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Application Areas of Visual Survelllance

e Transportation: traffic counting by lanes, speed
estimation, numberplate recognition, forbidden
motion detection, forbidden areas

* Trade (shops, banks) and public
organizations (schoaols, hospltals offices):
running human detection, lost/stolen object
detection, path discovering, gueue detection,
crowd detection

* Industry: process analysis, unusual event
detetion, quality monitoring

e and a lot more...



Distributed Data Processing

 Old digital (IP) approach:

Image Network Motion Convert Analyse Alarm | Alarm
Capturing Transfer Detection To Metadata Metadata Action

e Distributed processing:

Image Motion Convert Network Analyse e Alarm
Capturing Detection To Metadata Transfer Metadata Action

IP Camera Application




Sony’s Distributed Enhanced
Processing Architecture
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Example for distributed processing: Intellio
product line for traffic monitoring

MO ring around Budapest
IS equipped with Intellio’s
Intelligent cameras

 Distributed system can estimate:
— Speed of vehicles
— Motion at forbidden areas e p

— Speed Dome control for
high resolution images

— Emergency alarms and
accident prevention

— Integration with loop
detectors

Hygalspnedpypant!




Market Trends: IP Video Surveillance
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Market Trends: IP Cameras
Overtake Video over Fiber
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Worldwide Research Activity

 B.T. Moeslund and E. Granum. A survey of advances in
vision-based human motion capture. Computer Vision
and Image Understanding, 81(3):231-268, 2001. 155
papers

« T.B. Moeslund, A. Hilton, and V. KrAuger. A survey of
advances in vision-based human motion capture and
analysis. Computer Vision and Image Understanding,
104(2-3):90-126, 2006. 424 papers 2000-2006

* Niels Haering, Péter L. Venetianer, Alan Lipton. The
evolution of video surveillance: an overview, Machine
Vision and Applications (2008) 19:279-290



Recent works at the
University of Pannonia

Camera calibration for omnivision
systems: generating undistorted
perspective image from annular image

Improved motion detection: reducing the
foreground aperture problem

Unusual event detection
Surveillance video segmentation
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Improved Motion Detection

Problem: foreground aperture problem (some moving areas are not
detected in homogenous regions).

Solution: improved Mixture of Gaussians method.

Original MOG Improved MOG




Omnivision for Security
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Hidden Semi Markov Models for
Temporal Video Segmentation of
Time-multiplexed Security Videos




Our Motivation

e Built up surveillance systems in cities:
— Low-cost camera networks (hybrid)
— Monitoring outdoor traffic

 Process camera images to detect anomaly:

— Modeling aspects:
 Learn the fluctuation of traffic
e Unsupervised learning
* No apriori knowledge
* Robust (noise)

— Anomaly detection: real-time processing 14



Our Motivation

monitoring, an operator will often miss up
to 45% of onsite activity. After 22 minutes
of viewing, up to 95% is overlooked.”

IMS Research



Typical video quality
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What do we want to see?

People detection People recognition

People identification ANPR

17




Problems

e From the device: e From the scene:

— Electronic noise — Weather conditions
— Optical distortion (rain, wind etc.)
— Flicker — Light conditions (flare,
— Auto whitebalance head Iights, etc.)
— Aliasing errors — Occlusion
— Shadows

— Framedrop

I \ 7

Conventional object tracking unreliable! s



Problems
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Object tracking?

Occlusion/disocclusion... Noise... Ragged object
masks... Shadows... 20



Basic concepts

o Mixture of Gaussians (MOG. GMM)
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Basic concepts

« Fitting Mixture of Gaussians
— EXxpectation-Maximization algorithm (iterative)
— Accurate but slow
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Optical Flow

| Motion detection |

'

| Optical flow E':.Tiﬂlﬂtit:ﬂ|
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| Optical flow filtering |

Pixel-based motion statistics

MeanShift segmentation
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Preprocessing

e Background-foreground separation:
— Robust method of Stauffer and Grimson (MOG)

* Optical flow (e.g. Bergen, Lucas-Kanade):
— Preferrably only over motion detected areas

— Some filtering advised: drop very small and very
large vectors

— Noisy output
— Real-time operation

24



Example for motion detection

* Foreground-Background Segmentation
based on

m IR HERE
L1 g
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Models without object level
analysis

 We define a motion vector observation
unusual if its probability is low according
to prior observations. .. =0, \VZHO |

) ] W) . _1_p_
e Unsupervised learning. P o =1= P

* To get temporal support we can apply
some Markovian assumptions:

P(U’M)x,y,t — P(U)Dir,x,y,t . ma)é{P(U)Dir,x',y',t—l}
X,y'e
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Preprocessing

e Collect motion direction statistics In pixels:

— For a motion vector classify it’s direction:
Dir e {N,E,S,W,NE,SE,SW_ NW}

— Create 8-bin motion direction histograms in each pixel
— Histogram — empirical probability (left, mixing 8 colours)

e Construct regions from statistics:
— MeanShift: Spatial distance + Histogram distance (right)

RGB, = Z PE‘,;z'.yr:D'é-?']FfJ'-'-P
Dir

Segmentation




Hidden Markov Model

e Whatis a HMM?

— A system which has finite number of states and certain
rules (transitions with Markov property).

— Process: the states are hidden, but the system
generates an observable process.
e In our case:
— System = traffic lamp system in the crossroad

— States = traffic rules controlled by traffic lamp
configurations (green, yellow, red)

— Transitions = changes in the traffic lamp configurations

— Observation = localized motion directions (x,y,d)
30



Model parameters

Hidden Markov Model: A=(mT, A, B)

Initial state probabillities (17): the probabllity
that a process starts with a state

Transition probabillities (A): the probability of
changing to a state from the previous state
Emission probabilities (B): the probability that
a state generated a given observation

31
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How many states?
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Observation data

Select a region (ROI)
Observe moving blobs in the ROI

Fit a MOG on motion directions in each blob
— Only a few iterations (real-time!)

Observations at time t = Mean directions of MOGs

&

Selected ROI 34




Emission probability

* We have K, motion directions In time t, thus
our observation in time tis O;=0; 4, ...,0, 4,
* We use Mixture of M Gaussians, I.e.

K,
— H bi(Ot,k)
i(0t 1) 5 w;.105.1(0¢ 1)

b.,-_;_’g (Ot,k) — .N (Ot,}: ‘,U-Mp Zi,ﬂ) 35



Training HMM

(learning problem)

* Given an observation sequence
0=0,,...,0;

 Problem: How to adjust the model
parameters 17, A, B to maximize P(O|A) ?

e Expectation Maximization: using the
iterative Baum-Welch re-estimation
formula.

36



Precision Problem

In the Baum-Welch algorithm the emission
probabilities (b) of the observations are calculated
to re-estimate the model parameters.

The observations are heavily loaded with noise,
resulting in large covariances in the MOGs, resulting
In very small probability values.

And b; was defined as a product:
Ky
bi(O1) = || bi(ork)
k=1

Precision problem: the probabilities are small valges
and the product will head exponentally to zero!



Solution

e Scaling by relative emission:

— Original emission: what is the probability that the state
generated the observation?

— Relative emission: what is the probability that the state
generated the observation compared to the other states?

Original Relative
Ky

Ky
I bz Ot [
bi(Or) = H bi(01.1) b;(O;) = H - (0,1
=1 k=1 [Zj:l bi(o¢.1)

 The original Baum Welch re-estimation formula
can be used with relative emissions!

38



Effectiveness In training

1,00E-01 +

1,.00E-05 A

1,00E-09 r
1,00E-13 4 -
S 1.00E-17 ~
1,00E-25 3
1,00E-29 /- 1B-31 {_ _ Orig 1
1E-34 {— — Rel1
.. 1E-37 J——0Cng final
——Rel final
1.00E-37 1E-40
Sample Sample

*Horizontal: number of samples (in the product)
*Vertical: value of the product (logarithmic scale)
Blue: original emission probability

Red: relative emission 39



Detecting state sequence
(decoding problem)

e Given the observation sequence O=0,,...,0;
 What is the state sequence Q generated O?

e The Viterbi algorithm gives t
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Visualization

 Take the generated state sequence

 Plot mean directions of the states on timeline
using the HSV space (hue = direction angle)

 Height = weight of the component in MOG
 Black = no motion

L
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Anomaly detection |

e Cut one phase from the video
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Anomaly detection Il
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Probability

Anomaly detection Il

Generate state sequence for 3 non-empty frames
Analyze the state transtions, plot on graph
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Performance

e 3 main phases:
— Preprocessing: background-foreground separation +

optical flow calculation and filtering, connected

components

— Observation construction: Fit MOG on components’
motion directions inside ROI

— Anomaly detection Il

Preprocessing

Observations

Detection

Total

Time (msec)

51.9

17.24

0.79

69.93

e Performance: 14 FPS on 160x120 video
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Hierarchical HMM

e Higher-level HMM, built on top of several ROI
models

 Includes explicit modeling of ,no motion”
o States after HMM training:

s =il




Probabhility

Anomaly detection IlI.

Generate state sequence for 3 frames
Analyze the state transtions, plot on graph

1

o9

/

08

[
-]

o
o

1T 144 287 430 573 716 859 1002 1145 12658 1431 1574 1717 1860 2003 2146 2289 243532 2575 2710 2661 SQ04

Transitions




Anomaly detection IlI.
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Conclusion

Hidden Markov Model approach
— Modeling motion directions in urban traffic
— No tracking is necessary for anomaly detection

— Solved a probability representation problem -> now it is
possible to model the blobs with MOGs

Hierarchical HMM approach
— Explicit modelling of ,no motion”

Visualization of the traffic
Anomaly detection
Performance test

49
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