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Model of learning from examples

e A generator of random vectors x, drawn
independently from a fixed, but unknown
distribution P(x).

e A supervisor that returns an output vector
y for every input vector x, according to
a conditional distribution function P(y|x),
also fixed but unknown.

e A learning machine capable of implement-
ing a set of functions f(x,a),a € A.

The problem of learning is that of choosing
from the given set of functions, the one
which predicts the supervisor’'s response in
the best possible way. The selection is based
on a training set of | random independent
identically distributed observations drawn
according to P(z,y) = P(x)P(y|x).
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Problem of risk minimization

In order to choose the best available
approximation to the supervisor’'s response,
one measures the loss L(y, f(z,a)) between
the response y of the supervisor to a given
input x and the response f(x,«) provided by
the learning machine. Consider the expected
value of the loss, given by the risk functional

R(a) = [ L(y, f(2,0))dP(z,y).

The goal is to find the function f(x,ag)
which minimizes the risk functional R(«) in
the situation where the joint probability
distribution P(x,vy) is unknown and the only
available information is contained in the
training set.
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T he problem of pattern recognition

e L et the supervisor’'s output y take on only
two values y = {0,1}.

o Let f(x,a), « € N\ be a set of indicator
functions (functions which take on only
two values zero and one).

e Consider the following loss-function

0, ify=f(z, «
L s = i 210

The problem is to find the function which

minimizes the probability of classification

errors when probability measure P(x,vy) is
unknown, but the data are given.
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The importance of the set of functions

e \What about allowing all functions from

RN to {£1}7?

e Training set (x1,y1),...,(x,y;) € RY x
(+1}.

e Test patterns Xi1,...,%; € RV, such that

the elements of the training set is not el-
ements of the test set.

e Based on the training set alone, there is
no means of choosing which one is better,
because for any f there exits f*, where
— f*(x;) = f(x), for all 1,

— f*(f]) o= f(fj), for all j.

e Thereis “no free lunch”. The restriction
must be placed on the functions that we
allow.
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Restricting of the class of functions

e Statistical Learning (VC) Theory: take
into account the capacity of the class of
functions that the learning machine can
implement.

e [ he Bayesian Way: place prior distribu-
tions P(f) over the class of functions.
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ERM induction principle

e In order to minimize the risk functional,
for an unknown probability measure P(z)
the following induction principle is usually
used.

e The expected risk functional R(«) is re-
placed by the empirical risk functional
constructed on the basis of the training
set.

[
Remp(a) — % Z Q(z,a)
=1

e T he principle is to approximate the func-
tion Q(z,ag) which minimizes risk by the
function Q(z, «;) which minimizes empiri-
cal risk.

e T he ERM principle is quite general.

e T he classical methods for solving a spe-
cific learning problem are realizations of
the ERM principle for the specific loss
functions considered above.
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Four parts of learning theory

e \What are the conditions for consistency
of the ERM principle?

e How fast does the sequence of smallest
empirical risk values convergence to the
smallest actual risk?

e How can one control the rate of conver-
gence (the rate of generalization) of the
learning machine?

e How can one construct algorithms that
can control the rate of generalization?
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Three milestones in learning theory

e [ he finiteness of the VC-dimension of the
set of indicator functions implemented by
the learning machine forms the necessary
and sufficient condition for consistency of
the ERM method independent of proba-
bility measure.

e T he finiteness of VC-dimension also im-
plies fast convergence.

Department of Informatics, Aristotle University of Thessaloniki, Greece
10




SRM induction principle

e The ERM principle is intended for dealing
with a large sample size.

e Indeed, the ERM principle can be justified
by considering the inequalitie

R(a) < Remp(e)+2¢ (1 + \/ 14 4R€mp(“)>
2 Be

e However, if% IS small, then even a small
Remp(a) does not guarantee a small value
of risk. In this case the minimization for
R(«) requires a new principle.

e T his principle is based on the simultane-
ous minimization of two terms in the in-
equalitie.

e TO Minimize risk in this case it is neces-
sary to find a method which, along with
minimizing the value of empirical risk,
controls the VC-dimension of the learn-
ing machine.

e For any distribution function the SRM
method provides convergence to the best

possible solution with probability one.
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The optimal separating hyperplanes 1.

e Suppose the training data

(z1,91),...,(z,y1), z € R*, y € {+1,-1}
can be separated by a hyperplane

(w-z) —b=0.

e We say that this set of vectors is sepa-
rated by the optimal hyperplane if it is
separated without error and the distance
between the closest vector and the hyper-
plane is maximal.

e [0 describe the separating hyperplane let
us use the following form:

(w-x;)—-b< -1, ify, =—1.
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The optimal separating hyperplanes II.

e In the following we use a compact nota-
tion for these inequalities:

yi((Ww-x;) =b)>1, i=1,...,1

e It is easy to check that the optimal hy-
perplane is the one that satisfies the con-
dition and minimizes functional

1
®(w) = ||w]]®.

e [ he solution to this optimization problem
IS given by the saddle point of a Lagrange
functional.
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The optimal separating hyperplanes III.
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Basic example

e The problem we look at initially is the
problem of finding binary classifiers.

e Let us consider the given weight and
height of a person. We want to find a
way of determining their gender.

e If we are given a set of examples with
height, weight and gender, we can come
up with a hypothesis which will enable us
to determine a person’s gender from their
weight and height.

e The weights and heights in a two-
dimensional coordinate system are points.

e Let us find the separating hyperplane
which divides the points into two regions,
one female, one male.
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Data of the basic example

No. | Height | Weight | Gender
1 180 80 m
2 173 66 m
3 170 80 m
4 176 70 m
5 160 65 m
6 160 61 f
7 162 62 f
8 168 64 f
9 164 63 f
10 175 65 f
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Representation of the data 1.
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Representation of the data II.
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Support vector machine 1.

e Map the input vectors into a very high-
dimensional feature space through some
nonlinear mapping choosen a priori.

e In this space construct an optimal sepa-
rating hyperplane.

e To generalize well, we control (decrease)
the VC dimension by constructing an op-
timal separating hyperplane (that maxi-
mizes the margin).

e TO increase the margin we use very high
dimensional spaces.
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Support vector machine II.

e [ he training algorithm would only depend
on the data through dot products in the
feature space, i.e. on functions of the
form ®(x;) - (x;). Now if there were a
“kernel function” K such that K(x;,x;) =
d(x;) - P(x;), we would only need to use
K in the training algorithm, and would
never need to explicitly even know what
P is.

e Mercer's Condition

e Polynomial kernel K(x,y) =(x-y+ 1)P

e Gaussian radial kernel (x,y) =
o—IIx=yl|%/202

e [wo-layer sigmoidal neural network
(x,y) = tanh(kx -y — 9)
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Summary of some features of SVM 1.

e SVM performs Structural Risk Minimisa-
tion.

e It creates a classifier with minimised VC
dimension.

e If the VC dimension is low, the expected
probability of error is low as well.

e SVM uses a linear separating hyperplane
to create a classifier. But some problems
can not be linearly separated in the orig-
inal input space.

e SVM can non-linearly transform the orig-
inal input space into a higher dimensional
feature space.
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Summary of some features of SVM I1I.
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Neural networks as a solution

e Most neural networks are designed to find
a separating hyperplane.

e T his is not necessarily optimal.

e In fact many neural networks start with a
random line and move it, until all training
points are on the right side of the line.
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Support vector machines as a solution

e Support Vector Machines use geometric
properties to exactly calculate the opti-
mal separating hyperplane directly from
the training data.

e [ hey also introduce methods to deal with
non-linearly separable cases.
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Face detection 1.

Some tasks from the literature:

face tracking
face detection
face recognition
face verification
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Face detection 1II.

Equalization of the gray-level information
Oval mask

Scanning

Extraction of the information to a pyra-
mid.

e SVM
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The Walsh system

e Let r be the function defined on [0,1) by
1, =z€[0,3),
r(r) = [1 2)
_17 x € [§7 1)

extended to R periodically with period 1.

The Rademacher system R = {r,,n € N}
is defined by

rn(x) =r(2"z), z € R,n € N.

e The Walsh system W = {wp,n € N} is
product of Rademacher functions in the
following way. If n € N has binary coeffi-
cients {n;,k € N} then

wp(x) = H ’I“Zk(ai)
k=0

Department of Informatics, Aristotle University of Thessaloniki, Greece
27



T he Walsh kernel

e It is well-known if f is an R-valued, inte-
grable function on the interval [0,1) then

flx) = X9lgar(flwg(z), where ap =
(f, w).

e Let N be a fixed element of the set N,
and

q)N(f) — (a’O(f)7°°°7a’N—1(f)) .

e [ hen the kernel function is

e It is easy to see, that ®(f) is a Walsh-
transformation of the one-dimensional
function f.

e [0 determine the value of the kernel func-
tion Kn(f,g) is not a difficult task, be-
cause some fast Walsh transformation are
well-known in the literature.

e \We will get the higher dimensional kernel
function as a tensor of one-dimensional
kernel functions.
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About the VC-dimension 1.

e [ he Vapnik-Chervonenkis dimension has
a very important role in the statistical
learning.

— It characterizes the learning capacity.

— One can avoid the overfitting with its
control.

— One can minimize the expected value
of the error with its control.

e The VC-dimension of a set of {4+1,—-1}-
valued functions is equal to the largest
number h of points of the domain of the
functions that can be separated into two
different classes in all the 2" possible ways
using the functions of this set of func-
tions.

e The VC-dimension of the class of all
Walsh functions is equal to oc.

e The relations N = 2™ and n > 2 are as-
sumed in the following.

e The VC-dimension of the set Wy =
{w | k=0,...,N — 1} equals n.
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About the VC-dimension II.
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Experimental results 1.

e For all experiments the Mathlab SVM tool-
box developed by Steve Gunn was used.
For a complete test, several auxiliary rou-
tines have been added to the original tool-
boxX.

— Training set of 46 images (31 (IBER-
MATICA) face — 15 non-face)

— IBERMATICA — several sources of
degradation are modeled.

— All images are recorded in 256 grey lev-
els.

— They are of dimensions 320 x 240.
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Experimental results II.

e [ he procedure for collecting face patterns
is as follows.

— A rectangle part of dimensions 128 X
128 pixels has been manually deter-
mined that includes the actual face.

— This area has been subsampled four
times. At each subsampling, non-
overlapping regions of 2 x 2 pixels are
replaced by their average.

— The training patterns of dimensions
8 x 8 are built.

— The class label 41 has been appended
to each pattern.

— Similarly, 15 non-face patterns have
been collected from images in the
same way, and labeled by —1.
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Experimental results III.

e We have trained the three different
SVMs. The trained SVMs have been ap-
plied to 414 test examples (249 face and
165 non-face). The test images are clas-
sified as non-face ones or face ones. The
following table gives the results on the

test.
Linear | Walsh | Polynomial
Time | 2.3581 | 2.3432 2.5327
Errors 9 8 ’
Margin 0.66 4.58 2.17
SVs 15 12 8
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Experimental results 1IV.
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Experimental results V.
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Experimental results VI.
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