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Mumford-Shah Functional

* Proposed in their influential paper by

— David Mumford
e http://www.dam.brown.edu/people/mumford/

— Jayant Shah
e http://www.math.neu.edu/~shah/

Optimal Approximations by Piecewise
Smooth Functions and Associated
Variational Problems. Communications on
Pure and Applied Mathematics, Vol. XLIl, pp
577-685, 1989
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Road Map

* Mumford-Shah energy functional
— Segmentation as optimal approximation
— Cartoon model
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Images as functions

+ A gray-level image represents the light
intensity recorded in a plan domain
— We may introduce coordinates x,
—Let denote the intensity recorded
at the point of
— The function defined on the
domain R is called an image.
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What kind of function is g?

The light reflected by the

surfaces S, of various

objects O, will reach the

domain R in various open

subsets

When O, appears as the

background to the sides of
then the open sets

and 2, will have a common

boundary (edge)

One usually expects

to be discontinuous along b=

this boundary
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Piece-wise smooth g

In all cases, we expect to be piece-wise
smooth to the first approximation.

It is well modelled by a set of smooth functions
defined on a set of disjoint regions R, covering
Problems:

— Textured objects (regions perceived homogeneous but lots
of discontinuities in intensity)

— Sahdows are not true discontinuities

— Partially transparent objects

— Noise

Still widely and succesfully applied model!
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Other discontinuities

» Surface orientation of visible objects (cube)
» Surface markings
* lllumination (shadows, uneven light)
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Segmentation problem

Consists in computing a decomposition of
the domain of the image

R= ORf
i=1

1. varies smootly and/or slowly within

2. varies discontinuously and/or rapidly
across most of the boundary /~ between
regions




Optimal approximation

+ Segmentation problem may be restated as

— finding optimal approximations of a general
function

— by a piece-wise smooth function f, whose
restrictions f; to the regions R, are
differentiable

* Many other applications:

— Speech recognition

— Sonar, radar or laser range data

— CT scans

— etc...
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Mumford-Shah functional

Let 7 differentiable on and allowed to
be discontinuous across

E(f.0)=p*[[ (f - g)dvdy +[[ [vf| dxdy +v]r|

 The smaller E, the better segments
approximates

2. (hence g) does not vary much on R ;s
3. The boundary /" be as short as possible.
*  Dropping any term would cause
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Optimal segmentation

* Mumford and Shah studied 3 functionals
which measure the degree of match
between an image and a
segmentation.

« First, they defined a general functional
(the famous Mumford-Shah functional):

— R, will be disjoint connected open subsets of the
planar domain R, each one with a piece-wise
smooth boundary

— I"will be the union of the boundaries. p = ﬂRiHF

i=1
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Cartoon image

is simply a cartoon of the original
image
— Basically fis a new image with edges drawn
sharply.
— The objects are drawn smootly without texture

- is essentially an idealization of g by the
sort of image created by an artist.

— Such cartoons are perceived correctly as
representing the same scane as g = fis a
simplification of the scene containing most of its
essential features.
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Cartoon image example
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Piecewise constant
approximation

E, )= z -UR,» (g—- meany, ()’ dxdy + %m

* It can be proven that minimizing £, is well
posed:

— For any continuous g, there exists a /" made up
of finit number of singular points joined by a finit
number of arcs on which £, atteins a minimum.

* It can also be shown that £, is the natural
limit functional of £ as =0
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Piecewise constant
approximation

* A special case of £ where =a, is
constant on each open set R..

@ BSD=X [, (g-adsdr+-5r]

» Obviously, it is minimized in a; by
setting a;to the mean of g in R;:

j L_ gdxdy
a, =mean, (g) = ared(R,)
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Road Map

» Level Set representation
— Implicit contour representation
— Motion under curvature
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Level Set Representation

* Developed by

— Stanley Osher
ehttp://www.math.ucla.edu/~sjo/

—J. A. Sethian
ehttp://math.berkeley.edu/~sethian/
* J. A. Sethian: Level Set Methods and
Fast Marching Methods. Cambridge
University Press, 1999.
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How it works?

* Move the level set function, , SO
that it rises, falls, expands, etc.

» Contour = cross section at

What is it?

* Itis a generic numerical method for evolving
fronts in an implicit form.

— It handles topological changes of the evolving
interface

— Define problem in 1 higher dimension
« Seems crazy but it well worth the extra effort...
» Use an implicit representation of the contour
as the zero level set of higher dimensional
function ¢ - the level set function

#(C)=0
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How to Move the Level Set
Surface?

» Define a velocity field F, that specifies how

contour points move in time

— Based on application-specific physics such as
time, position, normal, curvature, image
gradient magnitude

Build an initial value for the level set

function, , based on the initial

contour position

» Adjust ¢ over time; current contour defined
by
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Example: an expanding circle

» Level Set representation of a circle:

e y)=yx* +y* —r
— Setting causes the circle to expand
uniformly
— Observe that almost everywhere
(by choice of representation), so we obtain — =—1
the level set evolution equation: ot
» Explicit solution:

_ 2 2
which means that the ¢(x,y,t)_\/x +y —r—t

circle has radius at time 1, as expected!
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The Level Set Evolution

Equation

* Manipulate ¢ to indirectly move
¢(C) =0 ¢
w0)_oc gy 08 | .

dt ot ot
4 E[V|
% --Fiv4 :
ot

where F is the speed function normal to the curve
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Example: an expanding circle
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Motion under curvature

» What about more complicated shapes?
&

* Motion under curvature: each piece of the
curve moves perpendicular to the curve with
speed proportional to the curvature.

— Since the curvature can be either positive or
negative (depending on whether the curve is
turning clockwise or counterclockwise), some

parts of the curve move outwards while others
move inwards.
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Level Set Segmentation

 Since the choice of ¢ is somewhat arbitrary,
we can choose a signed distance function
from the contour.

— This distance function is negative inside the
curve and positive outside.

— A distance function is chosen because it has unit
gradient almost everywhere and so is smooth.
» By choosing a suitable speed function F, we
may segment an object in an image
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Motion under curvature

* A famous theorem in
differential geometry
(proved in the 90’s),
says that:

— any simple closed
curve moving under its
curvature collapses to a
circle and then
disappears.
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Level Set Segmentation

» The standard level set segmentation speed function
is:
F=1-ex+p(Vg-V|VI|)

» The 7 causes the contour to inflate inside the object

* The (viscosity) term reduces the curvature of

the contour

The final term (edge attraction) pulls the contour to

the edges

» Imagine this speed function as a balloon inflating
inside the object. The balloon is held back by its
edges, and where there are holes in the boundary it
bulges but is halted by the viscosity =.
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Segmentation Example

GYETEM
cs Department
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Viscosity 5 Viscosity 0.5

I

Lung x-ray

Viscosity 2

Road Map
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* “Chan and Vese” model
— Relation to the Cartoon model
— Constructing a Level Set representation
— Demo

Some more examples
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"Chan and Vese” model

» Tony F. Chan & Luminita Vese: Active
Contours without Edges. |[EEE
Transactions on Image Processing,
10(2), pp 266-277, Feb. 2001.

» Construct a model to segment an
image into foreground and background
regions (binarization) based on
intensities instead of image gradient.
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Energy functional
F (CI’CZ’ C) = ,uL(C)+VA(in(C))
+ﬂ1‘[_n(c)u0(x,y)—clz+/12‘[) ‘uo(x,y)—cz‘z

. and c, are the average intensity
levels inside and outside of the contour

* The minimization problem:
inf F(c,,c,,C)

€),¢5,C

ut(C)
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Level set formulation

» Considering the disadvantages of explicit
contour representation, the model is solved
using level set formulation
— level set representation = no explicit contour

N Ouggac
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C={(x,y)eQ:¢(x,y) =0}
in(C) = {(X, y) e Q:d(x,y) > 0}
out(C) = {(x,y) e Q: (x,y) <0 Quside

Relation with the
Mumford-Shah functional

» The "Chan and Vese” model is a special case of
the Mumford Shah model (minimal partition
problem)

— it looks for the best approximation of u/,, as a function
taking only two values ¢, and

- and
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- is the CV active contour
» “Cartoon” model (piece-wise constant

approximation): 5
F",C) = p(C)+ A[ uy =1l

Replacing C with @

» Using the Heaviside (sign) and Dirac
measure (PSF) functions:
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wo= {5 120 ao=
v We get
T Lg=0}=[|VH(#x.y)) = [ (plx.)Ve(x.y)

Q Q

Alg=0}=[ H(g(x,»))



| |

Replacing C with @

* The intensity terms

(oo y)=af dxdy = [|uy(x,3)—c[ ddy

in(C) $>0

= .ﬂuo (x,»)—¢ ‘2 H(p(x, y))dxdy
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[l e =, dxdy = [luy(x )=, dedy

out(C) $<0

= [ty (6, ) = ¢, (1= H($(x, y)))dy

Level set formulation of the
model

« Combining the presented energy terms we can write the Chan
and Vese functional as a function of
Minimization F wrt. @ - gradient descent
In order to compute the associated Euler—Lagrange equation,
we consider slightly regularized versions of the functions
an

- x
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Average intensities

* We can express ¢, and ¢, as functions of

[ g, YH(O(x, y))dxdy
O Thayndy
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O T ety

* Note that is the characteristic function of the
foreground regions!
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Euler-Lagrange equation

» Regularization used:

Ha (z) = % (1 + ; arctan (Z{)) . b = HY

SZEGEDI TUDOMANYEGYETEM
Processing and Computer Graphics Department

/ mage

* Euler-Lagrange equation:

(Z - 5(¢)[/”((¢)‘Vﬂ —v = (uy =) + A (g _cz)z]




The algorithm

* Initialization n=0
*» repeat
- n++
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—Computing c; and c,
—Evolving the level-set function
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euntil the solution is
stationary, or n>n

Computing ¢, and c,

« The mean intensity of the image pixels
inside and outside

colors ()
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in = find(Phi > 0);
cl = sum(Img(in)) / size(in);

c2 = sum(Img(out)) / size(out);

Initialization

* We set the values of the level set function
— outside = -1

— inside =1

Any shape can be the initialization shape

Processing and Computer Graphics Department
L]
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init()

N for all (x, y) in Phi
= if (x, y) is inside
Phi (x, y)=1;
else
Phi(x, y)=-1;
fi;
end for

Approximation of the Curvature
0,9, —20,,9.0, +b,, 4
(@ +6,)"”

¢XX _ ¢p0 + ¢m0 - 2¢oo

K(¢)=
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delta_s recommended between 0.1 and 1.0 It is useful to compute the level set function not on the whole
image domain but in a narrow band near to the contour.

Decreasing the computational complexity.

| |
| |

Narrow band Re-initialization

e Initialization n=0

* Optional step

* repeat
P _Hn)paLy) ,_ Hrtly)—gey).
- n++ a= h 0= h >
— Determination of the narrow band - - -
_ o Hep)=Pny=D) ,_ Jny+)=gny).
- Computing ¢, and c, h h
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a’ =max(a,0);a” = min(a,0);...

G \/max(a”,b’2)+max(c+2,d’2)—1 ,d(x,3)>0
Jmax(@?,5?)+max>,d?) -1 ,¢(x,) <0

e until the solution is b= p—At-sign(d)-G:
stationary, or n>n_, ’

— Evolving the level-set function on
the narrow band

— Re-initialization

/ mage
/ mage

is a normalizing term recommended between 0.1 and 2.
is the time step, see above!
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Stop criteria

+ Stop the iterations if:

— The maximum iteration number were
reached
— Stationary solution:
* The energy is not changing
» The contour is not moving
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Parameters:

Demonstration program

B iciimCanizer) i vty

is

recommended
between 0.01
and 0.9. Be
careful At<1!

isa
normalizing term
recommended
between 0.1 and
2.

is the
regularizing
parameter

ActiveContourJ software courtesy Laszlo Csernetics




