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Methods for the analysis of a series 
of image in time. 

SSIP 2007  Szeged July 13th Welcome back to Szeged

Outline

• Examples of temporal series 3D-nD
• Reductions of dimensionality

– PCA based methods
• Active shape models

– Factor analysis based methods
– ICA based methods

• Change detection (Kalman filtering)
• Conclusions and the future

Handling of  temporal data

Special class of 3-D data 
processing

• Looking for change
• Looking for (derived) 

function

Consider set of time curves 
for every pixel

• Dual  curve/image data set 

Weather Satellites

4D series
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Looking for change

Before After

Subtraction

Data compression/ projection

• Removing redundancy
• Reducing 

dimensionality
• Projection against

– time (summation)
– y (vertical axis) 
– oblique

• Constraints are 
required (a priori 
information)

Heart

Kidney

Bladder

time

Function fitting

• For cyclical function
– A[i,j]  =   Σk    C[i,j,k]   cos( ω k)
– B[i,j]  =   Σk    C[i,j,k]   sin( ω k)

– AMP[i,j]  =  sqrt ( A[i,j]2 +  B[i,j]2 )
– PHASE[i,j] =  tan-1 ( B[i,j] /A[i,j] )

• First Fourier component

Functional Images

• Image of a derived function
– Rate of increase/ decrease
– Time to max
– Variance image

• Example Kalman filtering
– Estimating current values
– And statistical model

Principle Component Analysis

• We have N observations of M variables
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Diagonalise
• Form the Eigenvectors and Eigenvalues, where the 

Eigenvalues or monotonically decreasing and the 
Eigenvectors are othogonal

• The Eigenvectors express the directionality of the 
principal axes

• The Eigenvalues express their ‘strength’ i.e. the 
amount of variance that is contained in the 
component 

Active Shape Model
A simple example

• A set of triangles

• Characterised by 6 parameters
– {x1,y1,x2,y2,x3,y3}

• Simpler description possible

Triangle space
• Fix the origin
• Fix the x axis

• 3 parameters

• Also lengths of 3 sides x2

X1,Y1

Normalise scale

• Take ratios of lengths of 1 side v. other two
• Two dimensional space

1.0

1.0

Perform a PCA

• The first mode of 
variation is the 1st

Eigenvector
• The second mode of 

variation is the 2nd etc
• We can project each 

data example onto the 
corresponding axis 

PCA in Matlab
• PRINCOMP Principal Components Analysis.
• COEFF = PRINCOMP(X) performs principal components analysis on the N

by-P
• data matrix X, and returns the principal component coefficients, also
• known as loadings.  Rows of X correspond to observations, columns to
• variables.  COEFF is a P-by-P matrix, each column containing coefficients
• for one principal component.  The columns are in order of decreasing
• component variance.
•
• PRINCOMP centers X by subtracting off column means, but does not
• rescale the columns of X.

• Generalized Moore-Penrose inverse is PINV
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Second mode
of variation

Third mode
of variation

First mode
of variation

Courtesy of Daniel Rueckert, 

Where to place the nodes

• Regular
• Maximum radius of 

curvature
• Minimal description 

length

Minimum description length

• Energy of the model (PCA)
• Energy of the description (points)
• Minimise total
• The two energies have to be in comparable 

units
• Add a ‘lamda’
• Minimise that also

• Transmission of the (quantized) dataset 

• Must have exact reconstruction of dataset.
• Optimal model ≡ shortest total message length.

What is MDL?

Encode using  
model

Decode

Dataset

Model

MessageDataset

Model

SSM Built from Annotation Example from Cootes and Taylor

1st Mode of active appearance model ASM model fitting
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Bayesian Analysis

• Bayes’ theorem

• Using the prior 
knowledge of 
shape to bias the 
boundary finding

)Pr(
p)Pr(P)|Pr(E)|Pr(
E

EP =

)Pr(
)Pr()|Pr(max)|Pr(

E
PPEEPmap =

E is image object, P variables in template Pmap is desired result

After serial inference
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m is mean, σ is SD, for N points (x,y) over A for whole image 

Neighbour-Constrained Segmentation
(Yang, Staib, Duncan,  IPMI03)

Observation:
• Neighbouring structures often 

have a consistent image 
location and shape ;

• Relative positions or shapes 
among neighbors can be 
modeled based on statistical 
information from a training 
set.

Ventricles

Caudate

Putamen

••Maximum A Maximum A Posterior (MAP) framework:(MAP) framework:
Assume image I has M objects of interest: Assume image I has M objects of interest: 

SS11,S,S22,,……SSMM

image gray level infoimage gray level info neighbourneighbour (shape + (shape + 
distance) prior infodistance) prior info
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Detection of 8 sub-cortical structures using neighbor priors

Model based approach

• Y =  X  + Є

– Y  is data matrix  (m,n)
– X is model
– Є is error

• Decompose
– X  =  F  G’

• F  (m,k)       
• G  (k,n)

From PCA to factor analysis

• F are Principal Axes
• G are Weights (variance)

• C (covariance matrix)
– C = (Y –ym)’ (Y – ym)

• Concept of factor analysis
• Factor analysis of image sequences
• Applications of principal component and 

factor analysis in image processing

Acknowledgement Martin Samal
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Observed variables are manifestations 
(functions) of latent variables called factors.

• Structure of observed data
• How many factors
• Factor structure (factor loadings)
• Interpretation of factors (new variables)
• Quantification of factors for individual 

objects / samples (factor scores)
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The factor variables are also called

features

of the multivariate random signal, 

and the vector space they form is called a

feature space.

Observed variables are linear combinations 
of factors. Factor analysis is performed in 2 steps:

1) dimension of data is reduced (data are 
projected into a subspace of lower dimension)

= factor extraction

2) base vectors of the subspace are rotated with 
respect to the data in order to allow useful 
interpretation

= factor rotation

Considering empirical (visual, clinical) analysis of 
image sequence and omitting the abstract terms, 
the 2 steps can be interpreted as:

- select the most dissimilar images of a sequence 
(each is expected to display one dominant factor 
but still contains the structures of more than one 
factor), and

- subtract between them to remove residuals of 
other factors and display a single factor structure 
per image.

Oblique rotation

• PCA solution is orthogonal
• Make linear combinations

– Oblique rotation
– To satisfy constraint (positivity)
– For example is higher dimensional space
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Factor Analysis in Matlab
• Factor Analysis Toolbox
• The Factor Analysis Toolbox provides a family of 

specialized MATLAB functions for factor analysis 
techniques. It is designed to help you learn the principles 
of target factor analysis and to provide the capabilities 
necessary for tackling real research and modelling
problems. Factor analysis organizes chemical data into 
matrices so that it can be processed to create calibrations or 
extract useful information. This makes MATLAB an ideal 
environment for factor analysis. The Factor Analysis 
Toolbox provides the functions that enable you to quickly 
and easily explore your data with factor analysis 
techniques. This allows you to concentrate on the 
chemistry while maintaining confidence in the math. 

Factor analysis: an example

• Decomposition into 
principal component

• Oblique rotation 
(based on constraints)

• Display of images 
(eigenfuctions) and 
curves (eigenvalues)

• Segmentation, model 
fitting and quantitation

Spectral Analysis

I-123 WIN 
154-178 keV

Tc-99m 
WIN 130-
150 keVN

100     120     140      160     180  
(keV)

xi(e) = Σ ak(i)fk(e) + εi(e)
k

Series of
spectral 
images

= 
pTc(i)

+ pI(i) + 
s1(i)

+ 
s2(i)

+  
s3(i)

e

pixel i
E 

Ack I. Buvat

Independent Component Analysis

• Cocktail party problem
• Assume signals strictly independent
• Prewhitening

• Components not ordered.



9

Example
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PCA          v.            ICA

How ICA works

• Originally from signal processing
• Three algorithms:

1. Fast ICA
2. InfoMax
3. JADE  

• To obtain ‘vectors’

Ordering ICA

Value after projection to ICA axes
Colour represents component

Amplitude

Assumptions

• x is n-dimensional random variable
• We wish to find n-dimensional s=f(x)  
i.e.  s=Wx where W is to be determined
And si are as statistically as independent as possible 

by maximising some function        F(s1,…sn) that 
measures independence

All the independent componants si must be non-
Gaussian

Often pre-whitening is used.

Constrast Functions

• Negentropy J(y) = H(ygauss)- H(y)
– Where  ygauss is a Gaussian random variable 

with the same covariance matrix as y.
• Network Entropy (Infomax) is equivalent to 

max. likely estimation -> mutual 
information

• Mutual information = H(x,y)-H(x)-H(y)
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Fast ICA

• w(k)=E(xg(w(k-1)tx)-E(g’w(k-1)tx)w(k-1)
– W is the weight vector for iteration k
– g is the derivative if the function G used in the general 

contrast function
– where JG(y) =|Ey{G(y))-Ey{G(v)}|p

– E is expectation wrt Gaussian random variable y, p=1,2, 
– J measures the non-normality
– Examples of G are: log cosh a1 u or exp(-a2u2/2)

FASTICA in MATLAB
function [Out1, Out2, Out3] = fastica(mixedsig, varargin)

%FASTICA - Fast Independent Component Analysis

%

% FastICA for Matlab 7.x and 6.x

% Version 2.5, October 19 2005

% Copyright (c) Hugo Gävert, Jarmo Hurri, Jaakko Särelä, and Aapo
Hyvärinen.

%

% FASTICA(mixedsig) estimates the independent components from given

% multidimensional signals. Each row of matrix mixedsig is one

% observed signal.  FASTICA uses Hyvarinen's fixed-point algorithm,

% see http://www.cis.hut.fi/projects/ica/fastica/. Output from the

% function depends on the number output arguments:

More ICA
• ICALAB can be useful in the following tasks:
• 1. Blind Source Separation (BSS), Sequential Blind Sources Extraction (BSE),
• 2. Reduction of redundancy (Book, Chapter 3), 
• 3. Decomposition of multi-variable signals into independent components (Chapters 

6-8), 
• 4. Spatio-temporal decorrelation of correlated signals (Chapter 4), 
• 5. Extraction and removal of undesirable artifacts and interference by applying 

deflation (see Chapters 1 and 4), 
• 6. Removal of noise or "cleaning" the raw sensor data, 
• 7. Extraction of features and patterns, 
• 8. Comparison of the performance of various algorithms for Independent Component 

Analysis (ICA) and Blind Source Separation (BSS), 
• 9. Monte Carlo analysis

• http://www.tsi.enst.fr/icacentral/algos.html

Applications

• Signal analysis – example very 
noisy signal such as evoked 
potentials

• Image analysis – example 
fMRI

ICA of fMRI

Ack Calhoun

Kalman Filtering
• Problem

– To estimate the state of
– where

– With a measurement
that is

Random variables wk and vk are process and measurement 
noise

Q is noise covariance and R is measurement noise 
covariance

A relates previous step to current step (state transition 
matrix), B is optional,  H (measurement matrix) relates 
to changes in measurements

nx ℜ∈

nz ℜ∈
111 −−− ++= kkkk wBuAxx

kkk vHxz +=
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Time Update
(Predict)

Measurement Update
(Correct)

−− −= kk xxe k

)

kk xxe k

)−=

a priori error from the knowledge of previous values

a posteriori error given measurement zk

Update equations
• Filter time update

• Filter measurement update

11 −
−
−

− += kkk BuxAx ))

1
)(
−−−

+= RHHPHPK
T

k

T

kk

QAAPP T
kk += −

−
1

)( −−− −+= kkkkk xHzKxx )))

−−= kkk PHKIP )(

Project the state ahead

Project the error covariance

Compute the Kalman gain

Update estimates 
with measurements

Update error covariance

^ indicates a posteriori estimate – indicates a priori estimate 

Kalman filtering in Matlab
• KALMAN  Continuous- or discrete-time Kalman estimator.
•
• [KEST,L,P] = KALMAN(SYS,QN,RN,NN) designs a Kalman estimator KEST 
• for the continuous- or discrete-time plant with state-space model 
• SYS.  For a continuous-time model
• .
• x = Ax + Bu + Gw {State equation}
• y = Cx + Du + Hw + v        {Measurements}
•
• with known inputs u, process noise w, measurement noise v, and
• noise covariances
•
• E{ww'} = QN,     E{vv'} = RN,     E{wv'} = NN,
•
• the estimator KEST has input [u;y] and generates the optimal 
• estimates y_e,x_e of y,x by:
• .
• x_e = Ax_e + Bu + L(y - Cx_e - Du)
•
• |y_e| = | C | x_e + | D | u
• |x_e|   | I |       | 0 | 

Some references

• PCA: in Wikipaedia, notes By Phillipe, etc 
Batchelor

• Factor analysis: notes by Martin Samal, 
book by Gorsuch etc

• ICA: Survey by Aapo Hyvarinen
• Kalman: Welch and Bishop An interduction

fo the Kalman filter

Applications- Signals and Images
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Standing on the shoulders of giants
Working in multidisciplinary teams

General Conclusions

• Ensure it is a good  problem
• Acquire high quality data (as far as possible)
• Validate
• Evaluate 
• Adapt


