a single statement.

Fig. 2: Components of DL-enhanced SBFL.

Next, a neural network is being constructed. The input layer
has m neurons, as a single row from the above matrix (i.e.
’statement coverage vector’) forms the input of the model. The
output is a single neuron, and the desired outcome is to predict
whether the test execution result was successful or not. The
inner structure of the neural network is arbitrary, in the litera-
ture one can find diverse architectures, including Feedforward
Neural Network, Convolutional Neural Networks, Recurrent
Neural Networks and even Graph Neural Networks [12], [20],
[30]. The outcome can be interpreted as an estimation of the
test execution result. Note that there is no train-test-validation
split of the training data, as the training objective is to learn to
predict whether a test was successful or not, based only on the
test coverage matrix as we depicted this process on Figure 2
(a). Thus the training objective is to perfectly learn when will a
test case fail and when will succeed, no generalization needed.

The actual fault localization part comes after the neural
network has been trained. Assume there is a set of so called
virtual test cases whose coverage vectors are cv1, ..., cvm. The
execution of a virtual test case covers only one statement and
if we organize these into a matrix form again, the result is a
diagonal matrix as shown in Figure 2 (b). The execution of
such a virtual test case is interpreted as a test that only covers
one statement. If a statement is contained in a lot of failed test
executions, the output of such a virtual test case is expected
to be high. This implies that during the fault localization, we
should first examine the statements whose output values are
high. The output value of the neural network is between 0
and 1, the larger the value is the more likely it is that the
corresponding statement (in which in the coverage vector the
value was 1) contains a bug. This output can be treated as the
suspiciousness of a given statement in terms of its likelihood
of containing the bug.

The fault localization process continues from this step the
usual way: the statements are ranked based on their suspi-
ciousness – more suspicious statements are sorted at the top,
while less suspicious ones to the bottom of the list.

B. Churn Measurement

We interpret churn as defined by Cormier et al. as the
expected disagreement between the predictions of two mod-
els [14]. Churn is zero if both models provide the same
output for the same input, while large churn values mean

■ org.mockito.internal.invocation.InvocationMatcher#122

■ org.mockito.internal.invocation.InvocationMatcher#123

■ org.mockito.internal.invocation.InvocationMatcher#121

■ org.mockito.internal.invocation.ArgumentsProcessor#36

□ org.mockito.internal.util.collections.ArrayUtils#8

■ org.mockito.internal.invocation.ArgumentsProcessor#28

■ org.mockito.internal.invocation.ArgumentsProcessor#34

□ org.mockito.internal.handler.InvocationNotifierHandler#40

□ org.mockito.internal.handler.InvocationNotifierHandler#65

1;org.mockito.internal.invocation.InvocationMatcher#123

2;org.mockito.internal.invocation.InvocationMatcher#122

3;org.mockito.internal.invocation.InvocationMatcher#121

4;org.mockito.internal.invocation.ArgumentsProcessor#38

5;org.mockito.internal.util.collections.ArrayUtils#11

6;org.mockito.internal.invocation.ArgumentsProcessor#35

7;org.mockito.internal.invocation.ArgumentsProcessor#26

8;org.mockito.internal.invocation.ArgumentsProcessor#28

9;org.mockito.internal.handler.InvocationNotifierHandler#42

Mockito 1 – model train #1 Mockito 1 – model train #2

Fig. 3: Statement boxing including 3 statements each. Boxes are highlighted with colors, the faulty statement is bold and the
list is ordered by the suspiciousness assigned by each model. The churn is calculated as follows: Churn = 1− 1/12 = 0.917,
BoxChurn = 1− 5/12 = 0.583, while FlBoxChurn = 1− 1/1 = 0.

that models independently trained disagree on most of the test
data – suggesting that an error could have occurred in model
design, or in learning and evaluation phase. This probability
is essentially implemented in practice as:

1− #SamplesOnModelsAgreed

#AllSamples
(1)

where #SamplesOnModelsAgreed is the number of sam-
ples on which the two independently trained models agree,
while #AllSamples is the number of samples in the dataset.
In Figure 3 one can observe that most of the assigned ranks
differ between independent trainings.

C. Churn Adaptation

Churn is defined for classification tasks, for example image
recognition [15]. The straightforward adaptation of this metric
for fault localization would be to consider every rank as a
class label and models need to produce the exact same list
of suspicious statements. However, two key observations can
be made: (1) statements on similar positions are counted as
disagreement and (2) not all ranks are of equal importance -
buggy statements are more important. For example, consider
the case of 100 statements on which the two models rank the
faulty statement on rank 1, while the remainder in random
order. It is clear that in this case the worst case scenario
is that the models only agree on the rank of the faulty
statement, resulting in a high churn of 0.99 (although they
ranked the faulty statement as intended). On the other hand,
let us consider two models and define the ranks of the second
model as the rank assigned by the first model + 1. Now the
two models disagree on every sample, however the produced
lists are very similar. To overcome these limitation we define
two revised versions of churn for fault localization.

1) Statement Boxing: First we introduced what we call
boxing, the process that groups statements into fixed sized
boxes and then churn is measured not on the actual ranks,
but on the assigned boxes. For example, in Figure 3 we
defined a box size of 3. It can be observed that although
the two independent trainings placed the faulty statement
on different ranks, they are mapped in the same box, thus
reducing churn value. In our experiments we used a predefined
box size, but it can be considered as an input parameter. It
is expected that BoxChurn values are lower compared to
regular Churn, as fewer classes are created in this new setting.

The implementation of the boxing function is arbitrary, in our
experiments we used fixed box sizes of 5, 10 and 50.

2) Faulty Box: As the rank of the faulty statement is the
most important in fault localization applications, we decided
to adapt churn to meet this criteria. In the previous metrics
disagreement between correct statements is also measured.
To overcome this limitation we define FlBoxChurn as
BoxChurn calculated only on the box containing faulty
statements. Note that there might be more faulty statements in
a system, thus the value of FlBoxChurn is not necessarily
0 or 1. In Figure 3 this amendment results in a churn value
of 0, which gives a better indication of the problem.

D. SFL measures
SBFL’s effectiveness can be measured in various ways [31],

[32], but most rely on estimating the effort programmers
need to identify the faulty element using the tool. The rank
list serves as a proxy for this property, with the number of
elements before the first faulty element, often collectively
called the Expense.

1) Expense metric: Most often, the absolute version of the
Expense metric is used which means that we simply count
the number of code elements in the rank list in front of
the faulty one. One complication with this method are rank
ties [33], i.e. situations when different code elements share
the same suspiciousness scores. Typically, all elements in a
rank tie are assigned the same rank value, based on one of
these approaches [34]: minimum, which refers to the top most
position of the elements sharing the same suspiciousness value
(optimistic or the best case); maximum, where the bottom
most position is used (pessimistic or the worst case); and the
average strategy, where the medium position of the elements
sharing the same suspiciousness value is used (average case).

Equation 2 shows the absolute average rank calcula-
tion [35], [36], where i and f are code elements, the latter
being the faulty one, while si and sf are the respective
suspiciousness score values.

E(f) =
|{i|si > sf}|+ |{i|si ≥ sf}|+ 1

2
(2)

Another issue arises when a program has multiple faults,
which is common. Typically, the E value linked to the element
with the highest suspiciousness score is used (min(E(f)),
where f ∈ {faulty elements}). We will use this as the expense
measurement in the following.

2) Top-N: Several studies report that developers investigate
only the first 5 or 10 elements in the ranking list by fault
localization algorithms before giving up [37], [38]. The family
of metrics that distinguishes bugs where the minimum rank of
faulty elements is less than or equal to N is commonly referred
to as Top-N or acc@N [39]. This metric represents the number
of successfully localized bugs within the top-n elements of the
ranking lists. Higher values are better for this metric, and the
typical values used for N are 1, 3, 5, and 10. Code elements
ranked behind N, are referred to as the Other category.

V. EXPERIMENT SETUP

In preparation for our research, we found the seminal work
of Xie et al. [5] whose implementation is publicly available 1

and on which our implementation was based. To the best of our
knowledge, the research group published several other papers
based on this code, with some improvements [2]–[4], [6]–
[9]. They used three deep learning architectures: Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN). All of these models are
trained on the same dataset, computing architecture and with
same metaparameters (200 epochs, 0.01 learning rate, batch
size of 40 (except CNN – 10), MSE loss function and SGD
optimizer with momentum of 0.9).

Our experiment was conducted on a 64-bit Linux server
with Ubuntu 20.04.6 LTS. operating system, 10 Intel(R) Xeon
CPUs, 128G RAM and one 12G GPU of NVIDIA GeForce
RTX 2080 Ti. We used the 2.0.1 version of PyTorch library to
build and examine the neural networks. To make our results
reproducible, we fixed the random seed for each run of the
different neural network models on the input matrices, by
using the torch manual_seed and the cuda subpackage’s same
named function. The seed values are published with our source
code at [28], [29].

A. Investigated Models

1) MLP: it consists of multiple layers of interconnected
nodes, each of which performs a weighted sum of its inputs
and applies an activation function to produce an output. MLP
is a special case of Feedforward Neural Network (FNN) where
every layer is a fully connected layer, and the number of
nodes in each layer is the same. The architecture is built
dinamically: the number of units in the hidden layers de-
pends on the number of statements present in the program
(hidden_units = max(30, ⌊num_statements/30⌋) ∗ 10).
Three hidden layers are present in the architecture, between
which dropout of 25% has been applied to stabilize the
learning process. The output layer is a sigmoid layer, which
provides the network’s output.

2) CNN: it is a specialized deep learning architecture
designed for processing and analyzing grid-like data, such
as images and matrices. It processes data through a series of
convolutional layers, which apply filters to the input matrix to
extract features. These features are then passed through one or

1https://github.com/ICSE2022FL/ICSE2022FLCode/

TABLE I: Main Properties of Programs Used from Defects4J
(KLOC, Tests and No. Bugs Columns Data from [40])

Project KLOC Tests No.
bugs

Avg. no.
statements

No. suitable
bugs

Chart 96 2 205 26 1 374 21
Lang 22 2 245 65 804 65
Math 85 3 602 106 1 967 100
Mockito 20 1 379 38 1 778 37
Time 28 4 130 27 3 811 7

Total 251 13 561 262 1 610 230

more fully connected layers, which perform classification or
regression tasks. In the observed repository two convolutional
layers are present, the first with 15, while the second with
30 output layers. A kernel of size 1 × 3 is used, with a
step size of 2, and max-pooling, resulting in a vector-like
convolution. The explanation behind this is that while the
arrangement of statements might be useful information (order
of the columns), the order of the tests is certainly not (rows in
the matrix). After the convolution, two fully connected layers
are defined, between which dropout of 25% has been applied.
The output again is produced by a single neuron using the
sigmoid function.

3) RNN: it incorporates feedback loops, allowing it to
maintain a form of memory about previous inputs. RNNs
consist of a series of interconnected nodes, each of which
takes an input and produces an output. The output is then
fed back into the network as input for the next node in the
sequence. The observed RNN architecture consists of 2 hidden
layers with the same number of neurons as the number of
statements and a single classification layer that applies the
sigmoid function as before.

B. Dataset

For the evaluation, just like in [5], Defects4J (v1.4.0)2 was
selected. In FL research [40], Defects4J is a well-known,
widely used collection of Java programs and curated bugs. We
evaluated all the models and their different improved versions
(described in Section V-A and VII respectively) five times
on the benchmark. Since our experiments relied on repeated
executions, which is a highly hardware intensive and time
consuming task, and because we aimed at comparing the
results for all investigated models, we had to exclude certain
parts of the benchmark for the experiments. We excluded the
Closure program altogether and some versions from the other
programs. As a result, a total of 230 defects were included
in the final dataset whose properties are shown in Table I.
Columns 2-4 show program sizes, the number of tests and
available bugs. Column 5 contains the average statement count,
while in column 6 are the number of used bugs (the exact list
of bugs can be found in the supplemental material).

2https://github.com/rjust/defects4j/tree/v1.4.0

TABLE II: Number of same Expense appearing in the five
separate runs of models

All
same

At least
4

At least
3

At least
2

All
different

MLP 0 0 7 29 201
CNN 0 0 1 13 217
RNN 1 2 6 27 203

VI. RESULTS

A. Statistical Measure-based Evaluation

To examine the stability of the models, we ran the various
models on every selected program-versions 5 times in a row.
The only difference between each 5 runs on the same input
and model is the selected random seed, fixed at start. The
separate runs have to produce same, or similar outputs, if the
models are stable.

Table II illustrates the extent of variability observed in
expenses across the 5 runs. Notably, only one model and
program version consistently yielded the same expense in each
run. Column 5 reveals that merely 12%–6%–12% of versions
resulted in the same expense at least twice, underscoring
the significant diversity in outcomes. Approximately 90% of
versions exhibited different results for each unique random
seed, emphasizing the substantial impact of seed selection on
model outcomes.

Table III shows a summary of results by programs and total.
We can see in the first 3 columns the mean expense of the
models on the benchmark, by programs. Columns 4–6 show
the average of standard deviation, presenting the disparity from
mean values of the five separate run by each version. These
are quite high values, showing the high variety of the outputs
of the separate runs, and it strengthens our conclusions of
previous table. From columns 7–12 are the average maximum
and minimum expense values of the five runs of models. As we
can see there are really high differences between them, in most
of the cases the maximal expense is 4–5 times bigger than the
minimal one. The RNN model on Chart has proportionally the
smallest distinctness, however that has still a double difference
quotient. We also used statistical significance testing, by using
Wilcoxon sign-rank test [41], complemented with Cliff’s Delta
effect size measure [42], which proved that maximum values
are significantly larger than minimals, with large to medium

magnitude of effect size in all cases. Detailed statistical test
results appear in the online appendix [28], [29].

TABLE IV: DLFL Top-N choosing Min or Mean or Max rank
of the 5 seperate runs of each version by different models

Top-1 Top-3 Top-5 Top-10 Other

MIN
MLP 23 49 58 78 152
CNN 2 4 8 17 213
RNN 8 23 29 42 188

MEAN
MLP 0 7 13 21 209
CNN 0 0 0 1 229
RNN 1 2 10 19 211

MAX
MLP 0 3 7 14 216
CNN 0 0 0 1 229
RNN 1 1 5 12 218

We examined the Top-N of the DLFL as well, and the
outcomes are shown in Table IV. The rows present the
selection of model results from the 5 runs, as minimal, mean
and maximal expense. The minimal selection makes the Top-
N results significantly better than the other two. Notice that
the Top-1 case is almost zero if not selecting the best case,
while Top-3-5-10 are at least 2 times, even 7 times worse
than the minimal, mean and maximal selection. There is not
so high difference comparing mean and maximal, which is
due to the really high maximal values that have high effect on
means. Our results presented how much effect the selection of
random seed has on DLFL, which makes the applicability of
this technique questionable. There are almost no cases where
the difference is negligible between the five runs in a version.
Detailed box plots depicting standard deviation of projects can
be found in the online appendix [28], [29].

B. Churn-based Evaluation

As described in Sections IV-B and IV-C, we measured churn
in three settings: (1) by the original definition, (2) by aligning
statements into boxes and (3) by filtering out boxes that do
not contain faulty statements. In Figure 4, we can observe
histograms of the measured churn values. These values were
measured using the 5 trained MLP models, while other models
show similar trends. Churn is measured on model variant-pairs,
for example on version 1 between training attempt 1 and 2,
next between training attempt 1 and 3, etc. These pairwise
churn values are then averaged so that the histogram can more

TABLE III: DLFL Average Expense results of 5 seperate runs of each version by different models

Mean Standard deviation Minimum Maximum
MLP CNN RNN MLP CNN RNN MLP CNN RNN MLP CNN RNN

Chart 419.54 460.50 521.47 312.28 225.47 232.54 124.81 223.69 293.00 853.17 760.52 830.00
Lang 201.89 329.80 306.34 122.63 179.35 139.67 82.19 134.65 162.25 385.27 569.00 493.98
Math 511.06 899.46 896.25 283.61 480.60 283.29 199.81 321.86 565.00 866.07 1454.44 1254.11
Mockito 522.48 707.43 679.70 310.54 402.02 295.12 184.43 259.93 315.62 906.22 1219.76 1038.05
Time 1618.37 1681.39 1422.41 571.25 941.65 506.16 871.86 638.21 912.07 2263.71 2857.71 2153.00

Average 450.87 691.29 676.50 253.82 373.56 246.75 177.70 259.65 396.79 778.01 1145.81 993.17

concisely represent all the measured data. It is clear from the
figure that Churn values are highest, FlBoxChurn values
the lowest and BoxChurn somewhere between. Note that the
size of boxes plays a crucial role here: larger box sizes are
more forgiving to model errors. In our experiments we used
fixed box sizes of 5, 10 and 50 (in Figure 4 we only included 5
and 10). More detailed histograms can be found in the online
appendix of this paper [28], [29]. It is clear that these Churn
values are considerably large, even if the measure is adapted
to fault localization.

It is application dependent what is an acceptable churn, but
having an average value of 0.99 means that if the model
is being trained again using different seeds, the statements
will receive a different rank than before with 99% probability,
which is clearly disadvantageous. One can argue that only
the rank of the faulty statement is important, and that minor
differences between ranks are still acceptable. To this end, we
defined FlBoxChurn and by measuring it on the subject pro-
grams we still see considerably high values. Notably, using a
box size of 5, 65.08% of statements have a churn value higher
than 0.5. For box size of 10 and 50, this is somewhat reduced
to 64.94% and 60.94%, respectively. Average BoxChurn
value of box size 10 is 0.96, while for FlBoxChurn it is
0.41.

Answer to RQ1: In the 5 independent trainings we per-
formed, we found that the output of the same model
varies greatly due to the effect of random factors during
training phase. Standard deviation of ranks is 291.37,
with 606.22 mean values on average, implying 48.06%
relative standard deviation, while based on boxed churn
measurements the probability that two statements are going
to end up in different boxes is 99.89%. These high values
are good indicators of system instability.

VII. POTENTIAL IMPROVEMENTS

A. Metaparameter optimization

In our study, we diligently applied metaparameter optimiza-
tion techniques to fine-tune the three observed models, with
the hope of achieving significant performance enhancements.
However, despite exhaustive experimentation and resource
allocation, the outcomes proved disappointing. We used grid
search to optimize the following parameters: learning rate,

epochs, batch size, loss function and optimizer. This expe-
rience underscores the importance of a nuanced approach to
hyperparameter tuning, as well as the acknowledgment that
not all models may benefit from such optimization strategies.

B. Model simplification

Model simplification in deep learning refers to the process
of reducing the complexity and size of a neural network while
maintaining acceptable performance levels. This technique
aims to achieve several objectives, including improved model
interpretability, reduced computational resource requirements,
and enhanced generalization on limited data [43]. On the
observed models we made the following architectural adjust-
ments:

• MLP: reduced the number of hidden layers
• CNN: the number of channels in convolution layers has

been decreased to the 2/3 of the baseline
• RNN: the original two recurrent layers have been re-

placed by a single one

TABLE V: Effect of Resampling and Simplified models on
the results in Table III

All
same

At least
4

At least
3

At least
2

All
different

MLP 17 27 51 125 105
CNN 0 0 0 5 225
RNN 4 9 34 93 137

By eliminating unnecessary model components, we stream-
lined the network, making it more efficient and stable. The
runs with the explained simplifications produced a bit more
stable results with the MLP and RNN models and had negli-
gible impact on CNN values. However, these models still do
not seem to produce reliable outcomes.

C. Resampling

Resampling techniques can be roughly categorized into
three commonly used types: oversampling, undersampling,
and sampling with the creation of artificial data [3]. In our
experiments, we applied oversampling, which is simple yet
effective and incurs a little cost. The approach first identifies
failing test cases; then iteratively resamples failing test cases
into original test cases; finally stops the iterative resampling

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

(a) Origin churn

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

(b) BoxChurn, box size = 5

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

(c) BoxChurn, box size = 10

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

(d) FlBoxChurn, box size = 5

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

(e) FlBoxChurn, box size = 10

Fig. 4: Histogram of churn values measured using the MLP model on the observed programs.

TABLE VI: Effect of using the Resampling and the Simplified models combined on Average Expense results

Mean Standard deviation Minimum Maximum
MLP CNN RNN MLP CNN RNN MLP CNN RNN MLP CNN RNN

Chart 188.72 595.78 209.87 67.42 302.65 55.67 85.33 204.33 143.33 246.48 952.48 263.81
Lang 28.00 354.93 94.39 13.01 146.31 12.57 14.80 182.28 80.32 45.54 541.61 111.25
Math 124.05 860.38 209.13 51.32 432.69 58.57 67.88 361.98 150.30 193.82 1396.74 289.84
Mockito 336.86 617.54 278.98 117.34 298.77 103.02 193.19 270.32 146.16 468.57 985.00 404.30
Time 997.94 1945.97 337.43 413.92 1050.84 162.31 503.14 595.71 135.71 1514.43 3120.79 535.86

Total 163.64 687.35 191.91 63.62 337.15 55.61 87.88 289.17 128.78 241.11 1100.74 262.89

Diff -287.23 -3.94 -484.58 -190.20 -36.41 -191.14 -89.82 29.51 -268.01 -536.89 -45.06 -730.28
Diff % -63.71 -0.57 -71.63 -74.94 -9.75 -77.46 -50.55 11.37 -67.54 -69.01 -3.93 -73.53

process until obtaining a balanced test suite, where the number
of failing test cases is the same as that of passing test cases.

By applying resampling, we found that the stability of the
models increased significantly with MLP and RNN models,
it had a bit of positive impact on CNN, but they still do not
provide reliable results.

Due to limited space, our detailed results of using simpli-
fied models and resampling in DLFL appear in the online
appendix [28], [29].

D. Resampling and Model simplification

In this section, we present results on the combination of
model simplification and resampling.

In Table V, we can see the variety of each five runs of
the simplified models with resampling technique usage. The
MLP and RNN model values are in some case more similar
to each other compared to the baseline in Table III, however
there are still high variety in results. Still around half of the
runs produce different expense every time in MLP and RNN
models. The other 50% cases the models mostly produces at
least 2–3 times same expense values from the 5 separate runs,
which is an improvement compared to the baseline. There are
also more cases when these 2 architectures produced same
results each time from the 5 case. CNN model seems to have
no improvement in this point of view, in 97% of cases it
produced different results each time.

In Table VI, we can see the mean values of DLFL using
the two new improvement technique. The structure of table
is same as for Table II, but there are two extra rows, which
show the absolute and percentage difference compared to the
baseline. We can see that all models improved in average
expense and in standard deviation as well. There are 70%
improvements at MLP and RNN model in standard deviation,
which indicates that stability seems to be improved. The max-
imal and minimal expense values both are highly decreased,
however their ratios still seems to be too high to call models
stable. Like in the previous section, CNN seems to be not
really improved, the combined technique does not make it
more stable. We used statistical significance testing here as
well, like in Section VI-A: the maximal values, despite our
improvements, were still significantly greater than minimals
in all cases, however the effect sizes decreased a bit in some
cases.

In Table VII, we examined the effect of our improvements
on the DLFL Top-N. As we can see, there are still big
differences between the selection of expenses from the five
runs. The best case, the minimal selection, has higher values
than the baseline had in Table IV, so we improved results in
terms of fault localization effectiveness. However, if we check
the mean and maximal selection, we can see that those values
are still smaller than the minimal, indicating that random seed
has a large effect on these results. The ratio of Top-N between
the selections are better than at the baseline, but models still
seems to be too unstable to give reliable results.

TABLE VII: Effect of Resampling and Simplified models on
DLFL Top-N

Top-1 Top-3 Top-5 Top-10 Other

MIN
MLP 59 102 121 147 83
CNN 2 9 17 29 201
RNN 37 68 83 109 121

MEAN
MLP 10 52 70 112 118
CNN 0 0 0 1 229
RNN 3 31 44 75 155

MAX
MLP 10 41 60 84 146
CNN 0 0 0 0 230
RNN 3 21 33 55 175

Churn measurements support the statistical analysis. In the
following discussion, we continued our experiments with a box
size of 10. In Figure 5, we depicted the histograms of boxed
churn values using the MLP model. The histograms therefore
represent the same data as in Figure 4, but the bars on the
left side of the x-axis are higher than before. This essentially
means that churn has been somewhat reduced. To quantify this
improvement: the churn value decreased by 0.0063 on average,
resulting an average value of 0.98 in case of Churn, 0.93
in case of BoxChurn and 0.32 in case of FlBoxChurn.
Although the improvement is measurable, this can only be
considered as moderate success.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80

(a) BoxChurn, box size = 10
0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

(b) FlBoxChurn, box size = 10

Fig. 5: Histogram of churn values measured using the simpli-
fied MLP model and resampling.

Answer to RQ2: Enhancement of stability and applica-
bility can be achieved to a certain extent; however, the
improvements may not suffice to ensure consistently re-
liable outcomes. Both statistical and churn measurements
confirmed that stability improved, but the models remained
insufficiently stable to produce reliable results in practical
applications.

VIII. DISCUSSION AND THREATS TO VALIDITY

We only examined the issue of stability in the FL domain;
however, this might be a general problem in SE research using
DL. DL reproducibility can be largely supported by sharing a
reproduction package, however without examining the stability
of the proposed model, its applicability is limited. As we have
seen, standard statistical measures serve as a good indicator
of whether a model is stable or not, and the adapted churn
metric can further support such arguments. By applying our
method, we believe better practices can be built for publishing
DL applications and testing their stability.

Another question that arises is what can we conclude about
the reasons for the instability and how it can be mitigated. As
we have seen in RQ2, the major problems which we managed
to moderate were the imbalanced data, subomptimal network
architecture and parameterization, and in general, suitability
of DL for SBFL. In particular, Zhang et al. [2] concluded in
their findings that CNN performs the best in locating faults,
even achieving better results than Dstar. Although in this
study we did not concentrate on FL performance, rather on
stability, we found that CNN was the most unstable of the
models under test. CNNs might have demonstrated remarkable
performance in image classification, object detection, and
image segmentation tasks [44] where the order of the data
carries important information, but in the FL domain we found
MLP to provide more reliable results.

A possible threat to validity of our research relates to
the benchmark we used. We only utilized the Defects4J bug
database for evaluation, however it is the most commonly em-
ployed dataset in the literature for conducting similar studies.
We believe that this choice does not impact the assessment
of stability. Also, not all bugs from the benchmark were used
in our experiments, due to hardware limitations. This does
not limit the validity of the results, as if a model proves
unstable even on this subset, it implies instability across the

entire dataset. In this study we did not investigate the impact
of low convergence levels, posing a threat to the validity of
the findings. In scenarios when the primary objective is not
generalization to new data, omitting a traditional train-test-
validation split and convergence levels may align with the
goals. Our online appendix package [28], [29] ensures full
reproducibility of the research.

IX. CONCLUSIONS

In this paper, we examined the stability and suitability
of DLFL models to provide reliable solutions to the fault
localization problem. By selecting 230 versions from the
Defecs4J benchmark, we trained deep learning models 5 times,
independently. We evaluated the stability of the observed mod-
els using mean, standard deviation and churn, which showed
that the produced ranks are very different from each other. Our
results show that, on average, 90% of the produced ranks were
different in subsequent trainings. Furthermore, we proposed
potential improvements to this problem, achieving moderate
success: metaparameter optimisation techniques did not im-
prove stability, but model simplification and oversampling
reduced the mean of ranks by 45.3% and standard deviation
by 54.04% on average. Churn also has been reduced, but even
with these improvements, the models remained insufficiently
stable to produce reliable results.

The implications of our research are twofold. First, SBFL
research employing machine learning techniques should pay
much higher attention on model stability because it decisively
impacts the soundness and significance of the results. Second,
other SE fields employing DL could also benefit from our
stability measurement approach.

ACKNOWLEDGEMENT

This work was supported in part by the ÚNKP-23-3-SZTE-
435 New National Excellence Program of the Ministry for Cul-
ture and Innovation, by the national project TKP2021-NVA-
09 implemented with the support provided by the Ministry
of Innovation and Technology of Hungary from the source
of the National Research, Development and Innovation Fund,
financed under the TKP2021-NVA funding scheme and by the
European Union project RRF-2.3.1-21-2022-00004 within the
framework of the Artificial Intelligence National Laboratory.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, and D. Li, Software
Fault Localization: an Overview of Research, Techniques, and Tools,
2023, pp. 1–117.

[2] Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and X. Zhang, “A study of
effectiveness of deep learning in locating real faults,” Information and
Software Technology, vol. 131, p. 106486, 2021.

[3] Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and J. Wen, “Improving deep-
learning-based fault localization with resampling,” Journal of Software:
Evolution and Process, vol. 33, no. 3, p. e2312, 2021.

[4] Z. Zhang, Y. Lei, X. Mao, M. Yan, and X. Xia, “Improving fault
localization using model-domain synthesized failing test generation,”
in 2022 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2022, pp. 199–210.

[5] H. Xie, Y. Lei, M. Yan, Y. Yu, X. Xia, and X. Mao, “A universal data
augmentation approach for fault localization,” in Proceedings of the
44th International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
48–60. [Online]. Available: https://doi.org/10.1145/3510003.3510136

[6] Y. Lei, C. Liu, H. Xie, S. Huang, M. Yan, and Z. Xu, “Bcl-fl: A data aug-
mentation approach with between-class learning for fault localization,”
in 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2022, pp. 289–300.

[7] J. Hu, H. Xie, Y. Lei, and K. Yu, “A light-weight data augmentation
method for fault localization,” Information and Software Technology,
vol. 157, p. 107148, 2023.

[8] Y. Lei, T. Wen, H. Xie, L. Fu, C. Liu, L. Xu, and H. Sun, “Mitigating
the effect of class imbalance in fault localization using context-aware
generative adversarial network,” arXiv preprint arXiv:2303.06644, 2023.

[9] L. Fu, Y. Lei, M. Yan, L. Xu, Z. Xu, and X. Zhang, “Metafl: Meta-
morphic fault localisation using weakly supervised deep learning,” IET
Software, 2023.

[10] W. E. Wong and Y. Qi, “Bp neural network-based effective fault
localization,” Int. J. Softw. Eng. Knowl. Eng., vol. 19, pp. 573–597, 2009.
[Online]. Available: https://api.semanticscholar.org/CorpusID:14477519

[11] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2021. New
York, NY, USA: Association for Computing Machinery, 2021, p.
664–676. [Online]. Available: https://doi.org/10.1145/3468264.3468580

[12] A. M. Mohsen, H. Hassan, R. Moawad, and S. H. Makady, “A review
on software bug localization techniques using a motivational example,”
International Journal of Advanced Computer Science and Applications,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
247211009

[13] C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, and X. Yang, “On
the reproducibility and replicability of deep learning in software
engineering,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 1, oct
2021. [Online]. Available: https://doi.org/10.1145/3477535

[14] Q. Cormier, M. M. Fard, K. Canini, and M. R. Gupta, “Launch
and iterate: Reducing prediction churn,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems,
ser. NIPS’16. Red Hook, NY, USA: Curran Associates Inc., 2016,
p. 3179–3187.

[15] S. Bhojanapalli, K. Wilber, A. Veit, A. S. Rawat, S. Kim, A. K.
Menon, and S. Kumar, “On the reproducibility of neural network
predictions,” ArXiv, vol. abs/2102.03349, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:231839490

[16] Z. Ren, T. Lin, K. Feng, Y. Zhu, Z. Liu, and K. Yan, “A systematic
review on imbalanced learning methods in intelligent fault diagnosis,”
IEEE Transactions on Instrumentation and Measurement, 2023.

[17] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 664–676.

[18] Y. Li, S. Wang, and T. Nguyen, “Fault localization with code coverage
representation learning,” in 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE). IEEE, 2021, pp. 661–673.

[19] X. Fang, X. Gao, Y. Wang, Z. Liao, and Y. Ma, “Improving fault
localization using conditional variational autoencoder,” IEICE TRANS-
ACTIONS on Information and Systems, vol. 105, no. 8, pp. 1490–1494,
2022.

[20] J. Qian, X. Ju, and X. Chen, “Gnet4fl: Effective fault localization
via graph convolutional neural network,” Automated Software Engg.,
vol. 30, no. 2, apr 2023. [Online]. Available: https://doi.org/10.1007/
s10515-023-00383-z

[21] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT international symposium on software testing and
analysis, 2019, pp. 169–180.

[22] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2017, pp.
273–283.

[23] X. Huo, F. Thung, M. Li, D. Lo, and S.-T. Shi, “Deep transfer bug
localization,” IEEE Transactions on software engineering, vol. 47, no. 7,
pp. 1368–1380, 2019.

[24] M. Morin and M. Willetts, “Non-determinism in tensorflow resnets,”
ArXiv, vol. abs/2001.11396, 2020. [Online]. Available: https://api.
semanticscholar.org/CorpusID:210965994

[25] H. Jiang, H. Narasimhan, D. Bahri, A. Cotter, and A. Rostamizadeh,
“Churn reduction via distillation,” arXiv preprint arXiv:2106.02654,
2021.

[26] M. Klabunde, T. Schumacher, M. Strohmaier, and F. Lemmerich,
“Similarity of neural network models: A survey of functional and
representational measures,” arXiv preprint arXiv:2305.06329, 2023.

[27] O. E. Gundersen, K. L. Coakley, and C. R. Kirkpatrick, “Sources
of irreproducibility in machine learning: A review,” CoRR, vol.
abs/2204.07610, 2022. [Online]. Available: https://doi.org/10.48550/
arXiv.2204.07610

[28] “Supplemental material for on the stability and applicability of
deep learning in fault localization,” 2023. [Online]. Available:
https://github.com/sed-szeged/deepfl-stability

[29] R. Aszmann, “sed-szeged/deepfl-stability: On the Stability and
Applicability of Deep Learning in Fault Localization,” Jan. 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.10496189

[30] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, and D. Li, “Software
fault localization: an overview of research, techniques, and tools,”
Handbook of Software Fault Localization: Foundations and Advances,
pp. 1–117, 2023.

[31] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. Van Hoorn, A. Filieri,
and D. Lo, “An evaluation of pure spectrum-based fault localization
techniques for large-scale software systems,” Software: Practice and
Experience, vol. 49, no. 8, pp. 1197–1224, 2019.

[32] A. Zakari, S. P. Lee, and I. A. T. Hashem, “A single fault localization
technique based on failed test input,” Array, vol. 3, p. 100008, 2019.

[33] X. Xu, V. Debroy, W. E. Wong, and D. Guo, “Ties within fault local-
ization rankings: Exposing and addressing the problem,” International
Journal of Software Engineering and Knowledge Engineering, vol. 21,
pp. 803–827, 2011.

[34] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization
using code coverage,” in 31st Annual International Computer Software
and Applications Conference (COMPSAC 2007), vol. 1, 2007, pp. 449–
456.

[35] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
- MUTATION, 2007, pp. 89–98.

[36] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE, 2014, pp. 191–200.

[37] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016. New York,
New York, USA: ACM Press, 2016, pp. 165–176.

[38] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated Debugging Considered
Harmful” Considered Harmful: A User Study Revisiting the Useful-
ness of Spectra-Based Fault Localization Techniques with Professionals
Using Real Bugs from Large Systems,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
10 2016, pp. 267–278.

[39] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis. ACM, 2011, pp. 199–209.

[40] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis. ACM, 2014, pp. 437–440.

[41] W. J. Conover, Practical nonparametric statistics. John Wiley & Sons,
1998, vol. 350.

[42] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[43] M. M. Bejani and M. Ghatee, “A systematic review on overfitting control
in shallow and deep neural networks,” Artificial Intelligence Review, pp.
1–48, 2021.

[44] S. Cong and Y. Zhou, “A review of convolutional neural network
architectures and their optimizations,” Artificial Intelligence Review,
vol. 56, no. 3, pp. 1905–1969, 2023.

