On Positive and Unlabeled Learning for
Text Classification*

Istvan Nagy T.!, Richdrd Farkas?, and Janos Csirik®

! University of Szeged, Department of Informatics,
6720 Szeged, Arpad tér 2., Hungary
2 Universitét Stuttgart, Institut fiir Maschinelle Sprachverarbeitung,
Azenbergstrasse 12, D-70174 Stuttgart, Germany
3 MTA-SZTE Research Group on Artificial Intelligence,
6720 Szeged, Tisza Lajos krt. 103., Hungary
{nistvan, jcsirik}@inf.u-szeged.hu, farkas@ims.uni-stuttgart.de

Abstract. In this paper we present a slightly modified machine learning
approach for text classification working exclusively from positive and
unlabeled samples. Our method can assure that the positive class is not
underrepresented during the iterative training process and it can achieve
30% better F-value when the amount of positive examples is low.

Keywords: semi-supervised learning, positive and unlabeled, PU, text
classification

1 Introduction

Classification is a well-studied problem in machine learning. Text classification is
the process of assigning predefined category labels to new documents. The classic
supervised approach to build a text classifier is to first manually label a set of
training documents, which are labeled with the same set of predefined category
or class labels as the test set. A classification algorithm is then applied to the
training data to build a classifier, which is subsequently employed to assign the
predefined classes to instances in the test set (for evaluation) or future instances
(in practice).

The main bottleneck of supervised learning is that it needs a large number
of labeled training examples for building the accurate model. However, labeling
is typically done manually, which is — on the one hand — labor intensive and
time consuming, and — on the other hand — may lead to unexpected compli-
cations. For example, in practice some of the test or future instances may not
belong to any of the predefined classes of the original training set. Furthermore,
the test set may contain additional unknown subclasses, or new subclasses may
arise as the underlying domain evolves over time. Manual annotation cannot
be effectively prepared for these cases. Collecting negative training examples is

* This work was supported in part by the National Innovation Office of the Hungarian
government within the framework of the projects BELAMI and MASZEKER.

2 Istvan Nagy T., Richard Farkas, and Jénos Csirik

especially delicate and arduous because negative training examples must be uni-
formly represented in the universal set excluding the positive class. On the other
hand, manually collected negative training examples could be biased because
of humans’ unintentional prejudice, which could be detrimental to classification
accuracy.

In recent years, researchers have studied the concept of using only a small
labeled set and a large unlabeled set to help learning. This approach is called
semi-supervised learning. It reduces the effort of manual labeling, but negative
examples are also needed. The Positive and Unlabeled (PU) learning is a specific
semi-supervised learning method. PU learning approaches only need a positive
set P and an unlabelled set U, then the algorithm can identify hidden positive
documents in the unlabeled set.

Although there are several PU implementations, we were motivated to inves-
tigate them in detail because many real life problems can be successfully solved
by PU approaches. For example, a company that tries to attract new customers
with direct marketing owns a database of their own customers, but has no infor-
mation on those who are not their customers. In this case, they only have positive
examples but no negative examples. If they buy a database containing data on
people, they can find people who are similar to their customers, and then can
deliberately seek out the bids. In this paper we focus on the test classification
use case which is usually used as a sandbox for PU algorithms.

2 Related work

Traditionally, PU learning algorithms are based on a strategy of two steps: first,
identify a set of reliable negative (RN) documents from the unlabeled set by
using any method for this. Second, build a classifier based on positive and reliable
negative data from the unlabeled set. The specific difference between the various
algorithms in these two steps is as follows: the 1-DNF or PEBL algorithm [11]
first collects words that occur in the positive set P more frequently than in the
unlabelled set U. This method has several versions with some modifications.
One of them improved the original 1-DNF algorithm [12], which requires the
absolute frequency of the feature in the positive data set greater than a%. As
a result, they had a smaller but better quality positive word set, which yields
a much larger reliable negative document set. The other popular approach to
identify reliable negative examples in U is the Spy technique [4]. It is based on the
method that first randomly selects a set S of positive documents from P and puts
them in U. These documents are called “Spies”. They behave similarly to the
unknown documents in U. Hence, the algorithm can identify the behavior of the
unknown positive documents in U more easily. The Rocchio algorithm is also
a popular text classificaton method [4,2]. In this technique, reliable negative
documents are extracted by using the information retrieval method Rocchio.
This approach constructs a prototype vector for every class. The classifier is
then used to classify documents in U. Those documents that are classified as
negative are considered (reliable) negative data, denoted by RN. In the second

On Positive and Unlabeled Learning for Text Classification 3

step, a classifier is built using expectation-maximization (EM) or Support vector
machine (SVM) iteratively.

3 The Proposed Technique

The most popular PU learning algorithms apply a common two-step strategy.
We examined the two steps separately. The key element in the first step is the
quality of reliable negative documents. To investigate this, we used error rate as
follows [12] :

#positive_examples_in_RN

Err(%) =

#positive_examples_in U

We found that several approaches are good at identifying reliable negative ex-
amples from the unlabelled data set. This is proved by the fact that the error
rate was less than 1% when we applied Rocchio. Thus, the second step seemed
to be more interesting to explore. In the common second step SVM or EM ma-
chine learning algorithms were used. Basically, we investigated the iterative SVM
method. In the basic iterative SVM method, P and RN were first used to train
SVM. Let Q be the remaining unlabeled document set: Q = U - RN. In each
iteration we used the actual SVM model to classify Q. Documents which the
model classifies as negative were put in RN. The main idea of this approach is
that SVM can extract a greater number of possible negative examples in Q. If the
current model could not mark any more documents from @Q as negative, the al-
gorithm terminated. After the iterations, the final classifier is applied. However,
sometimes it proves to be necessary to select a classifier since SVM is sensitive
to noise. It may happen that an iteration of SVM extracts too many positive
documents from Q and puts them in RN, which may have a negative effect on
the performance of the last SVM classifier.

while true

use P and RN to train SVM classifier;

classify Q using SVM model;

let W be the set of documents that a current SVM model classified as negative;
if W= { then

exit;

else
Q=Q-W;
RN =RN U W

Fig. 1. The two-step approach of [11].

4 Istvan Nagy T., Richard Farkas, and Jénos Csirik

However, we wanted to see how other classification algorithms can perform.
In all cases, Rocchio was applied as the first step. In most cases, this approach
could identify a reliable negative set which is large enough with minimum error
rate.

3.1 The Rocchio Technique

In Rocchio classification, each document is represented as a vector in [7]. Each el-
ement in the vector was weighted in term frequency-inverse document frequency
(tf-idf). This weight measures how important a word is to a document in a cor-
pus. A classifier is built by constructing positive and negative prototype vectors.
In classification, for each test document, it simply uses the cosine measure [7] to
compute the similarity of the test document to each prototype vector. The class
whose prototype vector is most similar to the test document is assigned to the
test document. Documents classified as negative form the negative set RN.

3.2 The Proposed Technique

As [3] emphasized, catching the best iteration during the iteration running pro-
cess is an important question. The current systems increase the size of only the
RN set in the second step. In this case, since only a small positive set is used,
in the last iterations the RN set becomes much larger than P, yielding that
the positive class is underrepresented and the negative class is overrepresented.
Thus, the model may classify all examples as negative, or learn the negative
class. To solve this, we increased the P set too. Since the algorithms that we
applied could determine the example class probability, they just accepted the
prediction in case the prediction probability was higher than « value. Finally we
used a = 0.9. As shown in Figure 2 during each iteration, both the P and the
RN class were increased.

while true
use P and RN to train classifier;
classify Q using a model;
let W be the set of documents that a current model classified as negative;
let S be the set of documents that a current model classified as positive;
if W = (then
exit;
else
Q=Q-W-35;
RN = RN U W;
P=PUS;

Fig. 2. The modified iterative method.

On Positive and Unlabeled Learning for Text Classification 5

Classifiers

In our experiments we used the implementations available in the WEKA [10]
library, an open-source data mining software written in Java.

Boosting is [8] a way of improving the performance of a weak learning al-
gorithm. The algorithm first generates a set of classifiers of the same type by
applying bootstrapping on the original training data set. These classifiers vote a
decision. The final decision is made using a weighted voting schema for each clas-
sifier. The resulting model is many times more accurate than the original. Some
iterations of Boosting were performed on each model. Further iterations gave
only slight improvement in the F-measure (less than 0.05%), thus we decided to
perform only 10 iterations in each experiment.

C4.5 is based on the well-known ID3 tree learning algorithm [6]. Axis-parallel
hyperplanes are used in classification, and hence learning is very fast. We built
decision trees that had at least 2 instances per leaf, and used pruning with
subtree raising and a confidence factor of 0.25.

Support Vector Machines (SVM) [9] is the linear function of the form
f(x) = wlz + b. Between the weight vector w and the input vector x, w'z
denotes the inner products. SVM is based on the main idea of selecting the
hyperplane that separates the space (between the positive and negative classes)
while maximizing the smallest margin. In practice we used libSvm* and the Weka
SMO implementation.

Logistic Regression is a predictive model. It was used when the target variable
is a categorical variable with two categories. The logistic model formula computes
the probability of the selected response as a function of the values of the predictor
variables.

4 Experiments and Results

In our experiments, we used the Reuters-21,578 dataset, which has 21,578 doc-
uments collected from the Reuters newswire, as our training and testing sample
set. Of the 135 categories in Reuters-21,758, only the 10 most frequent ones are
used. PU approaches were evaluated in different ways. On the one hand, we
used the inductive evaluation: the model identifies or retrieves positive docu-
ments from the unlabeled set U. On the other hand, the model was evaluated on
the test set with unknown examples. In both evaluation methods one category
was employed as the positive class, and the other nine classes as the negative
and each category fulfilled once the role of the positive class. For each category,

4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

6 Istvan Nagy T., Richard Farkas, and Jénos Csirik

p% |[Roc-SVM SVM SVM_B C4.5 C4.5_B LogReg LogReg. B SMO SMO_B

0.05| 0.30195 0.0707 0.4130 0.5017 0.6591 0.4084 0.4034 0.6141 0.6280
0.1 | 0.68731 0.3727 0.6641 0.7029 0.7463 0.4187 0.4062 0.7611 0.7600
0.15| 0.76898 0.5311 0.7583 0.7300 0.8089 0.4082 0.4453 0.7941 0.7936
0.2 | 0.79846 0.7014 0.7727 0.7871 0.8372 0.4431 0.4336 0.7892 0.7911
0.3 | 0.82053 0.7932 0.8145 0.8027 0.8052 0.4486 0.4449 0.8072 0.8038
0.4 | 0.8314 0.8271 0.8343 0.8219 0.8228 0.4657 0.4600 0.8157 0.8161
0.45| 0.82432 0.8222 0.8460 0.8012 0.8174 0.4935 0.4633 0.8074 0.7989
0.5 | 0.80254 0.8188 0.8198 0.8213 0.8294 0.5246 0.5262 0.7841 0.7864
Table 1. The modified second step with different learning algorithms on the Reuters-
21,578 dataset (F-value results). Roc-SVM: the online available PU learning algorithm,
SVM: during the iteration process in the modified second step, libSVM was used as
learning algorithm. SVM_B: boosted version at SVM. C4.5: decision tree was used
in the second step. C4.5_B: boosted version at C4.5. LogReg: Logistic Regression was
used in the second step. LogReg-B: boosted version at Logistic Regression. SMO: SVM
implementation in Weka was used in the second step. SMO_B: boosted version at SMO.

30% of the documents were randomly selected as test documents. The rest was
used to create the training sets as follows: v of the documents from the positive
class are first selected as the positive set P. The rest of the positive documents
(1-y) and negative documents are used as the unlabeled set U. In the inductive
evaluation method the test set was added to U. Since we would like to compare
our results with [2] and [4] we determined the values of vy as 0.05, 0.1, 0.15, 0.2,
0.3, 0.4, 0.45 and 0.5. In order to compare our results with existing methods, we
evaluated the Roc-SVM approach too. It is available on the Web as part of the
LPU system®. To evaluate the performance of the classifier we used F-value. It
is the harmonic mean of precision and recall.

Table 1 shows the result achieved by different learning algorithms. As the
table shows, in the case of the libSVM and the C4.5 algorithms, boosting was
able to improve the results. However, in the case of SMO and LogReg, boosting
was not effective. Since the boosted C4.5 algorithm achieved the best results
in low ~ rate, we compare our modified second step method with this learning
algorithm with the ROC-SVM. So, we evaluate and compare these two methods
in two different ways. Results are shown in Figures 3 and 4.

As the figures show, the boosted C4.5 algorithm with the modified second
step achieved better results when v was low. The biggest difference between the
two approaches could be observed when the positive rate was the lowest (0.05). In
this case our method could achieve an F-value about 30% better than Roc-SVM.
As the positive rate grows, this advantage declines. If the rate of the positive
elements is higher than 30%, the two approaches perform nearly identically.

® http://www.cs.uic.edu/~1iub/LPU/LPU-download.html

On Positive and Unlabeled Learning for Text Classification 7

0,9
0.8
0,7
0,6
05
0,4

03
0,05 0,1 0,15 0,2 03 0.4 0,45 0,5

=8 Roc-SVM-Liu =¢=Roc-J48_Boost

Fig. 3. The result of Roc-SVM and our modified second step with boosted C4.5 learning
algorithm in inductive evaluation.

0,85

0,75

0,55
0,45
0,35

0,25
0,05 0,1 0,15 0,2 03 04 0,45 0,5

== Roc-SVM-Liu =+=Roc-J48_Boost

Fig. 4. Evaluating on a separate test set of Roc-SVM and our modified second step
with boosted C4.5 learning algorithm.

8

5

Istvan Nagy T., Richard Farkas, and Jénos Csirik

Conclusion

The common PU algorithms are based on a two step strategy. We found that the
Rocchio approach could effectively solve the first step. Therefore, we investigated
the second step. To improve the iterations we modified the common second step:
if the learning algorithm classifies an unlabeled element as positive we put it
the positive set P, yielding that the positive class is not underrepresented during
the iteration process. The common PU learning algorithms used SVM or EM
iteratively. We examined some other learning algorithms, and we found that the
boosted C4.5 learning approach achieved more than 30% better F-value when
the positive rate was low.

References

11.

12.

Agresti, A.: Building and applying logistic regression models. In: An Introduction
to Categorical Data Analysis. Wiley, pp. 137-172 (2007)

. Li, X., Liu, B.: Learning to classify text using positive and unlabeled data. In:

Proceedings of Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03). Acapulco, Mexico, Aug 9-15 (2003)

Li, X., Liu, B., Ng, S.-K.: Negative Training Data can be Harmful to Text Classifi-
cation. In: Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP-10). MIT, Massachusetts, USA (2010)

Liu, B., Dai, Y., Li, X., Lee, W., Yu, P.: Building text classifiers using positive and
unlabeled examples. In: Proceedings of the Third IEEE International Conference
on Data Mining (ICDM-03). Melbourne, Florida, November 19-22 (2003)

Liu, B., Li, X., Lee, W.S., Yu, P.S.: Text Classification by Labeling Words. In:
AAAT 2004 (2004)

Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann Publishers
(1993)

Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-
Hill (1983)

Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5(2), 197—
227 (1990)

Vapnik, V.N.: Statistical Learning Theory. Wiley (1998)

. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-

niques. Morgan Kaufmann (2005)

Yu, H., Han, J., Chang, K.C.C.: PEBL: Positive Example-Based learning for web
page classification using SVM. In: Proceedings of the Eighth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pp. 239-248.
ACM (2002)

Yu, H., Zuo, W., Peng, T.: A New PU Learning Algorithm for Text Classification.
In: Proceedings of MICAI, pp. 824-832 (2005)

