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Abstract We introduce a novel approach to preference-based reinforcement
learning, namely a preference-based variant of a direct policy search method
based on evolutionary optimization. The core of our approach is a preference-
based racing algorithm that selects the best among a given set of candidate
policies with high probability. To this end, the algorithm operates on a suitable
ordinal preference structure and only uses pairwise comparisons between sam-
ple rollouts of the policies. Embedding the racing algorithm in a rank-based
evolutionary search procedure, we show that approximations of the so-called
Smith set of optimal policies can be produced with certain theoretical guar-
antees. Apart from a formal performance and complexity analysis, we present
first experimental studies showing that our approach performs well in practice.
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1 Introduction

Preference-based reinforcement learning (PBRL) is a novel research direction
combining reinforcement learning (RL) and preference learning [14]. It aims
at extending existing RL methods so as to make them amenable to training
information and external feedback more general than numerical rewards, which
are often difficult to obtain or expensive to compute. For example, anticipating
our experimental study in the domain of medical treatment planning, to which
we shall return in Section 5, how to specify the cost of a patient’s death in
terms of a reasonable numerical value?

In [2] and [9], the authors tackle the problem of learning policies solely
on the basis of qualitative preference information, namely pairwise compar-
isons between trajectories; such comparisons suggest that one system behavior
is preferred to another one, but without committing to precise numerical re-
wards. Building on novel methods for preference learning, this is accomplished
by providing the RL agent with qualitative policy models, such as ranking
functions. More specifically, Cheng et al. [9] use a method called label ranking
to train a model that ranks actions given a state; their approach generalizes
classification-based approximate policy iteration [24]. Instead of ranking ac-
tions given states, Akrour at al. [2] learn a preference model on trajectories,
which can then be used for policy optimization.

In this paper, we present a preference-based extension of evolutionary di-
rect policy search (EDPS) as proposed by Heidrich-Meisner and Igel [18,19].
As a direct policy search method, it shares commonalities with [2], but also dif-
fers in several respects. In particular, the latter approach (as well as follow-up
work of the same authors, such as [3]) is specifically tailored for applications
in which a user interacts with the learner in an iterative process. Moreover,
policy search is not performed in a parametrized policy space directly; instead,
preferences on trajectories are learned in a feature space, in which each trajec-
tory is represented in terms of a feature vector, thereby capturing important
background knowledge about the task to be solved.

EDPS casts policy learning as a search problem in a parametric policy
space, where the function to be optimized is a performance measure like ex-
pected total reward, and evolution strategies (ES) such as CMA-ES [16,31]
are used as optimizers. Moreover, since the evaluation of a policy can only be
done approximately, namely in terms of a finite number of rollouts, the authors
make use of racing algorithms to control this number in an adaptive manner.
These algorithms return a sufficiently reliable ranking over the current set of
policies (candidate solutions), which is then used by the ES for updating its
parameters and population. A key idea of our approach is to extend EDPS by
replacing the value-based racing algorithm with a preference-based one. Cor-
respondingly, the development of a preference-based racing algorithm can be
seen as a core contribution of this paper.

In the next section, we recall the original RL setting and the EDPS frame-
work for policy learning. Our preference-based generalization of this framework
is introduced in Section 3. A key component of our approach, the preference-
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based racing algorithm, is detailed and analyzed in Section 4. Experiments
are presented in Section 5. Section 6 provides an overview of related work and
Section 7 concludes the paper.

2 Evolutionary direct policy search

We start by introducing notation to be used throughout the paper. A Markov
Decision Process (MDP) is a 4-tupleM = (S,A,P, r), where S is the (possibly
infinite) state space and A the (possibly infinite) set of actions. We assume
that (S, ΣS) and (A, ΣA) are measurable spaces. Moreover,

P : S ×A×ΣS → [0, 1]

is the transition probability kernel that defines the random transitions between
states, depending on the action taken. Thus, for each (measurable) S ∈ ΣS ⊆
2S , P(S | s, a) = P(s, a, S) is the probability to reach a state s′ ∈ S when
taking action a ∈ A in state s ∈ S; for singletons s′ ∈ S, we simply write
P(s′ | s, a) instead of P({s′} | s, a). Finally, r : S × A → R is the reward
function, i.e., r(s, a) defines the reward for choosing action a ∈ A in state
s ∈ S.

We will only consider undiscounted and episodic MDPs with a finite horizon
T ∈ N+. In the episodic setup, there is a set of initial states S0 ⊆ S. H(T ) =
S0 × (A × S)T is the set of histories with time horizon at most T . A finite
history or simply history is a state/action sequence

h =
(
s(0), a(1), . . . , a(T ), s(T )

)
∈ H(T )

that starts from an initial state s(0) ∈ S0 drawn from a user-defined initial
state distribution P0 over S0. As a side note, MDPs with terminal states fit
in this framework by defining transition functions in terminal states such that
those terminal states are repeated at the end of a history (to have exactly
length T ) if a terminal state is reached before the end of the horizon. Since
each history h uniquely determines a sequence of rewards, a return function
V : H(T ) → R can be defined as

V (h) =

T∑
i=1

r
(
s(i−1), a(i)

)
.

A (deterministic) policy π : S → A prescribes an action to be chosen for each
state. We write hπ for a history that was generated by following the policy π,
that is, π(s(t−1)) = a(t) for all t ∈ {1, . . . , T}.
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2.1 The EDPS framework

We briefly outline the evolutionary direct policy search (EDPS) approach in-
troduced by Heidrich-Meisner and Igel [18]. Assume a parametric policy space

Π = {πθ | θ ∈ Rp} ,

i.e., a space of policies parametrized by a vector θ. For example, if S ⊆ Rp,
this could simply be a class of linear policies πθ(s) = θT s. Searching a good
policy can be seen as an optimization problem where the search space is the
parameter space and the target function is a policy performance evaluation,
such as expected total reward.

This optimization-based policy search framework, which is called direct pol-
icy search, has two main branches: gradient-based and gradient-free methods.
Gradient-based methods like the REINFORCE algorithm [39] estimate the
gradient of the policy parameters to guide the optimizer. Gradient-free meth-
ods, on the other hand, make use of a black-box optimizer such as evolution
strategies [8], which gave rise to the EDPS approach.

2.2 Evolutionary optimization

Evolution strategies (ES) are population-based, randomized search techniques
that maintain a set of candidate solutions θ1, . . . , θµ (the population) and a
set of (auxiliary) parameters Ω over the search space. An ES optimizer is an
iterative method that repeats the following steps in each iteration t:

(i) sample a set of λ candidate solutions {θ(t+1)
j }λj=1, called offspring popu-

lation, from the current model defined by Ω(t) and the parent population

{θ(t)i }
µ
i=1;

(ii) evaluate each offspring solution and select the best µ ones as a new parent
population;

(iii) update Ω(t) based on the new parent population.

The use of evolution strategies proved to be efficient in direct policy search [17].
In the EDPS method by Heidrich-Meisner and Igel [18], an ES is applied for
optimizing the expected total reward over the parameter space of linear policies.
To this end, the expected total reward of a policy is estimated based on a so-
called rollout set. More specifically, for an MDPM with initial distribution P0,
each policy π generates a probability distribution Pπ over the set of histories
H(T ). Then, the expected total reward of π can be written as ρπ = Eh∼Pπ [V (h)]
[34], and the expectation according to Pπ can be estimated by the average

return over a rollout set {h(i)
π }ni=1.

From a practical point of view, the size of the rollout set is very important:
On the one hand, the learning process gets slow if n is large, while on the
other hand, the ranking over the offspring population is not reliable enough if
the number of rollouts is too small; in that case, there is a danger of selecting
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a suboptimal subset of the offspring population instead of the best µ ones.
Therefore, [18] proposed to apply an adaptive uncertainty handling scheme,
called racing algorithm, for controlling the size of rollout sets in a optimal way.

Their EDPS framework is described schematically in Algorithm 1. It bears
a close resemblance to ES, but the selection step (line 7) is augmented with a
racing algorithm that generates histories for each of the current policies π

θ
(t)
i

by sampling from the corresponding distribution in an adaptive manner until
being able to select the best µ policies based on their expected total reward
estimates with probability at least 1 − δ (see Section 2.3). The parameter
nmax specifies an upper bound on the number of rollouts for a single policy.
The racing algorithm returns a ranking over the policies in the form of a
permutation σ.

Algorithm 1 EDPS (M, µ, λ, nmax, δ)

1: Initialization: select an initial parameter vector Ω(0) and an initial set of candidate
solutions θ1

(0), . . . , θµ
(0), σ(0) is the identity permutation

2: t = 0
3: repeat
4: t = t+ 1
5: for ` = 1, . . . , λ do . Sample new solutions

6: θ
(t)
` ∼ F (Ω(t−1), θ

(t−1)

σ(t−1)(1)
, . . . , θ

(t−1)

σ(t−1)(µ)
)

7: σ(t) = Racing

(
M, π

θ
(t)
1

, . . . , π
θ
(t)
λ

, µ, nmax, δ

)
8: Ω(t) = Update(Ω(t−1), θ

(t)

σ(t)(1)
, . . . , θ

(t)

σ(t)(µ)
)

9: until Stopping criterion fulfilled
10: return π

θ
(t)
1

2.3 Value-based racing

Generating a history in an MDP by following policy π is equivalent to drawing
an example from Pπ. Consequently, a policy along with an MDP and initial
distribution can simply be seen as a random variable. Therefore, to make
our presentation of the racing algorithm more general, we shall subsequently
consider the problem of comparing random variables.

Let X1, . . . , XK be random variables with respective (unknown) distri-
bution functions PX1

, . . . ,PXK . These random variables, subsequently also
called options, are supposed to have finite expected values µi =

∫
xdPXi(x).

The racing task consists of selecting, with a predefined confidence 1 − δ, a
κ-sized subset of the K options with highest expectations. In other words, one
seeks a set I∗ ⊆ [K] = {1, . . . ,K} of cardinality κ maximizing

∑
i∈I µi, which

is equivalent to the following optimization problem:

I∗ ∈ argmax
I⊆[K]: |I|=κ

∑
i∈I

∑
j 6=i

I{µj < µi} , (1)
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Fig. 1 Illustration of the value-based racing problem: The expectations of the random
variables are estimated in terms of confidence intervals that shrink in the course of time. In
this example, if two options ought to be selected, then X2 can be discarded, as it is already
worse than three other options (with high probability); likewise, the option X3 will certainly
be an element of the top-2 selection, as it has already outperformed three others. For the
other options, a decision can not yet be made.

where the indicator function I{·} maps truth degrees to {0, 1} in the standard
way. This choice problem must be solved on the basis of random samples drawn
from X1, . . . , XK .

The Hoeffding race (HR) algorithm [27,28] is an adaptive sampling method
that makes use of the Hoeffding bound to construct confidence intervals for the
empirical mean estimates of the options. Then, in the case of non-overlapping
confidence intervals, some options can be eliminated from further sampling.
More precisely, if the upper confidence bound for a particular option is smaller
than the lower bound of K − κ random variables, then it is not included by
the solution set I∗ in (1) with high probability; the inclusion of an option in
I∗ can be decided analogously (see Figure 1 for an illustration). For a detailed
implementation of the HR algorithm, see [18].

3 Preference-based EDPS

In Section 3.1, we describe an ordinal decision model for comparing policies
and discuss some of its decision-theoretic properties. In Section 3.2, we analyze
this model in the context of Markov Decision Processes.

3.1 Ordinal decision models

The preference-based policy learning settings considered in [15,2] proceed from
a (possibly partial) preference relation � over histories h ∈ H(T ), and the
goal is to find a policy which tends to generate preferred histories with high
probability. In this regard, it is notable that, in the EDPS framework, the
precise values of the function to be optimized (in this case the expected total
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rewards) are actually not used by the evolutionary optimizer. Instead, for up-
dating its current state (Ω, θ1, . . . , θµ), the ES only needs the ranking of the
candidate solutions. The values are only used by the racing algorithm in order
to produce this ranking. Consequently, an obvious approach to realizing the
idea of a purely preference-based version of evolutionary direct policy search
(PB-EDPS) is to replace the original racing algorithm (line 7) by a preference-
based racing algorithm that only uses pairwise comparisons between policies
(or, more specifically, sample histories generated from these policies). We in-
troduce a racing algorithm of this kind in Section 4.

A main prerequisite of such an algorithm is a “lifting” of the preference
relation � on H(T ) to a preference relation � on the space of policies Π;
in fact, without a relation of that kind, the problem of ranking policies is
not even well-defined. More generally, recalling that we can associate policies
with random variables X and histories with realizations x ∈ Ξ, the problem
can be posed as follows: Given a (possibly partial) order relation � on the
set of realizations Ξ, how to define a reasonable order relation on the set of
probability distributions over Ξ which is “learnable” by a preference-based
racing algorithm?

A natural definition of the preference relation � that we shall adopt in
this paper is as follows:

X � Y if and only if P(X � Y ) > P(Y � X) ,

where P(X � Y ) denotes the probability that the realization of X is preferred
(with respect to �) to the realization of Y . We write X�Y for X � Y or
P(X � Y ) = P(Y � X).

Despite the appeal of � as an ordinal decision model, this relation does
not immediately solve our ranking task, mainly because it is not necessarily
transitive and may even have cycles [12]. The preferential structure induced by
� is well-studied in social choice theory [30], as it is closely related to the idea
of choosing a winner in an election where only pairwise comparisons between
candidates are available. We borrow two important notions from social choice
theory, namely the Condorcet winner and the Smith set ; in the following, we
define these notions in the context of our setting.

Definition 1 A random variable Xi is a Condorcet winner among a set of
random variables X1, . . . , XK if Xi�Xj for all j.

Definition 2 For a set of random variables X = {X1, . . . , XK}, the Smith
set is the smallest non-empty set C∗ ⊆ X satisfying Xi � Xj for all Xi ∈ C∗
and Xj ∈ X \ C∗.

If a Condorcet winner X∗ exists, then it is a greatest element of � and
C∗ = {X∗}. More generally, the Smith set C∗ can be interpreted as the smallest
non-empty set of options that are “better” than all options outside C∗.

Due to preferential cycles, the (racing) problem of selecting the κ best op-
tions may still not be well-defined for� as the underlying preference relation.



8 Busa-Fekete et al.

To overcome this difficulty, we refer to the Copeland relation �C as a surro-
gate. For a set X = {X1, . . . , XK} of random variables, it is defined as follows
[30]: Xi �C Xj if and only if di > dj , where di = #{k | Xi � Xk, Xk ∈ X}.
Its interpretation is again simple: an option Xi is preferred to Xj whenever Xi

“beats” (w.r.t. �) more options than Xj does. Since the preference relation
�C has a numeric representation in terms of the di, it is a total preorder. Note
that�C is “contextualized” by the set X of random variables: the comparison
of two options Xi and Xj , i.e., whether or not Xi �C Xj , also depends on
the other alternatives in X .

Obviously, when a Condorcet winner exists, it is the greatest element for
�C . More generally, the following proposition, which is borrowed from [25],
establishes an important connection between � and �C and legitimates the
use of the latter as a surrogate of the former.

Proposition 3 Let X = {X1, . . . , XK} be a set of random variables with
Smith set C∗. Then, for any Xi ∈ C∗ and Xj ∈ X \ C∗, Xi �C Xj.

Proof Let KC∗ be the size of C∗. By the definition of the Smith set, di ≥
K − KC∗ for all Xi ∈ C∗, since Xi beats all elements of X \ C∗ w.r.t �.
Moreover, dj < K − KC∗ for all Xj ∈ X \ C∗, since Xj is beaten by all
elements of C∗. Therefore, di > dj for any Xi ∈ C∗ and Xj ∈ X \ C∗.

Therefore, the surrogate relation �C is coherent with the preference order �
in the sense that the “rational choices”, namely the elements of the Smith set,
are found on the top of this preorder. In the next section, we shall therefore
use �C as an appropriate ordinal decision model for preference-based racing.

3.2 The existence of a Condorcet winner for parametric policy spaces

Recall that our decision model for policies can be written as follows:

π � π′ if and only if S(Pπ,Pπ′) > S(Pπ′ ,Pπ) ,

where
S(Pπ,Pπ′) = E

h∼Pπ,h′∼Pπ′

(
I{h � h′}

)
Based on Definition 1, a parametric policy πθ is a Condorcet winner among
Π = {πθ | θ ∈ Θ}, whereΘ is a subset of Rp, if πθ�πθ′ for all θ′ ∈ Θ. Although
a Condorcet winner does not exist in general (since � over policies may be
cyclic), we now discuss two situations in which its existence is guaranteed. To
this end, we need to make a few additional assumptions.

(C1) Transition probabilities P(S | s, a), seen as functions a 7→ P(S | s, a) of
action a for arbitrary but fixed s and S ∈ ΣS , are equicontinuous func-
tions1.

1 A family of function F is equicontinuous if for every x0, for every ε > 0, there exists
δ > 0 such that |f(x0)− f(x)| < ε for all f ∈ F and all x such that ‖x− x0‖ < δ.
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(C2) Policies πθ(s), seen as functions θ 7→ πθ(s) of parameter θ for arbitrary
but fixed s, are equicontinuous functions.

(K) Parameter θ is chosen in a non-empty compact subset Θ of Rp.

The equicontinuity conditions seem to be quite natural when considering
MDPs in continuous domains. Likewise, the last assumption is not a very
strong condition.

In the first case, we allow randomization in the application of a policy. In
our context, a randomized policy is characterized by a probability distribu-
tion over parameter space Θ. Applying a randomized policy means selecting a
parameter θ according to the probability distribution characterizing the ran-
domized policy first, and applying the policy πθ on the whole horizon then.
In the next proposition, we prove the existence of a Condorcet winner among
the randomized policies.

Proposition 4 Under (C1), (C2) and (K), there exists a randomized policy
π∗ which is a Condorcet winner, that is, for any (randomized or not) policy
π, it holds that S(Pπ∗ ,Pπ) ≥ S(Pπ,Pπ∗).

Proof This result was proved in [23] for finite settings, and the corresponding
proof can be easily extended to continuous settings. A Condorcet winner can
be seen as a Nash equilibrium in the following two-player symmetric continuous
zero-sum game: The set of strategies is defined as the set of (non-randomized)
policies Π, which can be identified by Θ. The payoff for strategy πθ′ against
πθ is defined by u(θ, θ′) = S(Pπ,Pπ′)−S(Pπ′ ,Pπ). This payoff can be written
as

u(θ, θ′) = E
h∼PπΘ ,h′∼PπΘ′

(
I{h � h′}

)
− E

h∼Pπ
Θ′
,h′∼PπΘ

(
I{h � h′}

)
,

As (S, ΣS) and (A, ΣA) are measurable spaces, a σ-algebra can be defined on
H(T ). On the resulting measurable space, one can define:

S(Pθ,Pθ′) =

∫
H(T )

∫
H(T )

I{h � h′}dPθ′(h
′)dPθ(h).

We have for any s(0) ∈ S:

Pθ(H
(1)

s(0)
) =

∫
S
I{(s(0), πθ(s(0)), s(1)) ∈ H(1)}dP

(
s(1) | s(0), πθ(s(0))

)
Pθ(H

(T+1)

s(0)
) =

∫
S

Pθ

(
H

(T )

(s(0),πθ(s(0)),s(1))

)
dP
(
s(1) | s(0), πθ(s(0))

)
where H

(T )
s denotes an element of the σ-algebra of H(T ), containing histories

starting from s and H
(T )

(s(0),πθ(s(0)),s(1))
is the (possibly empty) set of histo-

ries h starting from s(1) such that the histories obtained by concatenating

(s(0), πθ(s
(0))) with h are in H

(T+1)

s(0)
.
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The equicontinuity conditions of (C1) and (C2) guarantee that continuity
is conserved when applying the integral. Therefore, by induction, Pθ is a con-
tinuous function (and so is u(θ, θ′)). Then, by Glicksberg’s generalization [13]
of the Kakutani fixed point theorem, there exists a mixed Nash equilibrium,
i.e., in our context, a randomized policy that is a Condorcet winner for � .

Proof Let (X,B, µθ)θ∈Θ be measurable spaces. The integral of measurable
function f is defined by:

∫
X
fdµθ = sup0≤g<f :gsimple

∑
i y
g
i µθ(g

−1(ygi )) where
a measurable function is simple if it has a finite number of image values and
ygi ’s are the finite values taken by g.

The family µθ(x)x∈B of functions of θ is assumed to be equicontinuous,
i.e., ∀θ,∀ε > 0,∃δ > 0,∀x ∈ B, we have ‖θ − θ′‖ < δ ⇒ |µθ(x)− µθ′(x)| < ε

Denote If(θ) =
∫
X
fdµθ. Denote Sg(θ) =

∑
i y
g
i µθ(g

−1(ygi )).
Then the family Sg(θ)gsimplefunction of functions of θ is equicontinuous

as well.
Now let us show that If(θ) is continuous.
Let θ ∈ Θ and let ε > 0. By definition of If(θ), we can find a simple

function g such that |Ifθ − Sg(θ)| < ε/3
By (equi)continuity of Sg(θ), we can find δ > 0 and for a θ′ such that

‖θ − θ′‖ < δ, we have |Sg(θ)− Sg(θ′)| < ε/3
For this θ′, we can find a simple function h such that |If ′θ − Sh(θ′)| < ε/3
Denote gvh the function defined as the pointwise max of g and h. It is a

simple function.
By monotonicity, we have: |Ifθ−Sgvh(θ)| < ε/3 and |If ′θ−Sgvh(θ′)| < ε/3
By equicontinuity, we have |Sgvh(θ)− Sgvh(θ′)| < ε/3
Finally, |Ifθ − Ifθ′ | ≤ |Ifθ − Sgvh(θ)| + |Sgvh(θ) − Sgvh(θ′)| + |If ′θ −

Sgvh(θ′)| < ε

In the second case, we introduce two other conditions in order to guarantee
the existence of a Condorcet winner among the (non-randomized) policies.
Before presenting them, we recall two definitions. A function f : E → R is
said to be quasiconcave if E ⊂ Rp is convex and

∀λ ∈ [0, 1], ∀x, y ∈ Rp : f(λx+ (1− λ)y) ≥ min
(
f(x), f(y)

)
.

A family of functions fυ∈Υ is said to be uniformly quasi-concave if fυ : E → R
is quasiconcave for all υ ∈ Υ and, moreover, for all x, y ∈ E either of the
following conditions holds:

∀υ ∈ Υ : min(fυ(x), fυ(y)) = fυ(x)

∀υ ∈ Υ : min(fυ(x), fυ(y)) = fυ(y)

For any (s, S) ∈ S × ΣS , let fs,S(θ) denote P(S | s, πθ(s)) the composition of
transition probability P(S | s, ·) with parametric policy πθ.

(C) Parameter space Θ is convex.
(UQC) The family of functions f(s,S)∈S×ΣS (θ) is uniformly quasiconcave.
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While the convexity condition does not seem to be very restrictive, the con-
dition (UQC) is quite strong. It excludes the existence of states s1, S1, s2, S2

and parameters θ, θ′ such that

P(S1 | s1, πθ(s1)) > P(S1 | s1, πθ′(s1)) and

P(S2 | s2, πθ(s2)) < P(S2 | s2, πθ′(s2)).

These two conditions along with the previous conditions (C1), (C2) and (K)
are sufficient for the existence of a (non-randomised) policy that is a Condorcet
winner:

Proposition 5 Under (C1), (C2), (K), (C) and (UQC), there exists a pa-
rameter θ∗ ∈ Θ such that πθ∗ is a Condorcet winner among Π = {πθ|θ ∈ Θ}.

Proof In game theory [13], it is known that if payoff function u (defined in
proof of Proposition 4) is quasiconcave in its first argument (as the game is
symmetric, it is also in its second argument), then there exists a pure Nash
equilibrium.

Products of nonnegative uniformly quasiconcave functions are also quasi-
concave [33]. If f(s,S)∈S×ΣS (θ) is uniformly quasiconcave, then by induction
Pθ (seen as a function of θ) is quasiconcave as well, and so is u.

4 Preference-based racing algorithm

This section is devoted to our preference-based racing algorithm (PBR). Sec-
tion 4.1 describes the concentration property of the estimate of P(X � Y ),
which is a cornerstone of our approach. Section 4.2 provides a simple tech-
nique to handle incomparability of random samples. Section 4.3 outlines the
PBR algorithm as a whole, and Section 4.4 provides a formal analysis of this
algorithm.

4.1 An efficient estimator of P(X � Y )

In Section 3.1, we introduced an ordinal decision model specified by the order
relation �C . Sorting a set of random variables X1, . . . , XK according to �C

first of all requires an efficient estimator of S(Xi, Xj) = P(Xi � Xj).
A two-sample U-statistic called the Mann-Whitney U-statistic (also known

as the Wilcoxon 2-sample statistic) is an unbiased estimate of S(·, ·) [36]. Given
independent samples X = {x(1), . . . , x(n)} and Y = {y(1), . . . , y(n)} of two in-
dependent random variables X and Y (for simplicity, we assume equal sample
sizes), it is defined as

Ŝ(X,Y) =
1

n2

n∑
i=1

n∑
j=1

I{x(i) � y(j)} . (2)
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Apart from being an unbiased estimator of S(X,Y ), (2) possesses concentra-
tion properties resembling those of the sum of independent random variables.2

Theorem 6 ([21], §5b) For any ε > 0, using the notations introduced above,

P
(∣∣∣Ŝ(X,Y)− S(X,Y )

∣∣∣ ≥ ε) ≤ 2 exp(−2nε2) .

An equivalent formulation of this theorem is as follows: For any 0 < δ < 1,
the interval [

Ŝ(X,Y)−
√

1

2n
ln

2

δ︸ ︷︷ ︸
L(X,Y)

, Ŝ(X,Y) +

√
1

2n
ln

2

δ︸ ︷︷ ︸
U(X,Y)

]
(3)

contains S(X,Y ) with probability at least 1 − δ. For more details on the U-
statistic, see Appendix A.1.

4.2 Handling incomparability

Recall that � is only assumed to be a partial order and, therefore, allows for
incomparability x⊥ y between realizations x and y of random variables (his-
tories generated by policies). In such cases we have I{x � y} = I{y � x} = 0

and, consequently, Ŝ(X,Y) + Ŝ(Y,X) < 1. Since this inequality is incon-
venient and may complicate the implementation of the algorithm, we use a
modified version of the indicator function as proposed by [20]:

IINC{x � x′} = I{x � x′}+
1

2
I{x⊥x′} (4)

A more serious problem caused by incomparability is a complication of the vari-
ance estimation for Ŝ(X,Y) [20]. Therefore, it is not clear how Bernstein-like
bounds [6], where the empirical variance estimate is used in the concentration
inequality, could be applied.

4.3 Preference-based racing algorithm

Our preference-based racing setup assumes K random variables X1, . . . , XK

with distributions PX1
, . . . ,PXK , respectively, and these random variables

take values in a partially ordered set (Ξ,�). Obviously, the value-based racing
setup described in Section 2.3 is a special case, with Ξ = R and � reduced
to the standard > relation on the reals (comparing rollouts in terms of their
rewards). The goal of our preference-based racing (PBR) algorithm is to find

2 Although Ŝ is a sum of n2 random values, these values are combinations of only 2n
independent values. This is why the convergence rate is not better than the usual one for a
sum of n independent variables.
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the best κ random variables with respect to the surrogate decision model �C

introduced in Section 3.1. This leads to the following optimization task:

I∗ ∈ argmax
I⊆[K]: |I|=κ

∑
i∈I

∑
j 6=i

I{Xi �C Xj} (5)

which can be rewritten by using � as

I∗ ∈ argmax
I⊆[K]: |I|=κ

∑
i∈I

∑
j 6=i

I{Xi � Xj} (6)

Thanks to the indicator function (4), we have S(Xi, Xj) = 1 − S(Xj , Xi)
and hence I{Xi � Xj} = I{S(Xi, Xj) > 1/2} = I{S(Xj , Xi) < 1/2}, which
simplifies our implementation.

Algorithm 2 shows the pseudocode of PBR. It assumes as inputs the num-
ber κ, an upper bound nmax on the number of realizations an option is allowed
to sample, and an upper bound δ on the probability of making a mistake (i.e.,
returning a suboptimal selection). We will concisely write si,j = S(Xi, Xj)
and ŝi,j for its estimate. The confidence interval (3) of ŝi,j for confidence level
1 − δ is denoted by [`i,j , ui,j ]. The set A consists of those index pairs for
which the preference can not yet be determined with high probability (i.e.,
1/2 ∈ [`i,j , ui,j ]), but that are possibly relevant for the final outcome. Initially,
A contains all K2 −K pairs of indices (line 1).

PBR first samples each pair of options whose indices appear (at least once)
in A (lines 4–5). Then, in lines 6–10, it calculates ŝi,j for each pair of options
according to (2), and the confidence intervals [`i,j , ui,j ] based on (3).

Next, for each Xi, we compute the number zi of random variables that
are worse with high enough probability—that is, for which `i,j > 1/2, j 6= i
(line 12). Similarly, for each option Xi, we also compute the number oi of
options Xj that are preferred to it with high enough probability—that is, for
which ui,j < 1/2 (line 13). Note that, for each Xj , there are always at most
K − zj options that can be better. Therefore, if #{j | K − zj < oi} > K − κ,
then Xi is a member of the solution set I∗ of (6) with high probability (see
line 14). The indices of these options are collected in C. One can also discard
options based on a similar argument (line 15); their indices are collected in D.
Note that a selection or exclusion of an option requires at most K different
confidence bounds to be bigger or smaller than 1/2, and since we can select
or discard an option at any time, the confidence level δ has to be divided by
K2nmax (line 9). In Section 5, we will describe a less conservative confidence
correction that adjusts the confidence level dynamically based on the number
of selected and discarded options.

In order to update A, we note that, for those options in C∪D, it is already
decided with high probability whether or not they belong to I∗. Therefore,
if two options Xi and Xj both belong to C ∪ D, then si,j does not need to
be sampled any more, and thus the index pair (i, j) can be excluded from A.
Additionally, if 1/2 6∈ [`i,j , ui,j ], then the pairwise relation of Xi and Xj is
known with high enough probability, so (i, j) can again be excluded from A.
These filter steps are implemented in line 17.
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Algorithm 2 PBR(X1, . . . , XK , κ, nmax, δ)

1: A = {(i, j)| i 6= j, 1 ≤ i, j ≤ K}
2: n = 0
3: while (n ≤ nmax) ∧ (|A| > 0) do
4: for all i appearing in A do

5: x
(n)
i ∼ Xi . Draw a random sample

6: for all (i, j) ∈ A do
7: Update ŝi,j with the new samples according to (2)
8: using the indicator function IINC{., .} from (4)

9: ci,j =
√

1
2n

log 2K2nmax
δ

10: ui,j = ŝi,j + ci,j , `i,j = ŝi,j − ci,j
11: for i = 1→ K do
12: zi = |{j | `i,j > 1/2, j 6= i}| . Number of options that are beaten by i
13: oi = |{j | ui,j < 1/2, j 6= i}| . Number of options that beat i

14: C =
{
i | K − κ <

∣∣{j | K − zj < oi}
∣∣} . select

15: D =
{
i | κ <

∣∣{j | K − oj < zi}
∣∣} . discard

16: for (i, j) ∈ A do
17: if (i, j ∈ C ∪D) ∨ (1/2 6∈ [`i,j , ui,j ]) then
18: A = A \ (i, j)
19: . Do not update ŝi,j any more

20: n = n+ 1

21: σ is a permutation that sorts the options in decreasing order based on d̂i = #{j | `i,j >
1/2}.

22: return σ

We remark that the condition for termination in line 3 is as general as
possible and cannot be relaxed. Indeed, termination must be based on those
preferences that are already decided (with high probability). Thus, assum-
ing the options to be ordered according to �C , the algorithm can only stop
if min{z1, . . . , zκ} ≥ max{K − oκ+1, . . . ,K − oK} or min{oκ+1, . . . , oK} ≤
max{K− z1, . . . ,K− zκ}. Both conditions imply that C ∪D = [K] and hence
that A is empty.

4.4 Analysis of the PBR algorithm

Recall that PBR returns a permutation σ, from which the set of options B
deemed best by the racing algorithm (in terms of �C) can be obtained as
B = {Xσ(i)|1 ≤ i ≤ κ}. In the following, we consider the top-κ set B as the
output of PBR.

In the first part of our analysis, we upper bound the expected number
of samples taken by PBR. Our analysis is similar to the sample complexity
analysis of PAC-bandit algorithms [11]. Technically, we have to make the
assumption that S(Xi, Xj) 6= 1/2 for all i, j ∈ [K], which may appear quite
restrictive at first sight. In practice, however, the value of S(Xi, Xj) will indeed
almost never exactly equal 1/2.3

3 For example, if S(Xi, Xj) is considered as a random variable with continuous density
on [0, 1], then the probability of S(Xi, Xj) 6= 1/2 is 0.
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Theorem 7 Let X1, . . . , XK be random variables such that S(Xi, Xj) 6= 1/2
for all i, j ∈ [K], and define

ni =

⌈
1

4 minj 6=i∆2
i,j

log
2K2nmax

δ

⌉
,

where ∆i,j = S(Xi, Xj) − 1/2. Then, whenever ni ≤ nmax for all i ∈ [K],
PBR outputs the κ best options (with respect to �C) with probability at least

1− δ and generates at most
∑K
i=1 ni samples.

Proof According to (3), for any i, j and round n, the probability that si,j is
not included in[

ŝi,j −
√

1

2n
ln

2K2nmax

δ︸ ︷︷ ︸
`i,j

, ŝi,j +

√
1

2n
ln

2K2nmax

δ︸ ︷︷ ︸
ui,j

]
(7)

is at most δ/(K2nmax). Thus, with probability at least 1− δ, si,j ∈ [`i,j , ui,j ]
for every i and j throughout the whole run of the algorithm. Therefore, if the
PBR returns a ranking represented by permutation σ and ni,j ≤ nmax for all
i, j ∈ [K], then {1 ≤ i ≤ K|σ(i) ≤ κ} is the solution set of (6) with probability
at least 1− δ. Thus, the PBR algorithm is correct.

In order to upper bound the expected sample complexity, let us note that
based on the confidence interval in (7), one can compute a sample size ñi,j
for some i and j so that both Xi and Xj are sampled for at least ñi,j times,
then [`i,j , ui,j ] does not contain 1/2 with probability at most δ/(K2nmax). A
simple calculation yields

ñi,j =

⌈
1

4∆2
i,j

log
2K2nmax

δ

⌉
.

Furthermore, if all preferences against other options are decided for some i (i.e.,
`i,j > 1/2 or ui,j < 1/2 for all j 6= i), then Xi will not be sampled any more.
Therefore, by using the union bound, Xi is sampled at most maxj 6=i ñi,j < ni
with probability at most δ/K.

The theorem follows by putting these observations together.

Remark 8 We remark that Theorem 7 remains valid despite the fact that
statistical independence is not assured, neither for the terms in ŝi,j nor for ŝi,j
and ŝi,j′ with i, j, j′ ∈ [K]. First, the confidence interval of each ŝi,j is obtained
based on the concentration property of the U-statistic (Theorem 6). Second, the
confidence intervals of ŝi,j are calculated separately for all i, j ∈ [K] in every
iteration, and the subsequent application of the union bound does not require
independence.

In the second part of our analysis, we investigate the relation between the
outcome of PBR and the decision model �. Theorem 7 and Proposition 3
have the following immediate consequence for PBR.
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Corollary 9 Let X = {X1, . . . , XK} be a set of random variables with Smith
set C∗ ⊆ X . Then, under the conditions of Theorem 7, with probability at least
1−δ, PBR outputs a set of options B ⊆ X satisfying the following: If |C∗| ≤ κ,
then C∗ ⊆ B (Smith efficiency), otherwise B ⊆ C∗.

Proof The result follows immediately from Theorem 7 and Proposition 3.

Thus, PBR finds the Smith set with high probability provided κ is set large
enough; otherwise, it returns at least a subset of the Smith set. This indeed
justifies the use of �C as a decision model. Nevertheless, as pointed out in
Section 8 below, other surrogates of the � relation are conceivable, too.

5 Implementation and practical issues

In this section, we describe three “tricks” to make the implementation of the
ES along with the preference-based racing framework more efficient. These
tricks are taken from Hendrich-Meisner and Igel [18] and adapted from the
setting of value-based to the one of preference-based racing.

1. Consider the confidence interval I = [`i,j , ui,j ] for a pair of objects i and
j. Since an update I ′ = [`′i,j , u

′
i,j ] = [ŝi,j + ci,j , ŝi,j − ci,j ] based on the

current estimate ŝi,j will not only shrink but also shift this interval, one of
the two bounds might be worse than it was before. To take full advantage
of previous estimates, one may update the confidence interval with the
intersection I ′′ = I ′ ∩ I ′′ = [max(`i,j , `

′
i,j),min(ui,j , u

′
i,j)].

In order to justify this update, first note that the confidence parameter
δ in the PBR algorithm was set in such a way that, for each time step,
the confidence interval [`i,j , ui,j ] for any pair of options includes si,j with
probability at least 1−δ/(nmaxK

2) (see (7)). Now, consider the intersection
of confidence intervals for options i and j that are calculated up to iteration
nmax. This interval contains si,j with probability at least 1 − δ/K2, an
estimate that follows immediately from the union bound. Thus, it defines
a valid confidence interval with confidence level 1− δ/K2.

2. The correction of confidence level δ by K2nmax is very conservative. When
an option i is selected or discarded in iteration t, that is, its index is
contained in C∪D in line 17 of the PBR algorithm, none of the ŝi,1, . . . ŝi,K
will be recomputed and used again. Based on this observation, one can
adjust the correction of the confidence level dynamically. Let mt be the
number of options that are discarded or selected (|C ∪D|) up to iteration
t. Then, in iteration t, the correction

ct = (K − 1)

t−1∑
`=0

mt + (K − 1)(nmax − t+ 1)mt (8)

can be used instead of K2nmax. Note that the second term in (8) upper
bounds the number of active pairs contained by A in the implementation
of PBR in every time step. Therefore, this is a valid correction.
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3. The parameter nmax specifies an upper bound on the sample size that can
be taken from an option. If this parameter is set too small, then the ranking
returned by the racing algorithm is not reliable enough. Heidrich-Meisner
and Igel [18] therefore suggested to dynamically adjust nmax so as to find
the smallest appropriate value for this parameter. In fact, if a non-empty
set of options remains to be sampled at the end of a race (A is not empty),
the time horizon nmax was obviously not large enough (case I). On the
other hand, if the racing algorithm ends (i.e., each option is either selected
or discarded) even before reaching nmax, this indicates that the parameter
could be decreased (case II).
Accordingly, a simple policy can be used for parameter tuning, i.e., for
adapting nmax for the next iteration of PB-EDPS (the race between the
individuals of the next population) based on experience from the current
iteration: nmax is set to nmax = αnmax in case I and to nmax = α−1nmax in
case II, where α > 1 is a user-defined parameter. In our implementation,
we use α = 1.25. Moreover, we initialize nmax by 3 and never exceed
nmax = 100, even if our adjustment policy suggests a further increase.

The above improvements essentially aim at decreasing the sample complexity
of the racing algorithm. In our experiments, we shall therefore investigate their
effect on empirical sample complexity.

6 Experiments

In Section 6.1, we compare our PBR algorithm with the original Hoeffding
race (HR) algorithm in terms of empirical sample complexity on synthetic
data. In Section 6.2, we test our PB-EDPS method on a benchmark problem
that was introduced in previous work on preference-based RL [9].

6.1 Results on synthetic data

Recall that our preference-based racing algorithm is more general than the
original value-based one and, therefore, that PBR is more widely applicable
than the Hoeffding race (HR) algorithm. This is an obvious advantage of
PBR, and indeed, our preference-based generalization of the racing problem
is mainly motivated by applications in which the value-based setup cannot
be used. Seen from this perspective, PBR has an obvious justification, and
there is in principle no need for a comparison to HR. Nevertheless, such a
comparison is certainly interesting in the standard numerical setting where
both algorithms can be used.

More specifically, the goal of our experiments was to compare the two
algorithms in terms of their empirical sample complexity. This comparison,
however, has to be done with caution, keeping in mind that PBR and HR are
solving different optimization tasks (namely (1) and (6), respectively): HR
selects the κ best options based on the means, whereas the goal of PBR is
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to select κ options based on �C . While these two objectives coincide in some
cases, they may differ in others. Therefore, we considered the following two
test scenarios:

1. Normal distributions: each random variable Xi follows a normal distribu-
tion N ((k/2)mi, vi), where mi ∼ U [0, 1] and vi ∼ U [0, 1], k ∈ N+;

2. Bernoulli distributions with random drift: each Xi obeys a Bernoulli dis-
tribution Bern(1/2) + di, where di ∼ (k/10)U [0, 1] and k ∈ N+.

In both scenarios, the goal is to rank the distributions by their means.4 For
both racing algorithms, the following parameters were used in each run: K =
10, κ = 5, nmax = 300, δ = 0.05.

Strictly speaking, HR is not applicable in the first scenario, since the sup-
port of a normal distribution is not bounded; we used R = 8 as an upper
bound, thus conceding to HR a small probability for a mistake.5 For Bernoulli,
the bounds of the supports can be readily determined.

Note that the complexity of the racing problem is controlled by the param-
eter k, with a higher k indicating a less complex task; we varied k between 1
and 10. Since the complexity of the task is not known in practice, an appro-
priate time horizon nmax might be difficult to determine. If one sets nmax too
low (with respect to the complexity of task), the racing algorithm might not
be able to assure the desired level of accuracy. We designed our synthetic ex-
periments so as to challenge the racing algorithms with this problem; amongst
others, this allows us to assess the deterioration of their accuracy if the task
complexity is underestimated. For doing this, we kept nmax = 300 fixed and
varied the complexity of task by tuning k. Note that if the ∆i,j = si,j − 1/2
values that we used to characterize the complexity of the racing task in our
theoretical analysis were known, a lower bound for nmax could be calculated
based on the Theorem 7.

Our main goal in this experiment was to compare the HR and PBR meth-
ods in terms of accuracy, which is the percentage of true top-κ variables among
the predicted top-κ, and in terms of empirical sample complexity, which is the
number of samples drawn by the racing algorithm for a fixed racing task. For
a fixed k, we generated a problem instance as described above and ran both
racing algorithms on this instance. We repeated this process 1000 times and
averaged the empirical sample complexity and accuracy of both racing algo-
rithms. In this way, we could assess the performance of the racing algorithms
for a fixed k.

4 In order to show that the ranking based on means and � coincide for a set of options
X1, . . . , XK with means µ1, . . . , µK , it is enough to see that for any Xi and Xj , µi < µj
implies S(Xi, Xj) > 1/2. In the case of the normal distribution, this follows from the
symmetry of the density function. Now, let us consider two Bernoulli distributions with
parameters p1 and p2, where p1 < p2. Then, a simple calculation shows that the value
of S(., .) is (p2 − p1 + 1)/2, which is greater than 1/2. This also holds if we add a drift
d1, d2 ∈ [0, 1] to the value of the random variables.

5 The probability that all samples remain inside the range is larger than 0.99 for K = 10
and nmax = 300.
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Fig. 2 The accuracy is plotted against the empirical sample complexities for the Hoeffding
race algorithm (HR) and PBR, with the complexity parameter k shown below the markers.
Each result is the average of 1000 repetitions.

Figure 2 plots the empirical sample complexity versus accuracy for various
k. First we ran plain HR and PBR algorithms without the improvements
described in Section 5. As we can see from the plots (Figure 2(a) and 2(c)),
PBR achieves a significantly lower sample complexity than HR, whereas its
accuracy is on a par or better in most cases. While this may appear surprising
at first sight, it can be explained by the fact that the Wilcoxon 2-sample
statistic is efficient [36], just like the mean estimate in the case of the normal
and Poisson distribution, but its asymptotic behavior can be better in terms
of constants. That is, while the variance of the mean estimate scales with 1/n
(according to the central limit theorem), the variance of the Wilcoxon 2-sample
statistic scales with 1/Rn for equal sample sizes, where R ≥ 1 depends on the
value estimated by the statistic [36].

Second, we ran HR and PBR in their improved implementation as de-
scribed in Section 5. That is, δ was corrected dynamically during the run, and
the confidence intervals are updated by intersecting them with the previously
computed intervals. The results are plotted in Figures 2(b) and 2(d). Thanks



20 Busa-Fekete et al.

to these implementation tricks, the empirical sample complexities of both rac-
ing algorithms are reduced. Interestingly, the relative improvements of HR
are larger than those of PBR. This can be explained by the fact that HR
completely stops sampling an option once it has been selected or discarded.
Since PBR may still continue sampling such options, the effect of correcting
δ on the empirical sample complexity could be less pronounced.

In the Bernoulli case, one may wonder why the sample complexity of PBR
hardly changes with k (see the red point cloud in Figure 2(c)). This can be

explained by the fact that the two sample U-statistic Ŝ in (2) does not depend
on the magnitude of the drift di (as long as it is smaller than 1).

6.2 Medical treatment design

Here, we tackle a problem that has been used in previous work on preference-
based RL [9,3], namely the medical treatment design for cancer clinical trials.
The problem is to learn an optimal treatment policy π mapping states s =
(S,X) ∈ S = R2

+ to actions in the form of a dosage level d ∈ [0, 1]; the drug is
given once a month, and a patient is simulated over a fixed time horizon. We
conducted our experiments with six months. A state s = (S,X) describes the
health condition of the patient: S is the tumor size and X the level of toxicity,
which is inversely related to the wellness of the patient. These two properties
constitute conflicting criteria: An increase of the dosage level will reduce the
tumor size but increase toxicity and therefore affect the patient’s wellness. A
corresponding simulation model based on first-order difference equations was
originally introduced in [42]. In this model, the state transitions are defined
as follows:

St+1 = St +
[
a1 ·max(Xt, X0)− b1 · (Dt − d1)

]
× I{St > 0} ,

Xt+1 = Xt + a2 ·max(St, S0) + b2 · (Dt − d2) ,

where St and Xt denote the tumor size and toxicity level after the t-th month
of treatment, respectively. The dosage level chosen in the t-th month is denoted
by Dt. The model parameters a1, a2, b1, b2, d1, d2 are positive real-valued num-
bers. The probability that a patient dies in the t-th month of the treatment fol-
lows a Bernoulli distribution with parameter 1−exp(− exp(c0+c1 ·St+c2 ·Xt)),
where c0, c1, c2 are also real-valued parameters. The parameters of the medi-
cal treatment model were set to a1 = 0.1, a2 = 0.15, b1 = b2 = 1.2, d1 = d2 =
0.5, c0 = −4, c1 = c2 = 1. The reward function is defined as

5·
[
I{Xt+1 −Xt < 1/2} − I{Xt+1 −Xt > 1/2}

]
+ 15 · I{St ≤ 0}+ 5 ·

[
I{St+1 − St < 1/2} − I{St+1 − St > 1/2}

]
unless the patient dies, in which case the reward is −60. The first term ex-
presses the change of wellness of the patient in terms of toxicity, the second
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term corresponds to the healing of the patient (tumor size is 0), and the third
term expresses the change of the tumor size.

As argued by the authors of [9], the numerical rewards assigned to different
health states of a patient (including the extreme case of death) are quite arbi-
trary in this model. Therefore, they propose an alternative and more realistic
formalization, in which histories are compared in a qualitative way:

– Giving full priority to the survival of a patient, h′ � h if the patient
survives in h but not in h′, and both histories are incomparable (h′⊥h)
if the patient does neither survive in h′ nor in h.

– Otherwise, if the patient survives in both histories, preference depends on
the worst wellness of the patient and the final tumor size: Let CX and C ′X
denote, respectively, the maximal toxicity during the whole treatment in
h and h′, and CS and C ′S the respective size of the tumor at the end of the
therapy. Then, preference is defined via Pareto dominance: h′ � h if (and
only if) CX ≤ C ′X and CS ≤ C ′S .

Let us again emphasize that � thus defined, as well as the induced strict order
≺, are only partial order relations. We used the same experimental setup as
in previous work [9,3].

We run the implementation of [18] with the Hoeffding race algorithm and
CMA-ES [16]; we refer to this implementation as EDPS. We set λ = 7 and
µ = 3 according to [16]. The initial global step size σ0 in CMA-ES was se-
lected from {0.1, 1, 5, 10, 15, 25, 50, 100}. The racing algorithm has two hyper-
parameters, the confidence term δ and the maximum number of samples al-
lowed for a single option, nmax. We optimized δ in the range {0.01, 0.05, 0.5, 0.1, 0.2},
while nmax was initialized with 3 and then adapted as described in Section 5.
All parameter values were determined by means of a grid search, repeating the
training process in each grid point (parameter setting) 100 times, and evaluat-
ing each model on 300 patients in terms of expected utility; we found σ0 = 10,
δ = 0.2 to be optimal.

Our preference-based variant PB-EDPS as introduced in Section 3 was
run with the same parameters. We used a sigmoidal policy space defined as
πθ(s) = 1/(1 + exp(−θT s)). As baseline methods, we run the discrete uni-
form random policy (randomly choosing a dosage d ∈ D′ = {0.1, 0.4, 0.7, 1.0}
each month) and the constant policies that take the same dosage d ∈ D′ in-
dependently of the patient’s health state. As a more sophisticated baseline,
we furthermore used SARSA(λ) [35] with discrete action set according to
the original setup.6 Finally, we included the preference-based policy iteration
(PBPI) method of [15] with the parameters reported by the authors.

Each policy learning method (EDPS, PB-EDPS, PBPI and SARSA(λ))
was run until reaching a limit 10, 000 training episodes, and each policy found

6 We used an ε-greedy policy for exploration. Initially, the learning rate α, the exploration
term ε and the parameter of the replacing traces λ were set to 0.1, 0.2 and 0.95 respectively,
and decreased gradually with a decay factor 1/d 10

τ
e, where τ is the number of training

episodes. We discretized each dimension of the state space into 20 bins and used a tile
coding to represent the action-value function. We refer to [37] for more details.
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Fig. 3 Illustration of patient status under different treatment policies. On the x-axis is the
tumor size after 6 months, on the y-axis the highest toxicity during the treatment.
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Fig. 4 Convergence of different methods in terms of training episodes.

was evaluated on 300 virtual patients. That is, following the policy found by
the learner, we generated 300 trajectories that represent the history of 300
virtual patients’ fitness under the 6-months treatment. Based on these 300
treatment histories, we calculated the averages for CX , the maximum toxicity
level, as well as CS , the tumor size at the end of the treatment for each policy.
We repeated this process 100 times for each policy search method. Then, we
plotted its mean and the 95% confidence regions (assuming a multivariate nor-
mal distribution), which represent the uncertainty coming from the repetitions
of the training process. As can be seen in Figure 3, our approach is performing
quite well and lies on the Pareto front of all methods (which remains true
when adding the death rate, reported in Figure 4(b), as a third criterion).
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As we were also interested in the rate of convergence of different policy
learning method, we periodically evaluated the policies found by the methods
during the learning process after a certain number of training episodes. Note
that not each policy learner can be evaluated after an arbitrary number of
training episodes. In the case of policy learners based on evolution strategies,
such as EDPS and PB-EDPS, the set of candidate policies does change within
an ES iteration (when the candidate policies are compared by using the racing
algorithm). Therefore, we only evaluated the best policy taken from the current
candidate policies after each ES iteration. Moreover, since the parameter nmax

was adjusted dynamically (see Section 5), the number of training episodes
generated within one ES iteration was also varying. In this way, after each run,
we obtained a set of pairs (Tt, pt), where Tt is the number of training episodes
generated so far, and pt is the performance of the current best policy after
the t-th ES iteration (performance evaluation of a single policy is explained
below).

Since SARSA updates the action-value estimates after each episode, policy
evaluation could in principle be done after each training episode. Yet, for the
sake of efficiency, we opted for a less costly alternative and evaluated in steps
of 100 training episodes. PBPI generates 800 training episodes in a policy
iteration step. Thus, we could evaluate it only after every 800 training episodes.

For a fair comparison, we evaluated the policies during the learning phase
in terms of the cumulative reward (even if the method is preference-based,
such as PBPI and PB-EDPS) and the survival rate on 300 virtual patients.
These values were plotted as a function of the number of training episodes
generated. We repeated the training process 100 times for each method. In
the case of SARSA and PBPI, we simple plotted the average curve. For the
ES-based methods, for which the number of training episodes is varying, we
took all (T, p) pairs from each run and applied smoothing to obtain an average
curve.

As one can see from the plots in Figure 4, SARSA achieves the fastest
convergence, and its performance in terms of cumulative reward is on a par
with other methods. PBPI is outperformed by other policy learners in terms
of cumulative reward. Nevertheless, the preference-based methods achieve a
better survival rate than the value-based methods for a training episode smaller
than 4000.

6.3 Experiments with higher survival rate

According to our qualitative criterion, two histories are incomparable with
probability at least p2 if the death rate is p. Thus, even if incomparability
does provide some information, too, the training data in the previous test
scenario was not very informative for our preference-based policy learner.

Therefore, to obtain a higher survival rate, we changed the model parame-
ters as follows: a1 = 0.1, a2 = 0.15, b1 = b2 = 1.2, d1 = d2 = 0.5, c0 = −8, c1 =
c2 = 1.5. Then, the same experiments were conducted and the same plots were
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produced as in the previous section. The maximum toxicity level as well as
the tumor size CS at the end of the treatment are plotted in Figure 5. As
before, the PB-EDPS is on the Pareto front, while the other preference-based
method (PBPI) is close to the Pareto front. What is striking, however, is that
the preference-based methods (PBPI and PB-EDPS) perform as well as the
constant and random policies in term of cumulative reward (see Figure 6(a)),
while they outperform all other methods in terms of survival rate (see Figure
6(b)). Moreover, as expected, they achieve faster convergence. This observa-
tion suggests that the reward signal cannot truly express the real objective in
this test scenario.

0 1 2 3 4 5

0

1

2

3

4

5

Tumor size

T
o
x
ic

it
y

 

 

Random
Const. π(s) = 0.1
Const. π(s) = 0.4
Const. π(s) = 0.7
Const. π(s) = 1.0
EDPS
PB-EDPS
SARSA
PBPI
Pareto front

Fig. 5 Illustration of patient status under different treatment policies. On the x-axis is the
tumor size after 6 months, on the y-axis the highest toxicity during the treatment.

7 Related work

The idea of preference-based reinforcement learning was introduced simulta-
neously and independently in [2] and [9]. While preferences on trajectories
(histories) are taken as a point of departure in both approaches, policy learn-
ing is accomplished in different ways. As already mentioned, Cheng et al. [9]
generalize classification-based approximate policy iteration as proposed in [24,
26]. To this end, they train a model that ranks actions given a state, using
a preference learning method called label ranking. Instead of ranking actions
given states, Akrour at al. [2] learn a preference model on trajectories, which
can then be used for policy optimization. To this end, policies are mapped to
real (feature) vectors that represent important properties of the induced trajec-
tories.7 Then, a standard learning-to-rank method is applied in this behavioral

7 For example, a policy π can be mapped to the frequency vector of states obtained by
following that policy [1].
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Fig. 6 Convergence of different method in terms of training episode used.

representation space, in which preferences are expressed by an expert. More
specifically, the authors learn a numerical utility function that agrees with
the expert’s preferences as much as possible. Then, given this utility function,
policy search can be formalized as an optimization problem, namely as finding
the policy that maximizes expected utility. In a follow-up work [3], the authors
extend this approach with the idea of active learning in order to decrease the
number of preference queries asked to the expert.

In [40], the authors study the problem of learning expert policies via trajec-
tory preference queries to an expert. This setting can be viewed as an inverse
reinforcement learning problem, where the behavior of the target policy can
be accessed through preferences on pairs of short state trajectories originat-
ing from a common state. The authors propose a Bayesian approach to learn
parametric policies, where the goal is to estimate the expert policy based on
as few preference queries as possible. Active learning techniques are applied to
generate trajectories that are maximally informative in the learning process.

Evolutionary Direct Policy Search (EDPS) was introduced by Heidrich-
Meisner and Igel [18], who use racing algorithms to control the number of
rollouts in each iteration. Our approach can be seen as a generalization of
EDPS. Thanks to the preference-based racing algorithm we developed, it does
not require access to the policy performances themselves but only to a ranking
over them.

The racing setup and the Hoeffding race algorithm were first considered
by [27,28] in the context of model selection. For a detailed implementation of
the HR algorithm, see [18]. This algorithm was improved in [29], where the
empirical Bernstein bound was used instead of the Hoeffding bound. In this
way, the variance information of the mean estimates could be incorporated in
the calculation of confidence intervals.



26 Busa-Fekete et al.

In the context of multi-armed bandits, a slightly different setup was intro-
duced in [11], where an ε-optimal random variable has to be chosen with prob-
ability at least 1−δ; here, ε-optimality of Xi means that µi+ε ≥ maxj∈[K] µj .
An algorithm solving this problem is called (ε, δ)-PAC bandit algorithm. The
authors propose such an algorithm and prove an upper bound on the expected
sample complexity. In this paper, we borrowed their technique and used it in
the complexity analysis of PBR.

Recently, a PAC-bandit algorithm which is based on the widely-known
UCB index-based muli-armed bandit method of [7] was introduced in [22].
In their formalization, an algorithm is an (ε,m, δ)-PAC bandit algorithm that
selects the m best random variables under the PAC-bandit conditions. Ac-
cording to their definition, a racing algorithm is a (0, κ, δ)-PAC algorithm.
Instead of a high probability bound for the expected sample complexity, the
authors manage to prove such a bound for the worst case sample complexity.
It is an interesting question whether or not the technique used in their proof,
which makes use of a specific type of slack variables, can also be applied in
our setting.

Yue et al. [41] introduce a multi-armed bandit setup where feedback is
provided in the form of pairwise comparisons between options, just like in our
approach. However, their decision model is more restrictive than ours. It not
only assumes � to be a total order, but also requires additional properties
such as strong stochastic transitivity and stochastic triangle inequality.

8 Conclusion and future work

By introducing a preference-based extension of evolutionary direct policy search,
called PB-EDPS, this paper contributes to the emerging field of preference-
based reinforcement learning. Our method, which merely requires qualitative
comparisons between sample histories as training information (and even al-
lows for incomparability), is based on a theoretically sound decision-theoretic
framework and shows promising results in first experimental studies.

The core of our method is a preference-based version of the Hoeffding
race algorithm, for which we could provide theoretical guarantees. Empirically,
we have seen that this algorithm is not only more widely applicable than
the original value-based version, but may even reduce sample complexity in
(numerical) settings where both versions can be used. Therefore, the idea
of preference-based racing should not be limited to reinforcement learning;
instead, it seems worthwhile to explore it for other applications, too, such as
multi-objective optimization with several competing objectives [10].

Coming back to our PB-EDPS framework, we hope to achieve further im-
provements by elaborating on its individual components. For example, the
Copeland relation�C is not necessarily an optimal surrogate of the� relation
on policies, and indeed, voting and decision theory offers a large repertoire of
alternative relations that could in principle be used. Moreover, we would like to
investigate the use of Bernstein instead of Hoeffding races, since Bernstein-like
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bounds (which exploit the empirical variance of the estimates) are normally
tighter than Hoeffding bounds. A Bernstein bound for two sample U-statistics
can be obtained based on [32,5]. However, since the empirical bound requires
an estimation of the standard deviation of the kernel (the function h(·) in (9)
in the Appendix), and this estimation needs to be accompanied by a confidence
bound, this is certainly a non-trivial problem.

Our theoretical analysis so far essentially focused on the racing algorithm,
and therefore only covers a single iteration of the evolutionary search process
implemented by PB-EDPS. Extending this analysis toward the convergence
behavior of the complete search process is another important (and likewise
difficult) topic to be addressed in future work.

Another interesting problem in this regard is to minimize the overall com-
plexity of PB-EDPS by balancing the effort invested in a single selection step,
i.e., a racing between the current candidates, and the number of generations
needed by the evolutionary search process. In fact, one may suspect that find-
ing the top-candidates with an extremely high probability is actually not nec-
essary, since the selection of a less optimal candidate can be eliminated in the
following iterations of the evolutionary search process. Lowering the guarantee
1− δ for selection may significantly reduce the complexity of the racing algo-
rithm, while more effort needs to be invested in the search. Finding a good
tradeoff by adapting δ in a proper way is an interesting challenge. As an al-
ternative to lowering the guarantee, i.e., playing with δ, one may also think
of relaxing the requirement of finding the top-κ set exactly; in fact, for the
same reasons just mentioned, it would arguably be enough to find a kind of
ε-approximation of this set.

The computation of preferences over histories, which can be seen as query-
ing an “oracle” (accepting two histories as input and providing a preference
as output), can be costly in practical applications; for example, the oracle
might be realized by a computationally complex simulator, or it could even be
a human expert. Therefore, based on the response obtained so far, one may
think of training a surrogate model to mimic the oracle, i.e., to replace the
true oracle by a model for at least some of the queries. Initial work along this
line has recently been presented in [38,4].

Last but not least, further experimental studies are of course needed to
better understand the behaviours and performances of PBR and PB-EDPS
on both synthetic problems and also challenging real-world domains.

A Appendix

A.1 U-statistics

The U-statistics play central role in many practical statistical problem. For an independent
sample set x(1), . . . , x(n) drawn from the same distribution over Ξ, its general form can be
written as

U =
1(n
m

) ∑h
(
x(i1), . . . , x(im)

)
(9)
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where the summation is taken over all subsets {i1, . . . , im} ⊆ {1, . . . , n} of size m, and
where the kernel funcion h is of the form Ξm → [a, b] for some a, b ∈ R. An especially
attractive feature of this statistic is that it is an efficient (or minimum variance unbiased)
estimator [36]. The U-statistic also generalizes to multiple samples in a natural way. For
example, the general form of the two-sample U-statistic for two independent i.i.d. samples

x(1), . . . , x(n) and y(1), . . . , y(n
′) drawn from Ξ and Υ , is

U =
1(n

m

)(n′
m′
) ∑h

(
x(i1), . . . , x(im), y(i

′
1), . . . , y(i

′
m′ )
)

(10)

where the summation is taken over all subsets {i1, . . . , im} ⊆ {1, . . . , n} of size m and
{i′1, . . . , i′m′} ⊆ {1, . . . , n

′} of size m′, and, similarly, the kernel function h is a bounded

function of the form Ξm×Υm′ → [a, b] for some a, b ∈ R. The general form of the Hoeffding
theorem for two-sample U-statistics can be written as follows.

Theorem 10 ([21], §5b) For any ε > 0, using the notations introduced above,

P (|U − E[U ]| ≥ ε) ≤ 2 exp

(
−2kε2

(b− a)2

)

where U is defined as in (10) and

k = min
(
bn/mcbn′/m′c

)
We applied Theorem 10 to Wilcoxon two-sample statistic in Subsection 4.1.
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14. Fürnkranz, J., Hüllermeier, E. (eds.): Preference Learning. Springer-Verlag (2011)
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