UEGO, an Abstract Clustering Technique for Multimodal
Global Optimization*

Mark Jelasity
Research Group on Artificial Intelligence
MTA-JATE, Szeged, Hungary
jelasity@inf.u-szeged.hu
Pilar Martinez Ortigosa and Inmaculada Garcia
Department of Computer Architecture and Electronics
University of Almeria, Almeria, Spain

ortigosa@ualm.es, igarcia@ualm.es

Abstract

In this paper, UEGO, a new general technique for accelerating and/or parallelizing existing
search methods is suggested. The skeleton of the algorithm is a parallel hill climber. The
separate hill climbers work in restricted search regions (or clusters) of the search space. The
volume of the clusters decreases as the search proceeds which results in a cooling effect similar
to simulated annealing. Besides this, UEGO can be effectively parallelized; the communication
between the clusters is minimal. The purpose of this communication is to ensure that one hill
is explored only by one hill climber. UEGO makes periodic attempts to find new hills to climb.
Empirical results are also presented which include an analysis of the effects of the user-given
parameters and a comparison with a hill climber and a GA.

1 Introduction

In this section a short introduction to the history and motivation behind developing UEGO is
presented, but first let us state what the acronym means. UEGO stands for Universal Evolutionary
Global Optimizer. However, it must be admitted from the start that this name is not over-
informative, and the method is not even ’evolutionary’ in the usual sense. In spite of this we have
kept the name for historical reasons.

1.1 Roots

The predecessor of UEGO was GAS, a steady-state genetic algorithm with subpopulation support.
For more details on GAS the reader should consult [10]. Let us note however that this work is self
contained and does not assume any further knowledge about GAs; it will not be mentioned outside
of this section only in connection with the empirical comparison results.

GAS has several attractive features. Perhaps the most important of them is that it offers a
solution to the so-called niche radius problem which is a common problem of many simple niching
techniques such as fitness sharing ([3] or [4]), simple iteration or the sequential niching [2]. This

*M. Jelasity, P. M. Ortigosa, and I. Garcia. UEGO, an abstract clustering technique for multimodal global
optimization. Journal of Heuristics, 7(3):215-233, May 2001. This work was supported by the Ministry of Education
of Spain (CICYT TIC96-1125-C03-03), the Consejeria de Educacién de la Junta de Andalucia (07/FSC/MDM)
and the OTKA grant T25721.

problem is related to functions that have multiple local optima and whose optima are unevenly
spread throughout the search space. With such functions the niche radius cannot be set correctly
since if it is too small the search becomes ineffective and if it is too large those local optima
that are too close to each other cannot be distinguished. The solution of GAS involves a 'cooling’
technique which enables the search to focus on the promising regions of the space, starting off
with a relatively large radius that decreases as the search proceeds.

However, the authors of GAS came in for a number of criticisms, one being that the algorithm
was too much complex, and another that parallel implementation turned out to have many pitfalls
associated with it.

Although UEGO is based on GAS there are two major differences that were motivated by the
need for a better parallel implementation and the requirement of using domain specific knowledge
in an effective way.

The structure of the algorithm has been greatly simplified. As a result the parallel implemen-
tation is much easier and the basic ideas become more accessible. This is important because, as
the results of the paper will show, UEGO performs similarly or better than the GA and the simple
stochastic hill climber (SHC) on our test problems, and at the same time it can be parallelized
better than these methods [14, 15].

1.2 Basic Ideas

The basic idea is that in multimodal optimization problems where the objective function has
multiple local optima and the structure of these optima should be discovered beside the global
optimum, it may be useful to ensure that the optimizer does not waste its time exploring the same
region multiple times but simultaneosly new and promising regions are found. This goal can be
achieved by applying a non-overlapping set of clusters which define sub-domains for the applied
optimizer. Based on the results of the optimizer, the search process can be directed towards
smaller regions by creating a new set of non-overlapping clusters that consists of smaller sub-
domains. This process is a kind of cooling method similar to simulated annealing. A particular
cluster is not a fixed part of the search domain; it can move through the space as the search
proceeds. The non-overlapping property of the set of clusters is maintained however.

UEGO is abstract in the sense that the ’cluster-management’ and the cooling mechanism has
been logically separated from the actual optimization algorithm, so it is possible to implement any
kind of optimizers that work inside a cluster. This allows the adaptation of the method to a large
number of possible search domains using existing domain specific optimizers while enjoying the
advantages of having muliple non-overlapping clusters which ensures that search effort is focused
on interesting regions.

In this paper an SHC is implemented as the optimizer algorithm. This choice is supported by
results that show that the performance of the SHC is similar to that of the GA in many cases and
sometimes may even be better (e.g. [13, 11, 19, 8]). In [5] a GA with very small population size (1)
has been suggested for the graph coloring problem, which is in fact an SHC. Our results confirm
that the SHC can indeed outperform the GA at least on the problems and parameter settings we
considered.

1.3 A Note on Terminology

In the following sections the term species will be used instead of e.g. cluster, zone, region, sub-
domain etc. This may be strange since in evolutionary computation this term normally means
a population of similar individuals while here it denotes a subset of the search domain. This is
not a major problem however; a species in our sense is nothing else but the set of all possible
members that are similar according to some similarity measure which is in fact a function of e.g.
the application domain. We think that the behavior of a species as will be defined later has strong
biological analogies.

The actual number of solutions in a species is given by the applied optimizer. In the case of
SHC it is one but e.g. in the case of a GA it may be larger.

1.4 Outline of the Paper

Section 2 describes UEGO; the basic concepts, the general algorithm and the theoretical tools that
are used to set the parameters of the system based on a few user-given parameters. Sections 3
and 5 discuss the experimental results that describe the effects of these parameters of the algorithm
on the quality of the results and compare UEGO with a simple GA (GAS), a stochastic hill climber
(sHC) and a multistart hill climber (MHC) using a set of test functions. Section 6 then provides a
short summary.

2 Description of UEGO

In this section the basic concepts, the algorithm, and the setting of the parameters are outlined.
In UEGO, a domain specific optimizer has to be implemented. Wherever we refer to 'the optimizer’
in the paper we mean this optimizer.

2.1 Basic Concepts

In the following it will be assumed that the parameters of the function take values from the same
interval. This is easy to achieve for any function via normalization.

A key notion in UEGO is that of a species. A species can be thought of as a window on the
whole search space. This window is defined by its center and a radius. The center is a solution,
and the radius is a positive number. Of course, this definition assumes a distance defined over
the search space. The role of this window is to 'localize’ the optimizer which is always called by
a species and can ’see’ only its window, so every new sample is taken from there. This means
that the largest step made by the optimizer in a given species is no larger than the radius of the
given species. If the value of a new solution is better than that of the old center, the new solution
becomes the center and the window is moved.

The radius of a species is not arbitrary; it is taken from a list of decreasing radii, the radius
list. The radii decrease in a regular fashion in geometrical progression. The first element of this
list is always the diameter of the search space which will ensure that the largest species always
contains the whole space independently of its center. The diameter is given by the largest distance
between any two possible solutions according to the distance mentioned above. If the radius of a
species is the ith element of the list, then we say that the level of the species is i.

During the optimization process, a list of species is kept by UEGO. The algorithm is in fact
a method for managing this species-list (i.e. creating, deleting and optimizing species); it will be
described in Section 2.2.

2.2 The Algorithm

Firstly, some parameters of UEGO will be very briefly mentioned more details of which can be
found in Section 2.3.

As we mentioned earlier, every species has a fixed level during its lifetime. Species-level op-
erators may change this level however as will be described. The maximal value for the level is
given by a parameter called levels. Every valid level i (i.e. for levels from [1,levels]) has a
radius value (r;) and two function evaluation numbers. One is used when new species are created
at a given level (new;) while the other is used when optimizing individual species (n;). To define
the algorithm fully, one more parameter is needed: the maximal length of the above-mentioned
species list (max_spec_num).

The basic algorithm is shown in Figure 1. Now the procedures called by UEGO will be described.

Init_species_list. Create a species list consisting of one species with a random center at level
1.

uego
init_species_list()
optimize_species(n[1])
for i = 2 to levels
create_species(new[i]/length(species_list))
fuse_species(r[i])
shorten_species_list(max_spec_num)
optimize_species(n[i]/max_spec_num)
fuse_species(r[i])
rof
ogeu

Figure 1: The basic algorithm of UEGO.

Create_species(evals). For every species in the list, create random pairs of solutions in the
'window’ of the species, and for every such pair take the middle of the section connecting the pair.
If the objective function value of the middle is worse than the values of the pair, then the members
of the pair are inserted in the species list. Every new inserted species is assigned the actual level
value (i in Figure 1).

The motivation behind this method is simple: to create species that are on different "hills’ so
ensuring that there is a valley between the new species. Of course this is a heuristic only. In
higher dimensions it is possible (in fact typical) that many species are created even if the function
is unimodal. This is an unlucky effect which is handled by the cooling process to ensure that at
the beginning the algorithm does not create too many species capturing only the rough structure
of the landscape. The parameter of this procedure is an upper bound of the function evaluations.
Note that this algorithm needs a definition of section in the search space.

Fuse_species(radius). If the centers of any pair of species from the species list are closer to
each other than the given radius, the two species are fused. The center of the new species will
be the one with the best function value while the level will be the minimum of the levels of the
original species to be fused. Of course this method does not ensure that no species will overlap
after fusion though the amount of the overlapping regions is typically highly decreased.

Shorten_species_list(max_specnum). Delete species to reduce the list length to the given
value. Higher level species are deleted first.

Optimize_species(evals). Start the optimizer for every species with the given evaluation num-
ber (i.e. every single species in the actual list receives the given number of evaluations). See
Section 2.1.

It is clear that if for some level ¢ the species list is shorter than the allowed maximal length,
max_spec.num, the overall number of function evaluations will be smaller than n; (see Figure 1,
optimize_species). In our implementation we use the difference of the actual number of function
evaluations and n; to find more species. This technique has no effect when there are many species
but if the number of species is small, a lot of extra effort is devoted to finding new ones.

Finally, let us make a remark about a possible parallel implementation. The most time-
consuming parts of the basic algorithm is the creation and optimization of the species. Note
that these two steps can be done independently for every species, so each species can be assigned
to a different processor. Note also that a species is defined by its center and its level, so the
amount of information used in communications is really small. In GAS algorithm a species is a
set of individuals and there are relations among species and even among individuals, so it is quite
difficult to send a species or an individual to another processor. The complexity of the possible
parallel approach would be high enough. As our experimental results will clearly show, sequential
UEGO performs slightly better than the SHC and the GA even when the number of species is as
high as 200.

2.3 Parameters of UEGO

The most important parameters are those that belong to the different levels: the radii and two
function evaluation numbers for species creation and optimization (see Figure 1). In this section
a method is described which sets these parameters using a few easy-to-understand parameters set
by the user. The experimental sections will provide further guidelines on the meaning and setting
of these remaining user-given parameters.

We will now make use of the notation introduced in Section 2.2. The user-given parameters
are listed below. Short notations (in brackets) that will be used in equations in the subsequent
sections are also given.

evals (N): The maximal number of function evaluations the user allows for the whole optimiza-
tion process. Note that the actual number of function evaluations may be less than this
value.

levels (I): The maximal level value (see Figure 1).

threshold (v): The meaning of this parameter will be explained later.
max_specnum (M): The maximal length of the species list.

minr (r;): The radius that is associated with the maximal level, i.e. levels.

The parameter setting algorithm to be described can use any four of the above five values while
the remaining parameters are set automatically.

Speed of the optimizer. Before presenting the parameter setting method, the notion of the
speed of the optimizer must be introduced. As explained earlier, the optimizer cannot make a
larger step in the search space than the radius of the species it is working in. Furthermore if
the center of a species is far from every local optimum then these steps will be larger while if
the center is already close to a local optimum then the steps will be very small. Given a certain
number of evaluations, it is possible to measure the distance the given species moves during the
optimization process assuming that the species is suboptimal. This distance can be approximated
(as a function of the radius and evaluations) for certain optimizers using ideal landscapes (such
as linear functions) with the help of mathematical models or experimental results. This naturally
leads to a notion of speed that will characterize a given domain (assuming e.g. a linear landscape)
and will depend on the species radius. Speed will be denoted by v(r). As we will not give any
actual approximations here, the reader should refer to [10].

The parameter-setting method is based on intuitive and reasonable principles. These principles
are now described below.

Principle of equal chance. At a level, every species moves a certain distance from its original
center due to optimization. This principle ensures that every species will receive the number of
evaluations that is enough to make it move at least a fixed distance assuming that the speed of
this motion is v(r). A species will not necessarily move that far but the definition of speed is such
that if the species is far from the local optima then it will move approximately the given distance.
This common distance is defined by r1v. The meaning of threshold can now be given: it directly
controls the distance a species is allowed to cover, so it actually controls the probability that they
will eventually represent a local optimum: the further a species can go the higher the probability
of reaching a local optimum is (and the more expensive the optimization is). Recall that r; is
always the diameter of the search space. Now the principle can be formalized:

v(r;)n;

=rv (1=2,...,]) (1)

Principle of exponential radius decreasing. This principle is quite straightforward; given
the smallest radius and the largest one (r; and r;) the remaining radii are expressed by the

exponential function
Ty izl

ri = ()= (i=2,...,0). 2)

T1

Principle of constant species creation chance. This principle ensures that even if the length
of species list is maximal, there is a chance of creating at least two more species for each old species.
It also makes a strong simplification, namely that all the evaluations should be set to the same

constant value.
new;, =3M (i=2,...,1) (3)

Decomposition of N. Let us define new; = 0 for the sake of simplicity since new; is never
used by UECO. The decomposition of N results in the trivial equation

l

l
> (ni+new;) =(1-1)3M +> n;=N (4)

=1 =1

making use of (3) in the process. One more simplification is possible; set n; = 0 whenever [> 1.
Note that if [= 1 then UEGO reduces to the optimizer it uses for optimizing the species.

Expressing n; from (1) and substituting it into (4) we can write

Mriv

v(r;)

l
(1—1)3M +) =N (5)

Using (2) as well, it is quite evident that the unknown parameters in (5) are just the user given
parameters and due to the monotony of this equation in every variable, any of the parameters can
be given using effective numerical methods provided the other parameters are known. Using the
above principles the remaining important parameters (n;, new; and r;) can be evaluated as well.
Note however that some of the configurations set by the user may be infeasible.

3 Experiments with Real Functions

In this section experimental results on real functions will be presented. Due to the stochastic nature
of UEGO, all the numerical results given in this work are average values of fifty executions, obtaining
an enough statistic sample of experiments. From this data set the corresponding confidence
intervals (95%) were computed (see [16]). These confidence intervals have not been represented
because it would have messed up the plots since there are multiple curves in each graphic, and
also these intervals were too narrow, so they could not be distinguished from the average values.

In this section, a set of four test functions and two classical multimodal functions (Griewank,
Rastrigin) have been used to evaluate UEGO. These test functions have different characteristics
w.r.t. dimensionality and the number of local optima so, it is possible to illustrate the effect of these
characteristics on the performance of UEGO. Comparisons with the ancestor of UEGO, GAS [10]
and the simple and multistart version of a hill climber (SHC and MHC) described in [17] will also
be given.

3.1 Test Problems

A first experimental stage was carried out on a set of four new defined functions. We chose not
to use well-known benchmark functions for testing. The reason for this is that we agree with the
ideas discussed in [7], namely that for doing scientific tests it is more convenient to use functions
that differ only in controllable features. This allows the analysis of the effect of only one separated

Comparison of different max. species settings
Test problem F2. levels=2

Level lines of Test Function F2

0.98 ‘

— Hillclimber
©®—@ max. species: 20

0.93 B—# max species: 50 B
*— max. species: 100
<4—<max. species: 200

0.91 —— global maximum 4

Y axis
Function Values

I I I I
0 10000 20000 30000 40000 50000
No. Function Evaluations

Figure 2: The plot of the test function F2 and a sample from the results of our preliminary
experiments.

feature of the test problem, e.g. the number of local optima. There is another reason: using
widely accepted benchmark problems prevents developing methods that perform well only on
special kind of problems. We believe that it is more important to characterize the ideal problem
for optimization methods than trying to show that they outperform other methods on as many
benchmark problems as possible. In a second stage, UEGO was evaluated and compared to other
algorithms, using Griewank and Rastrigin functions (see Section 4.1).

In the experiments to be discussed here we wanted to examine the effects of dimensionality
and the number of local optima. Therefore we used four test functions that are characterized in
Table 1. The construction of these functions starts with a user-given list of local optimum sites

Table 1: Characteristics of the four test functions.

| | F1 | 2 F3 | F4 |
Type 0,12 =R | [0,1? =R | [0,1]?* =R | [0,1]*° - R
of maxima, 5 125 5 125

(0) and the corresponding function values (f,). All the function values have to be positive. In the
first step, we define bell shapes for every site to create the local optima. The height of a bell is
given by the function value f, of its site o, and its radius r is the distance of o from the closest
site. The height of the bell at a distance = from o is f,g(x), where:

2, .
-2 ifr<i
2
gla)=q it <z <r

0 otherwise

The objective function is the sum of these bells. In the case of our test functions, the coordinates of
the maximum sites and their values were randomly taken from [0, 1] using a uniform distribution.
The two-dimensional function F2 has been drawn in Figure 2.

3.2 The Optimizer and the Settings

For real function optimization the optimizer used by UEGO was the hill climber suggested in [17].
The parameters of the hill climber algorithm were set as in [17]. The parameter p,;, that controls

Table 2: Tested values of UEGO parameters for the real functions.

evals ‘ levels ‘ max_spec_num min.r threshold
1000, 2000, 3000, 5000, fixed 20, 50, .003, .005, .01, | automatically
10000, 15000, 20000, 50000 | to 2 100, 200 .03, .05, .08, set

the maximal step size, was set to the radius of the species from which the optimizer is called.
The accuracy of the search was set to min(p.,/10%,107°). No fine tuning of the parameters of the
optimizer was done.

3.3 The Experiments

In our preliminary experiments the minimal radius (min_r) was calculated automatically, the
threshold (v) was fixed to 1 in every run, and the effects of the remaining parameters were
examined. However, it soon became clear that it was not the best choice: in the case of F2
the performance often decreased as the number of evaluations was increased. This effect can be
seen in Figure 2, where the average of the most-fit species values of the objective function (for
fifty runs of UEGO) as a function of the average value of the number of function evaluations has
been represented (notice that the number of function evaluations is always less than evals). The
reason of this strange behavior is that with the increasing number of evaluations the minimal
radius became smaller and smaller according to principles described in Section 2.3, so the search
slowed down. Another observation was that the performance seemed to be the best when the
number of levels was two.

Due to these results we decided to examine the effect of the minimal radius and the maximal
number of species with the number of levels fixed to two. The set of the tested values are shown
in Table 2. Experiments were performed for all combinations of these parameter settings.

Comparison of different levels settings Comparison of different radii settings
Test problem F3, levels=2, min_r=0.1 Test problem F2, 1=2, M=20
090 [T T T T 5 T T T T
0.98
0.80 %
0.97
0.70
8 % 0.96 *—* Hillclimber
£ = ®—@ min_r=0.03
> oeor > =& min_r=0.05
g *—% Hillclimber g 095 - _0‘1 B
B 050 —eM=20 B 2 m%nfr:()'z
N =—aM=50 T << min_r=0.]
*+—eM=100 —v m¥n_r=0.3
040 <+—<IM =200) 0.93 —+ mfn,r:OAS |
. Y A—A min_r=0.8
—— global maximum et .
0.30 4 092 global maximum |
0.20 L L L L 0.91 L L L L
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
No. Function Evaluations No. Function Evaluations

Figure 3: The effect of the different maximal species numbers on F3 and the different radii on F2.

In these experiments, the behavior of UEGO was rather similar for functions F1 and F3, and all
the tested values of minimal radii (min_r) resulted in almost identical performance, but the results
were very sensitive to the values of maximal number of species (max_spec_num). The performance
decreased with the increasing value of max_specnum. In our experiments the optimal value for
the max_spec_num parameter was the minimal (20). For F4, changes on the performance of UEGO
w.r.t. min_r are almost negligible, as happens on F1 and F3.

Comparison of different levels settings Comparison of different levels settings
Test problem F2, M=20, min_r=0.2 Test problem F2, M=20, min_r=0.03

0.98
0.97 0.97 |

0.96

*— Hillclimber
@ levels =2

— Hillclimber
@ levels =2

Function Values
=
o
b
Function Values
o
o
&
T

0.94 B Jevels =3 4 0.94 =1 levels =3 4
+—oevels =5 +—¢ Jevels =5
0.93 <+—<levels =10 4 0.93 <+—<levels =10
—— global maximum —— global maximum
0.92 — 092 —
091 ! ! ! ! 091 ! ! ! !
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
No. Function Evaluations No. Function Evaluations

Figure 4: The effect of the different number of levels with the optimal and with a much smaller
radius.

On the other hand, for F2 the value of min_r did make a difference, mainly when the maximal
number of species was relatively small and the performance of UEGO was very robust for the
greatest value of min_r (0.8), especially for max_spec num equal to 20 and 50. Two characteristic
plots illustrating these effects are shown in Figure 3.

The other goal was to find evidence that using more levels than two can be useful. To achieve
this goal several values of level (2, 3, 5 and 10) were examined with the maximal species number
fixed to 20. The experiments were performed for F2 since it was the only function on which the
value of min_r had significant effect. The result clearly showed that with the optimal minimal
radius UEGO was fairly robust w.r.t. the number of levels. However, when the minimal radius
was set to a much smaller value than the optimum, higher values of levels outperformed the
lower settings. This effect is illustrated in Figure 4. The first interesting phenomenon that needs
explanation is that in the first set of experiments, results on F1, F3 and F4 were very similar w.r.t.
min_r while on F2 we got a very different behavior. The first idea that comes to mind is that
F1 and F3 have few local optima so it is quite reasonable that setting large maximal number of
species would result in a poor performance since most of the evaluations are devoted to search for
the non-existent peaks while this problem does not exist in the case of F2. This would also explain
that the different values of min_r had no effect: most of the search was in fact random search.

For F4 test function UEGO needs more than 50,000 function evaluations for reaching the global
optimum. For a small number of species, the algorithm converges relatively fast to a solution, but
this solution is a local one. However, when the maximal number of species is great (100, 200),
UEGO spends more function evaluations on reaching a solution, but this solution will be a global
solution. For these max_spec_num values, results in Table 3 will show that the algorithm reaches
the real optimum in 40% of executions for evals=50000 function evaluations. Remember that F4
is a hard problem (30 dimensions and 125 local optima).

On the other hand, the optimal values of max_spec num for F1 and F3 are 20. So, it seems
that for very hard problems is convenient to use a large number of species in order to ensure the
convergence to the solution. Therefore we suggest that UEGO should be used for optimizing highly
multimodal functions because it ensures easy species creation.

The second phenomenon, namely that it is reasonable to use more levels if the minimal radius is
smaller than the optimal minimal radius (for levels=2), is much easier to explain. The “cooling”
mechanism of UEGO ensures that if the maximal level is high then in some phase of the search the
radius is very likely to be near the optimal value while if the maximal level is 2 then the radius
immediately becomes the value set by the user. This property is very useful since setting a higher
maximal level may ensure a higher degree of robustness.

4 Comparing algorithms

In this section comparisons with a simple hill climber (SHC), a multistart hill climber (MHC) and
GAS will be shown. The parameters of SHC, MHC and GAS algorithms were set as follows. The hill
climber (SHC) was the optimizer used by UEGO; it means that SHC is UEGO with levels= 1. In the
multistart case the number of restarts from a new random point was given by the optimal value
of the max_spec_num for UEGO. The parameters for GAS are very similar to those of UEGO, so they
were set to the Best UEGO parameters for every problem using max_spec num as population size.

Results for UEGO were obtained with levels = 2 in every case. max_specnum = 20, min.r
= 0.8 for F1, and F3 test functions, and max_spec num = 100, min_r = 0.2 for F2 and F4 test
functions were the setting parameters for the results named as Best UEGO. Parameters for Worst
UEGO were max_specnum = 200, min_r = 0.003 for F1, and F3 test functions, and max_spec_num =
20, min_r = 0.03 for F2 test function, and max_spec num = 200, min_r = 0.03 for F4 test function.

Numerical results of these comparison experiments are shown in Figure 5 and Table 3.

Comparison of different algorithms

Comparison of different algorithms

Test problem F1 Test problem F2
0915 T T 0.99 T T
0.910
0.905
., 0.900 "
o 123
= =
S 0895 S
g *— Hillclimber g *—* Hillclimber
£ 0890 ®—@ Best Uego 1 T 091 ®—@ Best Uego |
] =—& Worst Uego E] =—a& Worst Uego
LL =
0885 - &—< Multistart 7 . &— Multistart
>—& GAS 089 > GAS]
0.880 - —— global maximum —— global maximum
0.87 4
0.875 B
0870 ! ! ! ! 0385 ! ! ! !
0 10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
No. Function Evaluations No. Function Evaluations
Comparison of different algorithms Comparison of different algorithms
Test problem F3 Test problem F4
0.90 E ° Py & T s T T
1.0
0.80 0.9
I 0.8
0.70
3 307
= =
S 00 _— = 06 — *
g *— Hillclimber g *—* Hillclimber
‘:; 050 - ®—® Best Uego § 05 ®—@ Best Uego
2 =—& Worst Uego £ =—a& Worst Uego
&—< Multistart 0.4 ©—< Multistart E
0.40 7 >—b GAS) >—& GAS
—— global maximum 0.3 —— global maximum
0.30 - b
0.2 b

. . .
20000 30000 40000

No. Function Evaluations

.
10000 50000

0.1

. . .
20000 30000 40000

No. Function Evaluations

.
10000

Figure 5: Comparison of the hill climber, the multistart hill climber, GAS and UEGO.

10

50000

Table 3: Comparison of the UEGO, the multistart hill climber and GAS.

UEGO MHC GAS
Eval. N.Spec. % Succ | Eval. N.Spec. % Succ | Eval. N.Spec. % Succ
F1, levels=2, max_spec num=20, min r=0.8

811 2.62 88.5 | 1000 3.56 2| 1673 2.30 76.4
1482 2.74 99.1 | 2000 3.42 98 | 3410 2.50 98.2
2062 2.86 100 | 3000 3.14 100 | 5075 2.54 100
3228 2.88 100 | 5000 2.84 100 | 8549 2.50 100
6038 2.94 100 | 10000 2.72 100 | 17194 2.76 100
8411 2.98 100 | 15000 2.46 100 | 26743 2.78 100

10621 3.24 100 | 20000 2.28 100 | 34580 2.82 100
22826 3.32 100 | 50000 1.02 100 | 86435 2.78 100
F2, levels=2, max_spec num=100, min_r=0.

751 7.12 0| 1000 8.22 0] 1631 0.94 0
3020 7.44 0| 2000 10.04 0] 2371 1.42 0
2049 7.40 3| 3000 12.16 0| 3343 3.44 0
3019 7.82 48 | 5000 9.98 4 | 5997 5.12 0
5151 7.94 96 | 10000 7.86 56 | 8120 7.44 0
6228 8.52 100 | 15000 6.02 84 | 25276 9.32 0

17152 8.96 100 | 20000 4.38 100 | 35122 11.38 20
19246 9.74 100 | 50000 5.24 100 | 87930 11.46 28
F3, levels=2, max_spec num=20, min_r=0.8

918 2.96 0| 1000 20* 0| 1818 1.06 0
1807 3.28 0 | 2000 20* 0| 3428 1.080 0
2708 3.54 0 | 3000 20* 0| 5108 1.080 0
4597 3.72 42 | 5000 20%* 0| 8748 1.16 0
9596 3.98 68 | 10000 * 0| 17428 1.16 0

14467 4-64 98 | 15000 4.88 98 | 24914 1.46 10

19492 4.94 100 | 20000 4.86 94 | 37365 1.28 10

49477 4.98 100 | 50000 4.98 100 | 87569 1.00 18
F4, levels=2, max_specnum=100, min_r=0.2

899 5.8 0 | 1000 100%* 0| 1817 1.28 0
1808 6.5 0 | 2000 100%* 0| 3419 2.16 0
2455 8.0 0 | 3000 100%* 0| 5102 1.78 0
4812 10.4 0| 5000 100* 0| 8746 1.32 0
9564 11.8 0 | 10000 100* 0 | 17407 2.24 0

14350 12.6 10 | 15000 100* 0 | 28922 1.48 0
19587 15.0 16 | 20000 82* 2 | 34793 1.16 0
49804 20.4 40 | 50000 65* 4 | 40256 0.60 0

11

Table 3 shows average values of the number of function evaluations, number of local or global
optima found (species) and the percentage of success in finding the global optimum. Setting
parameter values for functions F1, F2, F3 and F4, were chosen as a result of the preliminary
experiments. In this table, the symbol * means that most of maxima found were not local nor
global maxima.

It can be seen that for function F1, when evals > 3000, all the three algorithms reached 100%
of success in finding the global optimum, however UEGO was able to find more local optima and
it was at least 60% computationally less expensive than MHC and GAS algorithms. For function
F3, with only five maxima, GAS was able to find the global optimum in a very few runs (18%
success), while UEGO and MHC were fully successful when evals=>50,000. They found all the local
and global optima in most of the runs. Similar results were obtained for function F2, but in this
case UEGO outperformed MHC in the number of species (local optima). Finally, results for the
hardest function F4, clearly show that though UEGO did obtain only 40% of success in finding the
global optimum, it was able to find 20 real local optima while MHC and GAS failed in all the cases.

In short, it can be said that UEGO is slightly better than the multistart hill climber for F1, F2
and F3 and for problem F4, UEGO is the only technique that reaches the global optimum. From
Figure 5, it is clear that Best UEGO outperforms SHC and GAS for all the functions.

These results indicate that it is reasonable to use the clustering technique to create starting
points since the performance does not decrease but, unlike the multistart hill climber, UEGO
provides a great number of reasonably good solutions that are at least as far from each other as
the minimal radius (see Table 3). This property is very useful in several applications, for example
in decision problems: the expert decision maker has a lot of good solutions to choose from. Also
remember that the number of restarts of the hill climber was optimal. GAS is also outperformed
which justifies our efforts to eliminate the drawbacks of GAS.

4.1 Results for Griewank and Rastrigin functions

In this section some comparisons of above algorithms for Griewank and Rastrigin functions will be
shown. First of all we tried to find the best parameters for UEGO, so we decided to test UEGO using
several values of max_spec num, levels and min_r (in this case, values of min_r are normalized to
the domain of definition of each function). The ranges of the parameters are shown in Table 4.
Experiments were performed for all combinations of these parameter settings, and the threshold
was automatically set.

Table 4: The values of the UEGO parameters for the test functions.

evals ‘ levels ‘ max_specnum | minr
10000, 15000, 20000, 2, 3, 5, 10, 0.1, 0.2,
30000, 50000, 200000 | 5, 10 50, 200 0.5, 0.8,

Both functions are ten-dimensional and they have several optima, so these test functions are
actually very hard multimodal problems. Best performance over these test functions were reached
when the number of levels was 10, because in this case, the convergence is rather slow, and
the probability for finding best solutions increase. With respect to the optimal max_spec num, it
tends to be high. Particularly, for comparisons we chose the values 50 and 200 for Griewank and
Rastrigin test functions respectively. The optimal min_rad was 0.1 and 0.2, respectively.

Table 5 shows some comparisons among UEGO, MHC and GAS. For each algorithm the number
of function evaluation (Eval), the most-fit species function value (Val) and the number of species
found (N. Spec) are shown. It is interesting to say that the real optimum (whose value is zero)
was not found for any of the algorithms, for any of the parameter combinations tested. However,
UEGO found the global optimum when more function evaluations were allowed, i.e. for Rastrigin
test function, UEGO needs about 25,000,000 function evaluations to find the global optimum. We

12

have tried also to find the optimum using MHC and GAS algorithms, but they did not reached it
in those experiments, even when the number of function evaluations was higher than 100,000,000.
For Griewank function, the three algorithms found the global optimum in 1,000,000 function
evaluations. The number of global and local optima found by UEGO and MHC were quite similar.

To summarize the results: it has been demonstrated that both the clustering and the level-
based “cooling” techniques show some advantages over its predecessor. On the other hand, UEGO
can be parallelized almost as effectively as the multistart hill climber. Without going into the
details we mention that a parallel version of UEGO using a simple asynchronous Master Slave
model has been implemented and executed on a Cray T3E using up to 33 processors [14, 15] and
for a set of eleven test functions an almost linear speed up was obtained. Using 33 processors the
values of the speed up range between 27 and 32.

Table 5: Comparisons for Griewank and Rastrigin Test Functions

UEGO MHC GAS
Eval. Val. N.Spec. Eval. Val. N.Spec. Eval. Val. N.Spec.
Griewank Test Function
2153 -0.1891 42.34 | 10000 -0.4805 50 | 15003 -0.4738 6.70
3434 -0.0874 42.96 | 15000 -0.3260 50 | 23876 -0.3658 10.54
4400 -0.0591 46.86 | 20000 -0.1797 50 | 33129 -0.2545 11.86
6267 -0.0315 48.84 | 30000 -0.0630 50 | 54823 -0.1258 11.78
17717 -0.0236 49.10 | 50000 -0.0200 50 | 85640 -0.0914 11.70
33057 -0.0103 49.18 | 200000 -0.0180 50 | 231462 -0.0243 11.80
Rastrigin Test Function
5043 -49.49 200 | 10000 -55.61 200 | 15311 -27.59 20.92
5686 -45.01 200 | 15000 -42.46 200 | 24214 -22.25 49.76
6757 -45.63 200 | 20000 @ -35.71 200 | 33289 -18.98 49.78
8467 -47.29 200 | 30000 -34.69 200 | 55122 -16.76 49.70
11918 -41.77 200 | 50000 -25.87 200 | 85746 -14.40 49.42
36827 -19.23 200 | 200000 -20.92 200 | 235875 -14.23 49.68

4.2 A Note on Parameter Setting

As shown clearly by the previous sections, there is no unique best way to set the parameters of
UECO. The optimal setting depends on the problem structure. This fact is not surprising since
the heuristics used in the algorithm make explicit assumptions about the structure of the domain.
It is not special to UEGO either since general theoretical results about the relationship between
search domains and optimizers [18] predict this effect.

If information is available on the number and distribution of local optima of the problem to
be solved then it is possible to set the parameters based on the design principles of UEGO and on
the empirical results discussed in Section 3.3. If there are many local optima then the maximal
number of species should be high and if they are close to each other then the minimal radius should
be small. Of course, if the structure of the problem is unknown then preliminary experimentation
is necessary. One possible strategy suggested by our experiments is to use a small minimal radius,
more levels, e.g. 10, and to use a high maximal number of species, e.g. 200. The number of species
created during the optimization gives a hint about the number of local optima, though this is only
a heuristic since e.g. having many species is not sufficient nor necessary for having many local
optima especially if the number of function evaluations is small.

13

Table 6: The values of the UEGO parameters for the subset sum problem.

evals ‘ levels ‘ max_spec_num threshold ‘ min_r ‘
3000, 10000, 30000, 2, 3, 5, 10, 20, 40, | automatically | fixed
100000, 300000 5, 10 100, 200 set to 1

5 Experiments with the Subset Sum Problem

In this section we will discuss the performance of UEGO on an NP-complete combinatorial opti-
mization problem: the subset sum problem. A comparison with GENESIS [6] and a hill climber
will be presented. As another result of the experiment the behavior of the parameters of UEGO
will be illustrated.

5.1 Problem and Coding

In the case of the subset sum problem we are given a set W = {w1, wa, ..., w,} of n integers and a
large integer M. We would like to find a V' C W such that the sum of the elements in V' is closest
to, without exceeding, M. This problem is NP-complete. Let us denote the sum of the elements
in W by SW.

We created our problem instances in a similar way to the method used in [12]. The size of W
was set to 50 and the elements of W were chosen randomly with a uniform distribution from the
interval [0,10'?] instead of [0,103] (as was done in [12]) to obtain larger variance. According to
the preliminary experiments, the larger variance of W results in harder problem instances which
is important since comparing methods on almost trivial problems makes little sense. The problem
instance used here turned out to be so hard that none of the methods employed could find an
optimal solution. Based on the results of [9], M was set to SW/2. As was shown in [9], this is the
most GA-friendly setting, so there is no bias against GENESIS introduced by the problem instance.

We used the same coding and objective function as suggested in [12]. For a solution (z =
(.1‘1,.1'2, ceey $50)),

f(2) = —(a(M = P(2)) + (1 —) P(x))

where P(z) = Zfﬂl x;w;, and a = 1 when z is feasible (i.e. M — P(z) > 0) and a = 0 otherwise.
Note that the problem is defined as a maximization problem.

5.2 The Optimizer and GA Settings

In UEGO, the optimizer was chosen to be a simple SHC as was discussed in the Introduction. In our
implementation the SHC works as follows: mutate every bit of the solution with a given probability
(but mutating one bit at least), evaluate the new solution and if it is better than or equal to the
actual solution, it becomes the new actual solution. This type of SHC worked best in [13], as well.
The mutation probability was set at 4/n where n is the chromosome length. This value was the
same in all the experiments carried out including those with GENESIS. The other GA parameters
were a population size of 50, 1-point crossover with probability 1, and elitist selection.

5.3 The Experiments

One of the two main goals of these experiments was to analyze the effects of the user-given UEGO
parameters described in Section 2.3. To perform this analysis, several values were chosen for each
parameter (see Table 6) then UEGO was run 50 times for every possible combination of these
values. This meant that 5-4-6-50 = 6000 experiments were performed for one problem instance.
Three problem instances were examined but since the results were similar in each case, only one
problem instance is discussed below. Figure 6 shows the effects of the different parameter settings.

14

Comparison of different level settings Comparison of different max. species settings

0 T wa;_wﬂ e e 0 T g
-2e+08 - 1 -2e+08 + 1

(o] (9]
3 -4e+08 | Hillclimber —— 4 3 -4e+08 | Hillclimber —— 4
; levels: 2 -+ ; max. species: 5 -+
S levels: 3 -&- S max. species: 10 &~
% -6e+08 levels: 5 x| % -6e+08 max. species: 20 —x— |
S levels: 10 -+-- S max. species: 40 -=-
° - L] 5 . max. species: 100 -x-- |
é; 8e+08 é’ 8e+08 max. species: 200 -

3 3
o -1e+09 1 o -1e+09 q
o o ’

-1.2e+09 1 -1.2e+09 ¢ 1

-1.4e+09 L— -1.4e+09 i , . \)))

4096 8192 16384 32768 65536 131072 262144 4096 8192 16384 32768 65536 131072 262144
Function evaluations Function evaluations

Figure 6: With the various level settings, max_spec num is 100 and for the different max. species
settings levels is 3.

Comparison of GENESIS and UEGO

T T P] |
e
e e
-26+08 | 2 P]
0 - -
S gew08f 7 Hillclimber —— 1
S 7 Genesis -
5 / . Best Uego -=--
S -6e+08 | Worst Uego - 4
2 ; /
2 ;
8 -8e+08 [|]
Qo *
o) ;
-1e+09 1
-1.2e+09 : . . -

4096 8192 16384 32768 65536 131072 262144
Function evaluations

Figure 7: The parameters for the best UEGO were max_spec_.num=20 & levels=10, and for the
worst max_spec num=>5 & levels=2.

As the plots are typical it was inferred that the parameters of UEGO must be fairly robust for this
particular problem class. It has to be noted that this does not automatically imply that similar
robustness would be observed on other domains as well (see Section 4.2).

The other goal of the experiments was to make a comparison. Figure 7 shows the relevant
results. Note that it was difficult to select the best and the worst performance because the curves
cross, but the plots give a good approximation. Here SHC is simply UEGO with the setting of
levels=l.

6 Summary

In this paper, UEGO, a general technique for accelerating and/or parallelizing existing search
methods was discussed. As was shown, most of the parameters of the system are hidden from
the user due to an algorithm for calculating those parameters from a couple of simple parameters.
This algorithm is based on principles stated in Section 2.3 and the speed of the applied optimizer.

Experimental results were given for real and combinatorial problems. It was shown that the
user-given parameters are robust in the case of the subset sum problem and the advantages of the
UEGO clustering technique and the level-based “cooling” technique were demonstrated on the real
domain.

15

Other experimental results were also given, such as the comparison of the technique with
several methods. In the case of the subset sum problem it was shown that UEGO is slightly better
than a GA and an SHC. On the real domain UEGO outperformed the multistart hill climber in
the sense that either the quality of the global optimum was better or the number of local optima
found by UEGO was larger. GAS was outperformed w.r.t. both aspects. The later indicates that
the modifications in order to eliminate the drawbacks of GAS has been successful at least in the
case of the problems we considered.

References

[1] T. Béck, editor. Proceedings of the Seventh International Conference on Genetic Algorithms,
San Francisco, California, 1997. Morgan Kaufmann.

[2] D. Beasley, D. R. Bull, and R. R. Martin. A sequential niche technique for multimodal
function optimization. Evolutionary Computation, 1(2):101-125, 1993.

[3] K. Deb. Genetic algorithms in multimodal function optimization. TCGA report no. 89002,
The University of Alabama, Dept. of Engineering mechanics, 1989.

[4] K. Deb and D. E. Goldberg. An investegation of niche and species formation in genetic
function optimization. In J. D. Schaffer, editor, The Proceedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann, 1989.

[5] A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert. Graph coloring with adaptive
evolutionary algorithms. Journal of Heuristics, 4(1):25-46, 1998.

[6] J. J. Grefenstette. Genesis: A system for using genetic search procedures. In Proceedings of
the 1984 Conference on Intelligent Systems and Machines, pages 161-165, 1984.

[7] J. N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics, 1(1):33-42,
1995.

[8] H. Ishibuchi, T. Murata, and S. Tomioka. Effectiveness of genetic local search algorithms. In
Biéck [1], pages 505-512.

[9] M. Jelasity. A wave analysis of the subset sum problem. In Béck [1], pages 89-96.

[10] M. Jelasity and J. Dombi. GAS, a concept on modeling species in genetic algorithms. Artificial
Intelligence, 99(1):1-19, 1998.

[11] A. Juels and M. Wattenberg. Stochastic hillclimbing as a baseline method for evaluating
genetic algorithms. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances
in Neural Information Processing Systems, volume 8, pages 430-436. The MIT Press, 1996.

[12] S. Khuri, T. Béck, and J. Heitkotter. An evolutionary approach to combinatorial optimization
problems. In The Proceedings of CSC’94, 1993.

[13] M. Mitchell, J. H. Holland, and S. Forrest. When will a genetic algorithm outperform hill-
climbing? In J. D. Cowan et al., editors, Advances in Neural Information Processing Systems
6. Morgan Kaufmann, 1994.

[14] P. M. Ortigosa. Métodos estocdsticos de Optimizacion Global. Procesamiento paralelo. PhD
thesis, Department of Computer Architecture and Electronics, University of Almeria, Almeria,
Spain, 1999. Available as http://dali.ualm.es/papers/99/tesispilar.ps.gz.

[15] P. M. Ortigosa, I. Garcia, and M. Jelasity. Two approaches for parallelizing the UEGO
algorithm. To appear in Optimization Theory: Recent Developments from Métrahédza, 2001.

[16] R. R. Sokal and F. J. Rohlf. Biometry. W. H. Freeman and company, New York, 1981.

16

[17] F. J. Solis and R. J.-B. Wets. Minimization by random search techniques. Mathematics of
Operations Research, 6(1):19-30, 1981.

[18] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1(1):67-82, Apr. 1997.

[19] M. Yagiura and T. Ibaraki. Genetic and local search algorithms as robust and simple optimiza-
tion tools. In I. H. Osman and J. P. Kelly, editors, Meta-Heuristics: Theory and Application,
pages 63-82. Kluwer Academic Publishers, 1996.

17

