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“There is nothing so practical as a good theory” (K. Lewin)

1 / 68



SVM Overview

follows a principled approach rooted in statistical learning theory:
structural risk minimization.

good generalization performance

without incorporating problem-domain knowledge.

use of kernels allows to construct RBF-NN, 2-Layer-MLP
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Empirical risk minimization

Many training algorithms rely on the (known) empirical risk (given a
training set)

Eemp(w) =
1

N

N∑
i=1

(f̂w(xi )− ti )
2. (1)

as an estimate for the true (unknown) expected risk

E (w) =

∫
(f̂w(x)− f (x))2p(x)dx =

∫
(f̂w(x)− y)2p(x, y)dxdy. (2)

and chose w to minimize Eemp(w). Note that generally p(x, y) is unknown.
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This approach is known as principle of empirical risk minimization
(ERM). We assume that Eemp(w) is close to E (w).
VC theory (also referred to as statistical learning theory) provides
principles for learning based on bounds on the difference of Eemp(w) and
E (w). These bounds explicitly take into account model complexity and
the size of the training set.
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Figure: Binary classification example. The training error here is the ratio of
missclassified data points and overall number of points. The theoretical error is
determined by unknown class-conditional probabilty density functions.
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Figure: Binary classification example. The training error here is the ratio of
missclassified data points and overall number of points. The theoretical error is
determined by unknown class-conditional probabilty density functions.
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Figure: Increasing number of training points N. The solid line depicts the
decision boundary w∗ minimizing the empirical risk (training error). The dotted
line depicts the optimal decision boundary minimizing the true risk.
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Figure: Increasing number of training points N. The solid line depicts the
decision boundary w∗ minimizing the empirical risk (training error). The dotted
line depicts the optimal decision boundary minimizing the true risk.
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Figure: Increasing number of training points N. The solid line depicts the
decision boundary w∗ minimizing the empirical risk (training error). The dotted
line depicts the optimal decision boundary minimizing the true risk.
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ERM consistency

Let F = {f̂w() : w ∈ W} be the set of functions which can be
implemented by the learning machine (e.g. a neural network), and W is
the set of valid parameter vectors.
Iff Eemp(w) approximates E (w) uniformly in w ∈ W, i.e.,

lim
N→∞

P( sup
w∈W

|E (w)− Eemp(w)| > ε) = 0, (3)

the ERM principle is said to be consistent (Vapnik, 1982).

10 / 68



Note that the consistency is determined by the “worst-case w” ∈ W.

Worst-case analysis is necessary for deriving bounds for the true risk
E (w) that are independent of the distribution of the data (density
p).
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w
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Figure: In the case of consistency, proximity between E (w∗) and Eemp(w∗), where
w∗ = arg minEemp(w) is guaranteed.
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VC-Dimension

The Vapnik-Chervonenkis Dimension (VC-dimension) is a measure for
the capacity (expressive power) of a set of functions F . The VC-dimension
is defined as the size of the largest set of data samples which can be
shattered by F .
A set of data samples S is said to be shattered by F if it can be devided
in all possible 2|S| ways by functions f̂w ∈ F .
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Figure: Three 2d-points in general position can be shattered by the set of linear
functions. The definition of VC-dimension requires only one such set of points
to exist. Because there exists no such set with 4 points, the VC-dimension for
bevariate linear functions is 3. In higher dimensions, the VC-dimension of linear
functions with d input variables is d + 1.

14 / 68



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure: Example: Although the function f (x) = I (sin(w ∗ x) > 0), where I () is
the indicator function, has only one adjustable parameter w , the VC-dimension is
infinite.
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For the empirical risk minimization principle to be consistent, the
VC-dimension d has to be finite (e.g., a set of functions with infinite
VC-dimension will always have Eemp(w) = 0, regardless of the size N of
the training set).
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Bounds on the Classification Error

It can be shown (Vapnik) that the following bound holds with probability
of at least 1− η (for classification problems):

E (w) ≤ Eemp(w) +

√
h(ln 2

h + 1)− ln η
4

N
, (4)

for all w ∈ W (worst-case analysis) where h is the VC-dimension of the set
of functions F implemented by the parameterized model f̂w().
It follows from Eq. 4 that the ERM approach is only justified when the
ratio of N/h is large (e.g. ≥ 20), otherwise it cannot be guaranteed, that
the overall risk is “close” to the empirical risk. In the case of low N/h the
size of W (i.e., the flexibility of the model) has to be adjusted to the
available data (occam’s razor principle).
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(bound on overall risk)

Empirical risk

VC dimension h0

Figure: The confidence interval given in Eq. 4 shown graphically in dependence of
the VC-dimension h.

18 / 68



Stuctural Risk Minimization (SRM) Principle

S
1

S
2 S

3
S
4

S1 ⊆ S2 ⊆ S3 ⊆ S4

h(S1) < h(S2) < h(S3) < h(S4)

Find the optimal subset (i.e., model complexity) such that the risk bound
is minimized.
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linear discriminant functions

choose w such that sgn(wTx + w0) =

{
−1 if x ∈ class 1(+)
+1 if x ∈ class 2(∗)

Given a training set of N data points with corresponding target values
(xi , ti ), i = 1, . . . ,N we aim to find w such that

ti = sgn(wTxi + w0)

This is possible if the set is linearly separable.
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LD: ti = sgn(wTxi + w0)
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Figure: r = wtx+w0

‖w‖ gives an algebraic measure of the distance of a point x from

H. r is positive if wtx+ w0 > 0, 0 if the point lies on the hyperplane and negative
otherwise. If r > 0, x is said to lie on the positive side of H. In particular, the
normal distance of the origin to the hyperplane is given by r0 = w0

‖w‖

.
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XOR-Problem
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Figure: The exclusive-OR problem is a simple example with 2-d binary input
vectors which is not linearly saparable.

22 / 68



The perceptron
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Let STr = {(x1, t1), . . . , (xN , tN)} denote a linearly separable set of N
(non-augmented) training vectors xi ∈ IRd and corresponding class labels
ti ∈ {1,−1}.
We have used the perceptron training algorithm to find weight vector w
and bias w0 of a decision function

d(x) = wTx + w0, (5)

i.e. a separating hyperplane satisfying

d(xi )ti > 0, 1 ≤ i ≤ N. (6)

For a linearly separable set of training data, there exists an infinite number
of separating hyperplanes (cf. figure 9) represented by Eq. 6.
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We are now looking for a solution w∗,w0 with maximum geometric margin
satifying Eq. 6.
Recall that the geometric margin of a hyperplane equals the euclidean
distance of the pattern that lies closest to the hyperplane. A separating
hyperplane with maximal geometrical margin is called optimal or
maximal margin hyperplane.
To introduce a margin τ we modify Eq. 6

d(xi )ti
‖w‖

≥ τ, 1 ≤ i ≤ N. (7)
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Figure: Among all separating hyperplanes the optimal hyperplane is defined by
the subset of input vectors (support vectors) with smallest euclidean distance to
the hyperplane.
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Recall that w and w0 can be scaled by the same positive factor α ∈ IR+

leaving the decision boundary unchanged, thus there exists an infinite
number of solutions αw∗, αw∗

0 corresponding to the same decision
boundary.
To obtain a unique solution we choose

τ =
1

‖w‖
. (8)

so that Eq. 7 can be written as

d(xi )ti ≥ τ‖w‖ = 1, 1 ≤ i ≤ N. (9)
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Figure: The decision boundary is defined by d(x) = 0. The distance between a
support vector and the decision boundary is 1

‖w‖ , which defines the geometric

margin τ of the optimal hyperplane.
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It follows from Eq. 8 that maximizing the margin of w (given by τ = 1
‖w‖)

is equivalent to minimizing the norm of w.
Thus an optimal hyperplane is one which satisfies conditions given by
Eq. 9 and additionally minimizes the (quadratic) criterion function

J(w) =
1

2
‖w‖2 (10)
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Dual representation

Recall that without loss of generality for perceptron training we have
initialized w = 0 so that the solution vector is a linear combination of
training data xi ti misclassified during training and can be written as

w =
N∑

i=1

αixi ti , αi ∈ IN0 (11)

i.e., given a fixed training set and using Eq. 11, the decision rule can be
written in terms of the αi (dual representation)

d(x) = (wTx + w0) =
N∑

i=1

αi tixi
Tx + w0, 1 ≤ i ≤ N. (12)
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Notice that in this formulation the data is given only in terms of inner
products xT

i x. This property has important consequences (see below).
In particular, it allows to define a separating hyperplane in high
dimensional feature space, without having to compute the high
dimensional mapping explicitly
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Review of Lagrange Multipliers

Consider a constrained optimization problem, i.e. to find the minimum

x∗ = arg min
x

f (x) (13)

subject to the contraints given by k functions

hi (x) = 0, 1 ≤ i ≤ m. (14)

To simplify the notation we write

h(x) = (h1(x), . . . , hm(x))T = 0. (15)
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Example:

f (x) = x2
1 + x2

2 (16)

h(x) = x1 + x2 − 1 = 0 (17)

Allthough in this example h(x1, x2) = 0 could be used to substitute either
x1 or x2 (e.g. use x2 = 1− x1 to give a function
f (x) = f (x1) = 2x2

1 + 2x1 + 1), it is not always possible to find a simple
analytic solution of the contraint equation (e.g.,
h(x1, x2) = (x1 − 1)2 + (x2 − 1)2).
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A more elegant, and often simpler, approach is based in the introduction of
new parameters βββ = (β1, . . . , βm)T (Lagrange multipliers). We formulate
the constraint optimization problem using the Lagrangian function

L(x, βββ) = f (x) +
m∑

i=1

βihi (x) (18)

= f (x) + βββTh(x) (19)

Note that since hi (x
∗) = 0 the value of the Lagrangian function at the

optimal point is
L(x∗, βββ∗) = f (x∗) (20)
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A necessary condition for x∗ to be a minimum of f (x) subject to
hi (x) = 0, 1 ≤ i ≤ m is (cf. figures 11-12)

∂L(x, βββ)

∂x
|(x∗,β∗) = 0 (21)

∂L(x, βββ)

∂βββ
|(x∗,β∗) = 0 (22)

These conditions are sufficient if L(x, βββ∗) is a convex function of x.
Note that while Eq. 21 gives a new system of equations, Eq. 22 is
equivalent to the constraint equations given by Eq. 14. A geometrical
explanation of condition Eq. 21 is given in figure 12.
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f (x)

h(x)=0

h(x)

f (x*) 

x2

x1

Figure: Geometrical interpretation of the contrained optimization problem given
by Eqs. 16 and 17. The point at (0, 0) is the optimum of the unconstrained
problem arg minx f (x). The solution x∗ of the contrained problem is forced to lie
on the line h(x) = 0.
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Figure: The gradient of the Lagrangian function is given by ∇f . We wish to find
the component of this vector lying within the constraint surface (line) h(x) = 0.
This component is given by the gradient of the Lagrangian function
∇f (x) + β∇h(x) and has to be zero at the optimum (condition Eq. 21).
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General Case

We now consider a more general case where the optimization problem
contains both equality and inequality constraints:

minimize f (x) (23)

subject to gi (x) ≤ 0, 1 ≤ i ≤ k. (24)

hi (x) = 0, 1 ≤ i ≤ m. (25)

We define the generalized Lagrangian function as

L(x, ααα, βββ) = f (x) +
k∑

i=1

αigi (x) +
k∑

i=1

βihi (x) (26)

= f (x) + αααTg(x) + βββTh(x) (27)

The region of the domain where f (x) is defined and all constraints are
satisfied is called feasible region.
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If the optimization problem is convex and gi ,hi are affine functions (i.e.
g(x) and h(x) are of the form Ax− b) the necessary and sufficient
conditions for x∗ to be an optimum are the existence of ααα∗,βββ∗ such that

∂L(x, ααα, βββ)

∂x
|(x∗,α∗,β∗) = 0, (28)

∂L(x, ααα, βββ)

∂βββ
|(x∗,α∗,β∗) = 0, (29)

α∗i gi (x) = 0, 1 ≤ i ≤ k, (30)

gi (x) ≤ 0, 1 ≤ i ≤ k, (31)

α∗i ≥ 0, 1 ≤ i ≤ k. (32)

Eq. 30 is referred to as Karush-Kuhn-Tucker complementarity
condition, which will be discussed in the following simple examples:

41 / 68



Example 1:

minimize f (x) = x2, subject to g(x) = x + 1 ≤ 0
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Figure: The optimum (x∗ = −1,α∗ = 2) lies on the boundary x = −1 of the
feasible region of x (the dark patch marks the “combined” feasible region).
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In the example of figure , g(x) = 0 follows from Eq. 30 because α > 0 (g
is said to be active).
Note that substituting x = −α

2 (condition Eq. 28) into the Lagrangian
function leads to another optimization problem:

maximize −α2

4 + α, subject to α ≥ 0. (33)

This optimization problem is called the dual optimization problem. It is
defined only in terms of α (in general in terms of k dual variables
αi , 1 ≤ i ≤ k). Eq.30 implies that the “dual contraint” α ≥ 0 can only
be active (i.e., be satisfied with equality α = 0), if the primal contraint is
inactive (g(x) < 0) and vice versa.
For a convex criterion function and affine contraints primal and dual
problem lead to the same solution for x∗, ααα∗.
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Example 2:

minimize f (x) = x2, subject to g(x) = x − 1 ≤ 0
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Figure: The contraint g(x) ≤ 0 is inactive leading to a dual variable α = 0
(Eq. 30). The solution is x∗ = 0, α = 0 and lies on the boundary α = 0 of the
“dual” feasible region.
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SVM Training as constrained optimization

We now return to the problem of training an SVM. As we have seen above
the search for an optimal hyperplane can be stated as the following convex
optimization problem: Minimize

J(w) =
1

2
‖w‖2 (quadratic) (34)

subject to the affine constraints

(wTxi + w0)ti ≥ 1, 1 ≤ i ≤ N. (35)
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We build the functional

L(w,w0, ααα) =
1

2
‖w‖2 −

N∑
i=1

αi (w
Txi ti + w0ti − 1), (36)

minimize it w.r.t. w while at the same time maximize it w.r.t. the
Lagrange multipliers αi ≥ 0, i.e. solve

max
α≥0

(
min
w,w0

(L(w,w0, ααα))

)
. (37)
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We use condition (cf. Eq. 28)

∂L(w∗,w∗
0 , ααα∗)

∂w
= 0 (38)

∂L(w∗,w∗
0 , ααα∗)

∂w0
= 0 (39)

for solutions w∗,w∗
0 , ααα∗ so that we can write

w∗ =
N∑

i=1

α∗i xi ti , α∗i ≥ 0, 1 ≤ i ≤ N. (40)

and
N∑

i=1

α∗i ti = 0 (41)

Note that Eq. 40 is in fact the same dual representation as given by
Eq. 11.
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In addition the Kuhn-Tucker theorem states that αi > 0 only if xi ti
satisfies Eq. 35 with equality (see Eq. 30).
This means that the actual number of parameters involved may be
significantly fewer than the full training set size.
The data points for which the (dual variables) αi > 0 are called support
vectors.
The support vectors are marked in figures 9 and 10 by circles.
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Next by substituting Eq. 40 into Eq. 36 we obtain

L(ααα) = −1

2

N∑
i ,j=1

αiαj ti tj(x
T
i xj) +

N∑
i=1

αi . (42)

which is the criterion function of the dual optimization problem. It has
to be maximized w.r.t. α1, . . . , αN subject to the constraints

N∑
i=1

αi ti = 0, αi ≥ 0, 1 ≤ i ≤ N. (43)

Note that in the dual formulation there are equality constraints making the
problem considerably easier to solve (by standard quadratic programming
methods).
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The kernel trick

Consider we use a nonlinear mapping φ : IR2 7→ IR6 given by

φ(x) = φ(x1, x2) =



1√
2x1√
2x2√

2x1x2

x2
1

x2
2

 (44)
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The kernel trick

Now consider the inner product of two feature vectors (measurements)

φ(x) =



1√
2x1√
2x2√

2x1x2

x2
1

x2
2

 φ(x̄) =



1√
2x̄1√
2x̄2√

2x̄1x̄2

x̄2
1

x̄2
2


φ(x)Tφ(x̄) = 1 + 2x1x̄1 + 2x2x̄2 + 2x1x2x̄1x̄2 + x2

1 x̄2
1 + x2

2 x̄2
2
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The kernel trick

The inner product can be computed without having to compute φ(x) and
φ(x̄) explicitly:

φ(x)Tφ(x̄) = 1 + 2x1x̄1 + 2x2x̄2 + 2x1x2x̄1x̄2

+x2
1 x̄2

1 + x2
2 x̄2

2

= (x1x̄1 + x2x̄2 + 1)2

= (xT x̄ + 1)2,

i.e., we have a way of computing the inner product directly as a function

φ(x)Tφ(x̄) = K (x, x̄)

We call such a direct computation method a kernel function.
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The kernel trick

Assume that the solution vector w can be written in terms of the training
data (the solution w can be chosen to lie in the span of the training data)

Example (Classification)

training set of N = 3 data
points classified according
to

sgn(wTx + d)

with

w =
N∑

i=1

αixi
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The kernel trick

Assume that the solution vector w can be written in terms of the training
data (the solution w can be chosen to lie in the span of the training data)

w

Example (Classification)

N = 3 data points classified
according to

sgn(
N∑

i=1

αix
T
i x + d)
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The kernel trick
We now have a generalized linear discriminant function

d(x) = sgn(
N∑

i=1

αiK (xi , x) + d)

Example (Maximal margin classifier with polynomial kernel)
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Figure 55: Decision function determined by the support vector machine with
a feature space of second order polynomials. In the original 2-dimensional
input space, the decision function is nonlinear.

Michael Reiter, PRIP 211
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Figure 56: In the 6-dimensional feature space the decision function is linear
with maximal margin.

Michael Reiter, PRIP 212
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Inner product kernels

Positive integral operator kernels can be associated with (sometimes
infinite) hilbert spaces of non-linear functions from which φ is chosen.
Other examples of kernel functions are:

polynomials of degree d : K (x, y) = (xTy + 1)d

radial basis functions: K (x, y) = exp(−‖x−y‖2

σ2 ) (infinite dimensional)

multilayer perceptrons: K (x, y) = tanh(v(xTy) + a), where v , a are
chosen to satisfy the positivity conditions.
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Capacity of an SVM

For a separating hyperplane with ‖w‖2 ≤ c , the VC-dimension is bounded
by

h ≤ min(r2c , d) + 1 (45)

where r is the radius of the smallest sphere containing all training input
vectors x1, . . . , xN . Note that by choosing c it is possible to control the
complexity of the hyperplane independent of the dimensionality of the
input vector space d .
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SVM for classification - XOR example
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Figure 55: Decision function determined by the support vector machine with
a feature space of second order polynomials. In the original 2-dimensional
input space, the decision function is nonlinear.
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Figure 56: In the 6-dimensional feature space the decision function is linear
with maximal margin.
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Figure: It is not possible to solve the XOR-Problem with a linear decision
boundary. However, a polynomial decision boundary of order 2 can seperate these
data points.
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The inner product kernel for polynomials of order two is

K (x, y) = (xTy + 1)2. (46)

This expression corresponds to the set of basis functions
φ(x) = (1,

√
2x1,
√

2x2,
√

2x1x2, x
2
1 , x2

2 )T (cf. Eq. 44).
The inner product kernel is given by the matrix

K =


9 1 1 1
1 9 1 1
1 1 9 1
1 1 1 9

 (47)

with elements kij computed using Eq. 46.
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To determine the decision boundary in the transformed space, we must
solve the following optimization problem: Maximize (cf. Eq. 42)

L(ααα) = α1 + α2 + α3 + α4 −
1

2

4∑
i=1

4∑
j=1

αiαj ti tjkij , (48)

subject to

4∑
i=1

tiαi = α1 − α2 + α3 − α4 = 0, (49)

0 ≤ α1, (50)

0 ≤ α2, (51)

0 ≤ α3, (52)

0 ≤ α4. (53)
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The solution is α1 = α2 = α3 = α4 = 0.125 indicating that all four data
points are support vectors. The decision function in the inner product
representation is

d(x) =
N∑

i=1

α∗i tiK (xi , x) = 0.125
4∑

i=1

ti (x
T
i x + 1)2. (54)
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Figure 55: Decision function determined by the support vector machine with
a feature space of second order polynomials. In the original 2-dimensional
input space, the decision function is nonlinear.
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Figure: Decision function determined by the support vector machine with a
feature space of second order polynomials. In the original 2-dimensional input
space, the decision function is nonlinear.
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Figure 56: In the 6-dimensional feature space the decision function is linear
with maximal margin.
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Figure: In the 6-dimensional feature space the decision function is linear with
maximal margin.
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Soft margin

• Soft margin

x
2

x
1

d(x) = +1
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ξ3=1+d(x3)

Figure 57: For training data that cannot be separated without error the
number of errors can be minimized using slack variables ξi, which are
positive for nonseparable and greater than one for misclassified data points.
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Figure: For training data that cannot be separated without error the number of
errors can be minimized using slack variables ξi , which are positive for
nonseparable and greater than one for misclassified data points.

65 / 68



The optimization problem becomes: minimize

N∑
i=1

ξp
i , (55)

subject to
ti (w

Tx + w0) ≥ 1− ξp
i , (56)

using the structure

Sk = {wTx + w0 : ‖w‖2 ≤ ck}, (57)

where ck selects the trade-off between complexity (cf. Eq. 45) and
proportion of nonseparable data (number of ξi > 0).
p is a small positive constant, which is usually set to 1, to make the
problem tractable.
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The dual form of the optimization problem is: Maximize

L(ααα) = −1

2

N∑
i ,j=1

αiαj ti tj(x
T
i xj) +

N∑
i=1

αi , (58)

subject to
N∑

i=1

tiαi = 0, 0 ≤ αi ≤
c

N
, i = 1, . . . ,N. (59)
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influence of the kernel width σ
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Abbildung 12: Einfluss σKernel (a) und pKernel (b) auf Supportvektoranzahl
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Abbildung 13: Daten, Supporvektoren und Entscheidungsgrenze für σKernel = 1.2 (a) und σKernel =
1.4 (b) mit pKernel = 0.3

der erste Versuch zu einem Fehler von 82%. Wir simulierten daher nochmal die Auswirkung
von pKernel für jenes σKernel und bekamen damit einen Wert von 0.2. Diese Kurve ist in
Abbildung 15 dargestellt:

Dies führte dann zu einem Endergebnis welches in Abbildung 16 dargestellt ist: Die erreichte
Klassifizierungsleistung war 97.4% und die Anzahl der Supportvektoren ist 120.

15
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Influence of the regularization parameter C
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Abbildung 14: Daten, Supporvektoren und Entscheidungsgrenze für pKernel = 0.65 (a) und pKernel =
1 (b) mit σKernel = 1
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Abbildung 15: Einfluss pKernel für σKernel = 1.2
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SVM Overview

follows a principled approach rooted in statistical learning theory:
structural risk minimization.

uses worst-case error bound instead of empirical risk

good generalization performance

without incorporating problem-domain knowledge (but no free
lunch).

kernels: non-linear learning machine
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