
TDK-dolgozat

Puskás Levente

Extension of decision trees in case of
uncertain inputs and outputs

Author:
Puskás Levente

Msc. Programming Informatics 1.semester

Supervisor:
Dombi József
Professor

Szegedi Tudományegyetet
Természettudományi és Informatikai Kar

Számı́tógépes Algoritmusok és Mesterséges Intelligencia Tanszék

Abstract

A gépi tanulás adatbázison alapuló algoritmusok fejlesztése. Ma az egyik legfontosabb kérdés
az eljárások interpretálhatósága. A döntési fák intuit́ıav magyarázattal szolgálnak a döntésekre,
ı́gy ezen a területen fontos szerepet játszanak. Az egyik legelterjettebb fa éṕıtő algoritmus az
ID3. Ez az eljárás a fa feléṕıtéséhez az entrópiából számol információ nyereséget. Ami ugyan
egy hatékony heurisztika, de lehetőség van más függvények alkalmazására is. A dolgozatban
bevezetünk egy új függvényt a fa feléṕıtéséhe, amit a a fuzzyság mértéke alapján konstruáljuk
fuzzy operátor seǵıtségével. Az új függvény hasonló eredményeket ad mint az ID3 -ban a Shannon
entrópia. Az eljárás egyszerűbb és jól interpretálható. Bevezettünk egy új módszert a döntési
fa feléṕıtésére amivel gyorśıthatjuk az eljárást. Kiterjesztjük az eljárást arra az esetre is ha a
bemenetek valósźınűségi értékekkel rendelkeznek.

Abstract

Nowadays one of the most important field of machine learning is interpretability. The decision
trees provide an intuitive explanation to decisions, hence they play an important role on this
field. One of the most widely used tree building algorithm is the ID3. This method calculates
the information gain from the entropy. It is and effective heuristic, however we have the option
to choose other functions too. In the paper we introduced a new function to build the tree. We
constructed it based on the measure of fuzzyness. The new function produces similar results in
the ID3 as the Shannon entropy. Our method is easier to handle and it is easily interpretable. We
also introduced a new method to accelerate the construction of trees, and extended it so it can
handle inputs if they have probabilistic nature.

1 Introduction

In learning tasks, the decision process has two major aims. First, it is to explain decisions and
second, it is to make recommendations on how to make a decision in certain circumstances. These are
very similar to the goals of the Inductive Learning approach [RN95; Mit97] in the field of Artificial
Intelligence (AI), where the first step is to establish a model based on previous experience which is
later applied to predict future situations. This parallel computation suggests that AI methods can be
applied effectively in Decision Support Systems.

In Multicriteria Decision Analysis (MCDA), the inputs are usually described by numerical (continu-
ous) criteria, such as value functions or orderings on a real interval. However, most learning methods in
the field of artificial intelligence can detect relationships among elements of an input dataset described
by a set of categorical (discrete) criteria (like hierarchical classifiers, decision trees). In order to apply
these methods in MCDA, they should be extended so that they work on numerical criteria/attributes.
In this paper, we propose such an extension. Our novel Continuous Decision (CD) and Continuous
Decision Tree (CDT) methods help elucidate the structure of the input dataset described by a set of
numerical criteria in the form of a discriminant function or a decision tree, respectively, which could
be transformed into decision rules.

Here, some shortcomings of the well-known ID3 decision tree building method is discussed and
solutions are proposed. An alternative measure is described that differs from the entropy function,
which builds on the measure of fuzziness using a monotone fuzzy operator. In the proposed methods,
continuous criteria are handled without discretization of their values. If the problem is viewed from a
geometric perspective, our method allows us to separate the decision space with arbitrary figures, such
as hyperplanes and spheres, which can also be interpreted in a straightforward way using the decision
maker.

We shall consider classifiers from a Machine Learning perspective, and define the concept of the
decision tree. We will also discuss the properties of ID 3. Our CDT method, introduced in the following
section, is based on these approaches.

2 Decision tree classifiers

Classification models can be grouped by the way they are constructed. Namely, they are either made
by human experts or are obtained inductively from a set of examples. The induced model is either

1

non-hierarchical (e.g. instance-based classifiers, or models obtained from a neural network, genetic
algorithm, statistical method) or hierarchical, such as decision trees (for a short overview and further
references, see [Qui93; Bre+84]). We will derive a hierarchical classifier that is constructed inductively.

In the following, T denotes the given set of elements with their class information (training set) from
which a decision tree is induced:

T = {(x, c(x))|x ∈ X},

where x ∈ X is described by a sequence of attribute values: x = (x1, . . . , xm), xi is the value of the
ith attribute, m is the number of attributes, and c(x) denotes the class of element x. Let C1, . . . , Ck

denote the possible classes of elements in T .
From a machine learning point of view, two different types of attributes are distinguished: an

attribute is either discrete (categorical), i.e. its value comes from a predefined finite set, or continuous
(numerical), i.e. it is an element of a real interval.

Table 1: The training set that specifies when to go out and play

outlook Temp(°F, °C) Humidity(%) Windy? Class

sunny 75, 23.9 70 true Play

sunny 80. 26.7 90 true Don’t Play

sunny 85, 29.4 85 false Don’t Play

sunny 72, 22.2 95 false Don’t Play

sunny 69, 20.6 70 false Play

overcast 72, 22.2 90 true Play

overcast 83, 28.3 78 false Play

overcast 64, 17.8 65 true Play

overcast 81, 27.2 75 false Play

rain 71, 21.7 80 true Don’t Play

rain 65, 18.3 70 true Don’t Play

rain 75, 23.9 80 false Play

rain 68, 20 80 false Play

rain 70, 21.1 96 false Play

A classifier is a model built from the training dataset, and it is applied later to predict class values
of unknown elements. The model is based on the attribute values of the elements. A typical classifier
is the decision tree (see Figure 1):

Figure 1: A decision tree built up from the training set in Table 1 using the C4.5 method

Definition 2.1. A decision tree is a special rooted tree, in which a class identifier is associated with
each leaf node (it determines the class of elements which reached the node), and each internal (or

2

function BuildTree(examples, Cdef)
return a decision tree
input: examples: set of examples with

classes C1, C2, . . . , Ck

Cdef : default class
if all examples have class Cj then
return leaf with title Cj

else if examples is empty then
return leaf with title Cdef

else
test := select a test to separate examples
make an inner node with test
for each outcome Oi of test
examplesi := elements of examples which outcome of test is Oi

determinate value of Cdef

subtreei := BuildTree(examplesi, Cdef)
return tree

Figure 2: The greedy algorithm used to build a decision tree from a training set of examples

decision) node specifies a test, with one branch and subtree for each outcome of the test.

Methods for constructing decision trees may be grouped by the variety of tests used in their inner
nodes. In some approaches, only a single attribute selection is allowed as a test. For example, in the
CART method[Bre+84], in Quinlan’s ID3 method and in its extension to handle continuous attributes,
the C4.5 method[Qui93]. In other methods, a mixture of the attributes is also allowed as tests, as in
Cios’s CID3[CL], in Oblique Decision Trees[MKS], and in our CDT method.

From a geometric perspective, the application of tests based on single attribute selection can be
interpreted as a partition of the decision space – which is described by a set of continuous attributes
– with hyperplanes whose edges are parallel to the axes. A mixture of attributes leads to hyperplanes
in arbitrary positions. In our CDT method, arbitrary figures can be applied for the separation of the
space, while in C4.5 only axis-parallel hyperplanes are used (Figure ??).

In order to construct a decision tree, a training set is given, where elements are described by some
(discrete or continuous) attributes, and a tree is searched for in the hypothesis space which best fits the
elements of the training set. It is easy to find one that is consistent with the training set[RN95]. For
example, a tree that contains only one element of the training set in all leaf nodes. This tree, however,
does not tell us anything about the structure of the original problem and it has very poor predictive
power. According to the principle of Occam’s razor, it is worth looking for one of the smallest decision
trees. The motivation is that a simple decision tree (less complex model) might perform better on
unseen elements than a more complicated one[KV94; Mit97]. However, the problem of finding the
smallest decision tree consistent with a training set is NP-Complete[HR].

To cope with this computational problem, usually a greedy divide-and-conquer algorithm is used
to build a decision tree consistent with the training set (which, of course, does not lead to the smallest
one in the general case)[Ste; Qui93]. The generic algorithm is presented in Figure 2. Initially, the
one-node decision tree is considered (containing all the elements of the training set). As the algorithm
proceeds, for in each step a test is chosen and it is applied to the examples that have reached the
examined node. This test is then assigned to the node and branches are created according to the
outcomes of the selected test. Then, the same method is recursively applied to the newly created
branches. The crucial point of this algorithm is the test selection criterion. The methods discussed
in the present paper (ID3, C4.5, CDT) differ at this point. In all three approaches, the test selection
criterion is based on the homogeneity of the training set according to the class values. In ID3 and C4.5
the measure of homogeneity is based on the entropy function[Vet], while in CDT a different measure
is applied, derived from fuzzy conjunction operators.

In the following, the well-known ID3 and C4.5 decision tree building algorithms are discussed.

3

2.1 ID3 algorithm based on Shannon entropy

Now, we will examine the original ID3 algorithm using new notations. Let the data table have the
following form:

C1 C2 . . . Cm R
a1
a2
...
al rl
...

aN

where ai are the examples, Ck are the properties and rlϵ{+,−} i.e. ai is a positive or negative
example.

The attributes of the Ck’s are Sk1, Sk2 . . . Sknk
, i.e.

Ck = {Sk1 . . . Sknk
}

We shall define the following:

|S| the total number of examples (N)

|S+| the number of positive examples

|S−| the number of negative examples

|S+
ki| the number of positive examples for taken Ski

|S−
ki| the number of negative examples for taken Ski

The following identities are valid.

1. |S| = |S+|+ |S−|

2. |S+| =
∑nk

i=1 |S
+
ki| and |S−| =

∑nk

i=1 |S
−
ki|

For the ID3 algorithm, the Shannon entropy function plays a crucial rule:

E(x) = −k

n∑
i=1

xiln(xi)

In our case we have only positive and negative examples, so the entropy is

E(x) = − 1

ln(2)
(xln(x) + (1− x)ln(1− x)) (1)

When we constructed ID3, using entropy was just a heuristic idea. In our case we define

J(S) = − 1

ln(2)

(
|S+|
|S|

ln
|S+|
|S|

+
|S−|
|S|

ln
|S−|
|S|

)
. (2)

We have to calculate the expected value of Ck.

ES(Ck) =
|Sk1|
|S|

J(Sk1) +
|Sk2|
|S|

J(Sk2) + . . .
|Sknk

|
|S|

J(Sknk
)

We have to choose the attributes where J(S) − ES(Ck) is the maximum. Because J(S) is constant,
we will look for a Ck where ES(Ck) is a minimum.

4

3 Vagueness measue instead of Shannon entropy

The basic idea of fuzzy sets is the introduction of the membership function, which replaces the classical
characteristic function. It is an interesting question of knowing how close the membership function is
to the characteristic function, when we use a certain class of membership functions. This measure is
called the fuzziness measure.

Below we shall introduce an operator-dependent fuzziness measure called the vagueness measure. We
will show that this measure satisfies the usual classical assumptions for the fuzziness measure. In
addition, we will show that there is a connection between this measure and the entropy function.

In the Pliant concept we have the distending function instead of the membership function based on
the Pliant operator, and now we will define a vagueness measure by using the generator function of
the Pliant operator. On the basis of this consistent concept, we can derive a convergence theorem.

First, we will take a closer look at the fuzziness measure: Let µ(x) be the membership function and
d(µ) be the fuzziness measure.

3.1 Vagueness measure

In the Pliant system, the logical values essentially arise from inequalities. If we are on the border of
the inequality, i.e. just the equalities are fulfilled we are not sure whether we are inside or outside a
region. If we move away from the border we are more likely to be inside or outside the region. Why
are we so vague on the border? Because small changes can radically change the logical value. If we
demand stable statements, we should avoid being just on the border. Hence it is important to measure
the vagueness and also to know how it depends on the vagueness on the input values.

As we mentioned above, the idea and construction of a vagueness measure can be derived from the
fuzziness measure. In 1972 DeLuca and Termini [DT] introduced a fuzziness measure that is used for
the membership function. In the Pliant concept we will use the vagueness measure as the operand of
the distending function.

In our concept the vagueness measure depends on the negation function. Let us denote the fixed point
of the negation η by ν. We will suppose that the maximum of uncertainty is at ν. In terms of the
fuzziness measure, the negation is 1 − x and the fixed point is 1

2 ((P2) property). We generalized it
by replacing 1

2 by ν.
The vagueness measure in based on a logical operator, namely on the conjunctive operator. In our
starting point, we use the function

F (x) = Kc̄(x, ην(x)),

where c is the mean conjunctive operator and η is the negation operator. It is obvious that F (0) = 0
and F (1) = 0 ((P1) property). We have to multiply F by a constant K, such that KF (ν) = 1.

Proposition 3.1. In Pliant system the constant K is 1
ν .

Proof. In the Pliant system

c̄(x, y) = f−1

(
1

2
(f(x) + f(y))

)
(3)

and

η(x) = f−1

(
f2(ν)

f(x)

)
(4)

Here, f is the generator function of the conjunctive operator. [Ins001]
So we have the following representation of vagueness:

F (x) = Kc̄(x, η(x)) = Kf−1

(
1

2
f(ν)

(
f(x)

f(ν)
+

f(ν)

f(x)

))
. (5)

5

If we demand that the maximum value should be at ν, we have to find the minimum of F . We look
for the minimum of

Y =
X

A
+

A

X
, where A = f(ν), X = f(x). (6)

It is obvious that at X = f(ν), i.e. f(x) = f(ν), the minimum is at ν, and we get

K =
1

ν

Definition 3.2. The vagueness measure is denoted by V and

V(x) =
1

ν
c̄(x, η(x)) =

1

ν
f−1

(
1

2
f(ν)

(
f(x)

f(ν)
+

f(ν)

f(x)

))
. (7)

Proposition 3.3. The vagueness measure has the following properties.

1. Sharpness (No vagueness) (P1)

V(x) = 0 ⇐⇒ x ∈ {0, 1}

2. Maximality (maximal vagueness) (P2)
1
ν V(x) = 1 ⇐⇒ x = ν

3. Monotonicity (P3)

V(x1) < V(x2) if

x1 < x2 and x1 ≤ ν
or

x1 > x2 and x1 ≥ ν

4. Symmetry (P4)

V(x) = V(η(x))

Proof. The proof is trivial.

3.2 Vagueness measure in the Dombi operator case

Let f(x) =
(
1−x
x

)α
(α > 0), namely the Dombi operator. Then

V(x) =
1

ν

1

1 + 1−ν
ν

(
1
2

((
ν

1−ν
1−x
x

)α

+
(

1−ν
ν

x
1−x

)α)) 1
α

(8)

If α = 1 and ν = 1
2 , then

V(x) = 4x(1− x). (9)

6

ν=0.25 ν=0.5 ν=0.75

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3: The effect of ν

4 ID3 algorithm based on vagueness measure

Next, we will introduce the following notations:

|Sk1| = |S+
k1|+ |S−

k1| x+
k1 =

|S+
k1|

|S+|
x−
k1 =

|S−
k1|

|S−|

|Sk2| = |S+
k2|+ |S−

k2| x+
k2 =

|S+
k2|

|S+|
x−
k2 =

|S−
k2|

|S−|
...

...

|Sknk
| = |S+

knk
|+ |S−

knk
| x+

knk
=

|S+
knk

|
|S+| x−

knk
=

|S−
knk

|
|S−|

(10)

————————————————————————————–

|S| = |S+|+ |S−| w+ =
|S+|
|S|

w− =
|S−|
|S|

,

where

|S+| =
nk∑
i=1

|S+
ki| |S−| =

nk∑
i=1

|S−
ki|

and, of course,
w+ + w− = 1 wϵ[0, 1]

nk∑
i=1

x+
ki = 1

nk∑
i=1

x−
ki = 1 x+

kiϵ[0, 1], x−
kiϵ[0, 1]

The following equations are valid.

1. w+ =
|S+|
|S|

and w− =
|S−|
|S|

2. w+ + w− = 1, where w+ ∈ [0, 1], w− ∈ [0, 1]

3.
∑nk

i=1 x
+
ki = 1 and

∑nk

i=1 x
−
ki = 1, where x+

ki ∈ [0, 1], x−
ki ∈ [0, 1]

Replacing (1) by (9) the vagueness measure might be as good as the entropy. It’s worth mentioning
that using (9), it can be calculated much more easily. If x = 1 or x = 0, then (1) has no meaning and
we calculate the limes value. So instead of calculating the entropy, we will use the vagueness measure
in Dombi operator case:

J(S) = 4
|S+|
|S|

(
1− |S+|

|S|

)
= 4

|S+||S−|
|S|2

(11)

7

Let us calculate the J(Ck) values:

J(Sk1) = 4
|S+

k1||S
−
k1|

|Sk1|2

J(Sk2) = 4
|S+

k2||S
−
k2|

|Sk2|2

...

J(Sknk
) = 4

|S+
knk

||S−
knk

|
|Sknk

|2

In a similar way to that for ID3, we have to calculate the expected value of Ck.

ED(Ck) = 4

nk∑
i=1

|Ski|
|S|

|S+
ki||S

−
ki|

|Ski|2
=

4

|S+|+ |S−|

nk∑
i=1

|S+
ki||S

−
ki|

|S+
ki|+ |S−

ki|
, (12)

where we use
|S| = |S+|+ |S−|

|Ski| = |S+
ki|+ |S−

ki|

Let us use x+
ki, x

−
ki, w+ and w−, as defined in (10)

ED(Ck) =
4

|S|w+ + |S|w−

nk∑
i=1

|S+|x+
ki |S−|x−

ki

|S+|x+
ki + |S−|x−

ki

.

Because |S|w+ + |S|w− = |S| = |S+|+ |S−|

ED(Ck) =
4|S+||S−|
|S+|+ |S−|

nk∑
i=1

x+
kix

−
ki

|S+|x+
ki + |S−|x−

ki

= 4
|S+|

|S+|+ |S−|
|S−|

|S+|+ |S−|

nk∑
i=1

x+
kix

−
ki

|S+|
|S+|+|S−|x

+
ki +

|S−|
|S+|+|S−|x

−
ki

= 4w+w−
nk∑
i=1

x+
kix

−
ki

w+x+
ki + w−x−

ki

(13)

Since 4w+w− is a constant, we can minimize

nk∑
i=1

x+
kix

−
ki

w+x+
ki + w−x−

ki

=

nk∑
i=1

1

1 + w+ 1−x−
ki

x−
ki

+ w− 1−x+
ki

x+
ki

. (14)

ED(Ck) can also be defined in the following way:

ED(Ck) = 4w+w−
nk∑
i=1

1

1 + w+

x−
ki

− w+ + w−

x+
ki

− w−

= 4w+w−
nk∑
i=1

1

1 + w+ 1−x−
ki

x−
ki

+ w− 1−x+
ki

x+
ki

(15)

As the weighted Dombi operator is

cD(u, v;x, y) =
1

1 + u 1−x
x + v 1−y

y

,

8

we can express ED(Ck) as

ED(Ck) = 4w+w−
nk∑
i=1

cD(w+, w−;x−
ki, x

+
ki). (16)

We get the following result.

We have only positive and negative examples and we have to find the minimum of E(Ck). Because
4w+w− does not depend on k, we can ignore it and choose

K = arg min
k

nk∑
i=1

1

1 + w+ 1−x−
ki

x−
ki

+ w− 1−x+
ki

x+
ki

= arg min
k

nk∑
i=1

cD(w+, w−;x−
ki, x

+
ki) (17)

We should mention that if
x−
ki = 0 or x+

ki = 0,

then the value of the operator is 0.

Instead of (17), we can use (12) as well:

K = arg min
k

nk∑
i=1

|S+
ki||S

−
ki|

|S+
ki|+ |S−

ki|
(18)

Based on (17), we can find the optimum for k. Based on k we can build two sets of the items denoted
by P for the positive response and N for the negative response. We will do it for all i. Now we will
divide the original set of items into i1, . . . , ink

subsets. The algorithm works on these subsets using
the divide and conquer procedure. We halt the algorithm if N or P are empty.

Example 1.

Database:

C1 C2 C3 R
1 B 3 b +
2 A 3 a -
3 A 2 b +
4 B 1 b -
5 A 1 b -
6 A 3 b +
7 A 1 a -
8 B 3 a -

Property 1. (A,B) (C1) S11 = A S12 = B

Property 2. (1, 2, 3) (C2) S21 = 1 S22 = 2 S23 = 3

Property 3. (a, b) (C3) S31 = a S32 = b

We have 8 examples, 3 of them being positive and 5 of them being negative. Hence

w+ =
3

8
w− =

5

8

Let us choose Property 1 and look for A. A is positive in (3) and (6), and the positive examples are
3, so

x+
11 =

2

3

9

A is negative in cases (2), (5) and (7) hence all together we have 5 negative examples, and

x−
11 =

3

5

We have to calculate it for B too:

x+
12 =

1

3
x−
12 =

2

5

Therefore

ED(C1) =
1

1 + 3
8

1− 3
5

3
5

+ 5
8

1− 2
3

2
3

+
1

1 + 3
8

1− 2
5

2
5

+ 5
8

1− 1
3

1
3

=
225

224
= 0.9955

Using the Shannon entropy we can calculate ES(C1) too. In this case |S11| = 5, |S12| = 3, |S| =
8, |S+

11| = 2, |S−
11| = 3, |S11| = 5, |S+

12| = 1, |S−
12| = 2, |S12| = 3, so we have

J(S11) = − 1

ln(2)

(
2

5
ln

2

5
+

3

5
ln

3

5

)
= 0.971

J(S12) = − 1

ln(2)

(
1

3
ln

1

3
+

2

3
ln

2

3

)
= 0.918

ES(C1) =
5

8
J(S11) +

3

8
J(S12) = 0.951

For property (C2),

x+
21 =

0

3
x−
21 =

3

5

x+
22 =

1

3
x−
22 =

0

5

x+
23 =

2

3
x−
23 =

2

5

ED(C2) =
1

1 + 3
8

1− 3
5

3
5

+ 5
8

1− 0
3

0
3

+
1

1 + 3
8

1− 0
5

0
5

+ 5
8

1− 1
3

1
3

+
1

1 + 3
8

1− 2
5

2
5

+ 5
8

1− 2
3

2
3

=
8

15
= 0.53

ES(C2) = 0.5

For property (C3),

x+
31 =

0

3
x−
31 =

3

5

x+
32 =

3

3
x−
32 =

2

5

ED(C3) =
1

1 + 3
8

1− 3
5

3
5

+ 5
8

1− 0
3

0
3

+
1

1 + 3
8

1− 2
5

2
5

+ 5
8

1− 3
3

3
3

=
16

25
= 0.64

ES(C3) = 0.607

In Table 2 we show that ED(Ck) is equivalent to ES(Ck). Because ED(C2) is the minimum, the
decision tree is:

10

Table 2: Equivalence of ED and ES

ED ES

C1 0.996 0.951
C2 0.530 0.500
C3 0.640 0.607

C2

P{∅}N{4, 5, 7}

1

P{3}N{∅}

2

P{1, 6}N{2, 8}

3

Figure 4: The decision tree after the first step of the calculation

The data table is effectively reduced to:

C1 C3 R
1 B b +
2 A a -
6 B b +
8 A b -

With a similar calculation, we can get the minimum for S3.

So the decision tree looks like this:

C2

P{∅}N{4, 5, 7}

1

P{3}N{∅}

2

C3

P{∅}N{2, 8}

a

P{1, 6}N{∅}

b

3

Figure 5: The final decision tree

11

5 A fast calculation of the PDT

Let Ck be a set of properties in the classical case.
We can represent it by a binary-valued vector

Ck = {Sk1
, Sk2

. . . Skl
. . . Sknk

}

The response vector can also be divided into r+ and r− values, i.e.

rl = 1 if positive in the response (+)

rl = 0 if negative in the response (−)

So the database could be written in the following form:

Table 3: The original database

C1 Ck R︷ ︸︸ ︷
S1,1 S1,2 . . . S1,n1 · · ·

︷ ︸︸ ︷
Sk,1 Sk,2 . . . Sk,nk

︷ ︸︸ ︷
R+ R−

1 x
(1)
1,1 x

(1)
1,2 . . . x

(1)
1,n1

· · · x
(1)
k,1 x

(1)
k,2 . . . x

(1)
k,nk

r
(1)
+ r

(1)
−

2 x
(2)
1,1 x

(2)
1,2 . . . x

(2)
1,n1

· · · x
(2)
k,1 x

(2)
k,2 . . . x

(2)
k,nk

r
(2)
+ r

(2)
−

3 x
(3)
1,1 x

(3)
1,2 . . . x

(3)
1,n1

· · · x
(3)
k,1 x

(3)
k,2 . . . x

(3)
k,nk

r
(3)
+ r

(3)
−

...
...

...
...

...

m x
(m)
1,1 x

(m)
1,2 . . . x

(m)
1,n1

· · · x
(m)
k,1 x

(m)
k,2 . . . x

(m)
k,nk

r
(m)
+ r

(m)
−∑

|S+| |S−|

where (x
(j)
k,1, x

(j)
k,2, . . . , x

(j)
k,l , . . . , x

(j)
k,nk

) = (0, 0, . . . , 1, . . . , 0), where 1 is in the l-th coordinate of the
vector.

12

In this database (x
(j)
k,1, x

(j)
k,2, . . . , x

(j)
k,nk

) = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the (l)-th place if the
(j)-th example of the Ck attribute is Skl

. The weights are:

w+ =
|S+|
|S|

, w− =
|S−|
|S|

.

For a fast calculation of x+
i and x−

i , we have to multiply the columns R+ and R− by the columns of
the table.

Multiplying Sk,j =


S
(1)
k,j
...

S
(m)
k,j

 by R+ =


r
(1)
+
...

r
(m)
+

 componentwise, we get

R+(Sk,j) =


S
+(1)
k,j
...

S
+(m)
k,j

 =


S
(1)
k,jr

(1)
+

...

S
(m)
k,j r

(m)
+

 .

After calculating these new vectors, we get the following table (see Table 4), where

x+
k,j =

|S+
k,j |

|S+|
. (j = 1, . . . , nk)

Table 4: Multiplying the columns by R+

C1 Ck︷ ︸︸ ︷
R+(S1,1) R

+(S1,2) . . . R+(S1,n1) · · ·
︷ ︸︸ ︷
R+(Sk,1) R

+(Sk,2) . . . R+(Sk,nk
)

1 S
+(1)
1,1 S

+(1)
1,2 . . . S

+(1)
1,n1

· · · S
+(1)
k,1 S

+(1)
k,2 . . . S

+(1)
k,nk

2 S
+(2)
1,1 S

+(2)
1,2 . . . S

+(2)
1,n1

· · · S
+(2)
k,1 S

+(2)
k,2 . . . S

+(2)
k,nk

3 S
+(3)
1,1 S

+(3)
1,2 . . . S

+(3)
1,n1

· · · S
+(3)
k,1 S

+(3)
k,2 . . . S

+(3)
k,nk

...
...

...

m S
+(m)
1,1 S

+(m)
1,2 . . . S

+(m)
1,n1

· · · S
+(m)
k,1 S

+(m)
k,2 . . . S

+(m)
k,nk∑

S+
1,1 S+

1,2 . . . S+
1,n1

· · · S+
k,1 S+

k,2 . . . S+
k,nk

x+ x+
1,1 x+

1,2 . . . x+
1,n1

· · · x+
k,1 x+

k,2 . . . x+
k,nk

13

Similarly, multiplying Sk,j =


S
(1)
k,j
...

S
(m)
k,j

 by R− =


r
(1)
−
...

r
(m)
−

 componentwise, we get

R−(Sk,j) =


S
−(1)
k,j
...

S
−(m)
k,j

 =


S
(1)
k,jr

(1)
−

...

S
(m)
k,j r

(m)
−

 .

, where

x−
k,j =

|S−
k,j |

|S−|
. (j = 1, . . . , nk)

Table 5: Multiplying the columns by R−

C1 Ck︷ ︸︸ ︷
R−(S1,1) R

−(S1,2) . . . R−(S1,n1) · · ·
︷ ︸︸ ︷
R−(Sk,1) R

−(Sk,2) . . . R−(Sk,nk
)

1 S
−(1)
1,1 S

−(1)
1,2 . . . S

−(1)
1,n1

· · · S
−(1)
k,1 S

−(1)
k,2 . . . S

−(1)
k,nk

2 S
−(2)
1,1 S

−(2)
1,2 . . . S

−(2)
1,n1

· · · S
−(2)
k,1 S

−(2)
k,2 . . . S

−(2)
k,nk

3 S
−(3)
1,1 S

−(3)
1,2 . . . S

−(3)
1,n1

· · · S
−(3)
k,1 S

−(3)
k,2 . . . S

−(3)
k,nk

...
...

...

m S
−(m)
1,1 S

−(m)
1,2 . . . S

−(m)
1,n1

· · · S
−(m)
k,1 S

−(m)
k,2 . . . S

−(m)
k,nk∑

S−
1,1 S−

1,2 . . . S−
1,n1

· · · S−
k,1 S−

k,2 . . . S−
k,nk

x− x−
1,1 x−

1,2 . . . x−
1,n1

· · · x−
k,1 x−

k,2 . . . x−
k,nk

Hence, the input values of the algorithm are given. Now we can use (13) or the weighted conjunctive
operator of Dombi (15) to calculate the entropies.

14

Example 2.: Fast calculation of PTD.
The database in the example could be written in the following way:

Table 6: based on Table 1

C1 C2 C3 R︷ ︸︸ ︷
A B

︷ ︸︸ ︷
1 2 3

︷︸︸︷
a b

︷ ︸︸ ︷
R+ R−

1 0 1 0 0 1 0 1 1 0
2 1 0 0 0 1 1 0 0 1
3 1 0 0 1 0 0 1 1 0
4 0 1 1 0 0 0 1 0 1
5 1 0 1 0 0 0 1 0 1
6 1 0 0 0 1 0 1 1 0
7 1 0 1 0 0 1 0 0 1
8 0 1 0 0 1 1 0 0 1∑

3(+) 5(−)

So

w+ =
3

8
, w− =

5

8
.

For a fast calculation of x+
i and x−

i , we have to multiply columns R+ and R− by the columns of the
tables!.

Multiplying by R+, we get:

Table 7: based on Table 2

C1 C2 C3︷ ︸︸ ︷
R+(A) R+(B)

︷ ︸︸ ︷
R+(1) R+(2) R+(3)

︷ ︸︸ ︷
R+(a) R+(b)

1 0 1 0 0 1 0 1
2 0 0 0 0 0 0 0
3 1 0 0 1 0 0 1
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 1 0 0 0 0 0 1
7 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0∑

2 1 0 1 2 0 3

x+ 2

3(+)

1

3(+)

0

3(+)

1

3(+)

2

3(+)

0

3(+)

3

3(+)

15

Multiplying by R−, we get:

Table 8: based on Table 3

C1 C2 C3︷ ︸︸ ︷
R−(A) R−(B)

︷ ︸︸ ︷
R−(1) R−(2) R−(3)

︷ ︸︸ ︷
R−(a) R−(b)

1 0 0 0 0 0 0 0
2 1 0 0 0 1 1 0
3 0 0 0 0 0 0 0
4 0 1 1 0 0 0 1
5 1 0 1 0 0 0 1
6 0 0 0 0 0 0 0
7 1 0 1 0 0 1 0
8 0 1 0 0 1 1 0∑

3 2 3 0 2 3 2

x− 3

5(−)

2

5(−)

3

5(−)

0

5(−)

2

5(−)

3

5(−)

2

5(−)

So we get:

ED(C1) =
1

1 + 3
8

1− 3
5

3
5

+ 5
8

1− 2
3

2
3

+
1

1 + 3
8

1− 2
5

2
5

+ 5
8

1− 1
3

1
3

=
224

225
= 0.9955

ED(C2) =
1

1 + 3
8

1− 3
5

3
5

+ 5
8

1− 0
3

0
3

+
1

1 + 3
8

1− 0
5

0
5

+ 5
8

1− 1
3

1
3

1

1 + 3
8

1− 2
5

2
5

+ 5
8

1− 2
3

2
3

=
8

15
= 0.53

ED(C3) =
1

1 + 3
8

1− 3
5

3
5

+ 5
8

1− 0
3

0
3

+
1

1 + 3
8

1− 2
5

2
5

+ 5
8

1− 3
3

3
3

=
16

25
= 0.64

From this since we want to minimize the vagueness we would choose C2, however first lets examine
the problem from another perspective.
We can split C2 into three different criterion’s in a one versus all manner so the interpretation of the
new criterions would be 1 or not one, for the second 2 or not 2 and so on. We are able to do this
because in Ck = {Sk,i}

∑N
i=1 r

l
k,i = 1. After splitting the previous dataset and recalculating ED(Ck)

we get the following results, since C1 and C5(previously C3) remains the same we will not show these.
The results are the following.

ED(C2) = 0.64 ED(C3) = 0.76 ED(C4) = 0.9333 (19)

As we can see after splitting C2 the new criterions vagueness is higher than the previous C2’s and now
we can either select C3 or C5 since both of them has the same vagueness. This means that we choose
criterions with more attributes, to avoid this we will have to split the tree according to previous steps.
In the following we will introduce a more efficient equation for this kind of trees.

5.1 Modifying the Vagueness measure

We have the equation

K =
X+

1 X−
1

w+X+
1 + w−X−

1

+
X+

2 X−
2

w+X+
2 + w−X−

2

16

Since
X+

2 = 1−X+
1 X−

2 = 1−X−
1

after substituting it into the equation we get

K =
X+X−

w+X+ + w−X− +
(1−X+)(1−X−)

w+(1−X+) + w−(1−X−)

. We can reformulate the followings

N∑
i

r+i = R

N∑
i

(1− r+i) = N −R

w+ =
R

N
w− =

N −R

N

X+ =
1

R

∑
airi X− =

1

N −R

∑
ai(1− ri)

w+X+ =
R

N

1

R

∑
airi w−X− =

N −R

N

1

N −R

∑
ai(1− ri)

w+X+ + w−X− =
1

N

∑
ai

K1 =
N

R+R−
(
∑

airi)(
∑

ai(1− ri))∑
ai

Now we transform the second half of the equation too,

K2 =
(1−X+)(1−X−)

w+(1−X+) + w−(1−X−)

w+(1−X+) =
R

N

(
1− 1

R

∑
airi

)
w−(1−X−) =

N −R

N

(
1− 1

N −R

∑
ai(1− ri)

)

=
1

N

(
R+ −

∑
airi

)
+

1

N

(
R− −

∑
ai(1− ri)

)
=

1

N

(
R+ +R− −

∑
ai

)
=

1

N

(
N −

∑
ai

)
So the second half of the equation is

N
(1− 1

R+

∑
airi)(1− 1

R−

∑
ai(1− ri))

N −
∑

ai
=

N

R+R−
(R+ −

∑
airi)(R

− −
∑

ai(1− ri))

N −
∑

ai

and the whole equation

K =
N

R+R−
(
∑

airi)(
∑

ai(1− ri))∑
ai

+
(R+ −

∑
airi)(R

− −
∑

ai(1− ri))

N −
∑

ai

Lets use the following notations

A =
∑

airi B =
∑

ai(1− ri) = Z −A Z =
∑

ai

then we get the final equation.

K =
N

R+R−

(
AB

Z
+

(R+ −A)(R− −B)

N − Z

)
(20)

17

Table 9: Transformed database

C1 C2 C3 C4 C5 R
1 0 0 0 1 0 1
2 1 0 0 1 1 0
3 1 0 1 0 0 1
4 0 1 0 0 0 0
5 1 1 0 0 0 0
6 1 0 0 1 0 1
7 1 1 0 0 1 0
8 0 0 0 1 1 0∑

5 3 1 4 3 3

5.2 Example

We will show the usage of the new method through an example. First we transform the original
database into a simplified version. We use the table6.1 and transform the database so that every
attribute of each criterion is a separate criterion then we get the following table:
We then calculate the value of the constants:

N = 8 w+ =
R

N
=

3

8
w− =

N −R

N
=

5

8

Then we calculate the K for each criterion:

C1 Z = 5 A = 2 B = 3 K1 =
8

15

(
6

5
+

(3− 2)(5− 3)

8− 5

)
= 0.9955

C2 Z = 3 A = 0 B = 3 K2 =
8

15

(
0

5
+

(3− 0)(5− 3)

8− 3

)
= 0.64

C3 Z = 1 A = 1 B = 0 K3 =
8

15

(
0

1
+

(3− 1)(5− 0)

8− 1

)
= 0.76

C4 Z = 4 A = 2 B = 2 K4 =
8

15

(
4

4
+

(3− 2)(5− 2)

8− 4

)
= 0.9333

C5 Z = 3 A = 0 B = 3 K5 =
8

15

(
0

3
+

(3− 0)(5− 3)

8− 3

)
= 0.64

As we can see we got the same results as with the equation 17.

6 PDT with multi-class outputs

In the real world there are several cases with multiple possible output classes. To make it possible for
our PDT to handle such cases we are going to use a one versus all approach. When we have more
than two output classes we are going to divide the database into j − 1 separate database where j is
the number of possible output class, and build a tree on each one of them. This way every tree makes
a decision on whether our example is the selected class or not.

18

6.1 Example

Table 10: based on Table 1

C1 C2 C3 C4 C5 R1 R2 R3

1 0 0 0 1 0 1 0 0
2 1 0 0 1 1 0 0 1
3 1 0 1 0 0 1 0 0
4 0 1 0 0 0 0 1 0
5 1 1 0 0 0 0 0 1
6 1 0 0 1 0 1 0 0
7 1 1 0 0 1 0 1 0
8 0 0 0 1 1 0 0 1∑

3 2 3

Now as we discussed before we will separate the dataset.

Table 11: Updated database

C1 C2 C3 C4 C5 R
1 0 0 0 1 0 1
2 1 0 0 1 1 0
3 1 0 1 0 0 1
4 0 1 0 0 0 0
5 1 1 0 0 0 0
6 1 0 0 1 0 1
7 1 1 0 0 1 0
8 0 0 0 1 1 0∑

3

First lets calculate the K values for this dataset.

K1 = 0.995 K2 = 0.64 K3 = 0.76 K4 = 0.933 K5 = 0.64

We will choose the C5 as the new node’s criterion.

Figure 6: Tree after the first step

Then we get: The K values:

19

Table 12: Updated database

C1 C2 C3 C4 R
1 0 0 0 1 1
3 1 0 1 0 1
4 0 1 0 0 0
5 1 1 0 0 0
6 1 0 0 1 1∑

3

K1 = 0.972 K2 = 0 K3 = 0.83 K4 = 0.55

Based on these we chose C2 and the new tree is: for R1 this will be the final tree now we will build the

Figure 7: The tree after the second iteration

second tree based on the new dataset, for this we only have to consider the elements where the first
tree is negative.

Table 13: Updated database

C1 C2 C3 C4 C5 R2 R3

2 1 0 0 1 1 0 1
4 0 1 0 0 0 1 0
5 1 1 0 0 0 0 1
7 1 1 0 0 1 1 0
8 0 0 0 1 1 0 1∑

2 3

K1 = 0.97 K2 = 0.55 K3 = 0 K4 = 0.55 K5 = 0.97

We would choose the C3 based on the equation however since there are no different values in this
criterion it would not help us progress the tree so since it does not contain any useful information we
can get rid of it.

Based on the new tree we will get a reduced database containing 4,5,7.

20

Table 14: Updated database

C1 C2 C4 C5 R2 R3

2 1 0 1 1 0 1
4 0 1 0 0 1 0
5 1 1 0 0 0 1
7 1 1 0 1 1 0
8 0 0 1 1 0 1∑

2 3

Figure 8: The new tree after the first iteration

Table 15: Updated database

C1 C5 R2 R3

4 0 0 1 0
5 1 0 0 1
7 1 1 1 0∑

2 3

Note that we deleted C4 too since it only contained 0s.

K1 = 0.75 K2 = 0.75

21

Figure 9: The new tree after the second iteration

And the final criterion will be the C5 and the tree is:

Figure 10: The new tree after the third iteration

Since we already checked the two other output classes we do not have to check the last one as after
the second tree all negative examples will belong to the last class.

22

7 The PDT when attributes are probability values

In a real world problem it is sometimes not easy to calculate the attributes of a property.

In the following we will use the same representation as that in the fast calculation case:

Ck = {αk
1 , α

k
2 . . . α

k
kn
}

and if it belongs to the l-th example, then

Clk = {αk
l1 , α

k
l2 . . . α

k
lkn

}

So it is easy to define the probabilistic values for Clk . And we will suppose that for all the αk
li

probability values.
0 ≤ αk

li ≤ 1

nk∑
i=1

αk
li = 1

for all values of k and l.

Example: Ck = fever. The attributes are: no fever, fever, high fever. In a certain case we measure a
temperature of 37.1°C. Then the Clk vector might be:

Clk = (0.3, 0.6, 0.1)

If αk
li
have no probabilistic values, then αk

li
ϵ{0, 1}.

Let us suppose that Ck is the minimum entropy (17). Now we shall use the values of

S
+(i)
k,j and S

−(i)
k,j , where S

+(i)
k,j + S

−(i)
k,j = 1.

Here k is the criteria, j is the element of the criteria and i denotes the item. Now we can select the
items in the following way.

If S
+(i)
k,j is greater than 1

2 , then it is a positive item; otherwise it is a negative item. So we get the two
sets, namely P and N .
We have to calculate |S+

ki|, |S
−
ki|.

So

|S+
ki| =

M∑
i=1

r
(i)
+ αk

li

|S−
ki| =

M∑
i=1

r
(i)
− αk

li

All the other steps of the algorithm are similar to the fast calculation procedure.

Example 3.: When the attributes are probability values

Database:

C1 C2 C3 R︷ ︸︸ ︷
A B

︷ ︸︸ ︷
1 2 3

︷ ︸︸ ︷
a b

︷ ︸︸ ︷
R+ R−

1 0.4 0.6 0.1 0.1 0.8 0.0 1.0 1 0
2 0.6 0.4 0.3 0.3 0.4 1.0 0.0 0 1
3 0.7 0.3 0.0 1.0 0.0 0.0 1.0 1 0
4 0.3 0.7 0.9 0.1 0.0 0.0 1.0 0 1
5 0.8 0.2 0.8 0.2 0.0 0.0 1.0 0 1
6 0.8 0.2 0.2 0.2 0.6 0.0 1.0 1 0
7 0.7 0.3 0.4 0.3 0.3 1.0 0.0 0 1
8 0.1 0.9 0.0 0.0 1.0 1.0 0.0 0 1

23

We can calculate this in a similar way as we did in Example 1.
For property (C1), we get

x+
11 =

1.9

3
x−
11 =

2.5

5

x+
12 =

1.1

3
x−
12 =

2.5

5

E(C1) =
1

1 + 3
8

1− 2.5
5

2.5
5

+ 5
8

1− 1.9
3

1.9
3

+
1

1 + 3
8

1− 2.5
5

2.5
5

+ 5
8

1− 1.1
3

1.1
3

=
292

297
= 0.9832

For property (C2), we get

x+
21 =

0.3

3
x−
21 =

2.4

5

x+
22 =

1.3

3
x−
22 =

0.9

5

x+
23 =

1.4

3
x−
23 =

1.7

5

E(C2) =
1

1 + 3
8

1− 2.4
5

2.4
5

+ 5
8

1− 0.3
3

0.3
3

+
1

1 + 3
8

1− 0.9
5

0.9
5

+ 5
8

1− 1.3
3

1.3
3

+
1

1 + 3
8

1− 1.7
5

1.7
5

+ 5
8

1− 1.4
3

1.4
3

= 0.8353

For property (C3), we get

x+
31 =

0

3
x−
31 =

3

5

x+
32 =

3

3
x−
32 =

2

5

E(C3) =
1

1 + 3
8

1− 3
5

3
5

+ 5
8

1− 0
3

0
3

+
1

1 + 3
8

1− 2
5

2
5

+ 5
8

1− 3
3

3
3

=
16

25
= 0.64

In this case C3 has a minimum value, so the decision tree is

C3

P{∅}N{2, 7, 8}

a

P{1, 3, 6}N{4, 5}

b

Figure 11: The decision tree after the first step of the calculation

We then get the reduced database:

C1 C2 R+ R−

1 0.4 0.6 0.1 0.1 0.8 1 0
3 0.7 0.3 0.0 1.0 0.0 1 0
4 0.3 0.7 0.9 0.1 0.0 0 1
5 0.8 0.2 0.8 0.2 0.0 0 1
6 0.8 0.2 0.2 0.2 0.6 1 0

After a similar calculation, we find that C2 has the minimum value. Setting the threshold to 0.5, we
get the final decision tree

24

C3

P{∅}N{2, 7, 8}

a

C2

P{∅}N{4, 5}

1

P{3}N{∅}

2

P{1, 6}N{∅}

3

b

Figure 12: The resulting decision tree

References

[Bre+84] L. Breiman et al. Classification and Regression Trees. Belmont, CA: Wadsworth, 1984.

[Qui93] J. Quinlan. C4.5: Programs for Machine Learning. San Mateo, CA: Morgam Kaufmann,
1993.

[KV94] M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. Cambridge,
Massachusetts: The MIT Press, 1994.

[RN95] S. Russel and P. Norvig. Artificial Intelligence - A Modern Approach. Englewood Cliffs:
Prentice-Hall, 1995.

[Mit97] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[CL] K. J. Cios and N. Liu. “A machine learning method for generation of a neural network
achitecture: a continuous ID3 algorithm”. In: 3, no. 2, pp. 280-291, March 1992 ().

[DT] A. DeLuca and S. Termini. “A definition of non-probabilistic entropy in the setting of fuzzy
sets theory”. In: Inform and Control 20, pp. 301-312, 1972 ().

[HR] L. Hyafil and R. Rivest. “Constructing optimal binary decision trees is np-complete”. In:
5, pp. 15-17, 1976 ().

[MKS] S. Murthy, S. Kasif, and S. Salzberg. “A system for induction of oblique decision trees”.
In: 2, pp. 1-32, 1994 ().

[Ste] J. Stefandowski. “Classification and decision supporting based on rough set theory”. In:
Foundations of Computing and Decision Sciences 18, no. 3-4, pp. 371-380, 1993 ().

[Vet] R. Vetschera. “Entropy and the value of information”. In: Central European Journal of
Operations Research 8, pp. 195-208, 2000 ().

25

