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Abstract

Phase equilibrium calculations and phase stability analysis are of fundamental importance in various chemical engineering applications, such as azeotropic and three-phase distillation, supercritical extraction, petroleum and reservoir engineering, etc. Phase stability is often tested using the tangent plane criterion, and a practical implementation of this criterion is to minimise the tangent plane distance function (TPDF), defined as the vertical distance between the molar Gibbs energy surface and the tangent plane for given phase composition.

In the present work we use a modified TPDF and an equation of state as the thermodynamic model. We advocate a stochastic sampling and clustering method to locate the minima of the TPDF and compare its reliability with some of the most promising global optimisation methods.

Our method is user-friendly and not computationally demanding regarding the number of function-evaluations, and CPU time. 
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Introduction

Phase equilibrium calculations and phase stability analysis are of fundamental importance in various chemical engineering applications, such as azeotropic and three-phase distillation, supercritical extraction, petroleum and reservoir engineering, etc.  Phase stability is often tested using the tangent plane criterion, and a practical implementation of this criterion is to minimise the tangent plane distance function (TPDF), defined as the vertical distance between the molar Gibbs energy surface and the tangent plane for given phase composition.

The problem is normally solved either by finding all stationary points of the TPDF or by finding the global minimum.  Because the TPDF is a highly non-linear and complex expression, global optimisation methods are required for its minimisation.  However, the majority of the existing methods for solving the stability problem are local in nature and at best yield only local solutions.  Use of global techniques is relatively unexplored since only the homotopy continuation method [1], deterministic global solvers, such as MINLP which use convexification or convex underestimators to build upper and lower bounds to the global minimum [2-4], interval Newton method [5,6] and Lipschitz algorithm [7], have been employed. 

Stochastic optimisation techniques have often been found to be as powerful and effective as deterministic methods in many engineering applications [8,9].  They require only the objective function values and are highly likely to locate the global minimum.

Problem formulation 
At specified temperature 
[image: image1.wmf]T

, pressure 
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 and phase composition of the system [image: image3.wmf]z

, a necessary and sufficient condition for a postulated solution to be an equilibrium one is that the TPDF, denoted by 
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, should be nonnegative for all possible phases in the system.  The optimisation formulation of the phase stability problem can be described as follows:
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where 
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N

 is the number of the components, and 
[image: image9.wmf]i

m

 represents the chemical potential of component 
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.

The postulated solution corresponds to a global minimum of the Gibbs free energy, if the TPDF is positive at its stationary points 
[image: image11.wmf](
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, in particular at its minima, since it will then be positive everywhere [10].  If, however, the computational methods used cannot find with complete certainty all minimiser points, there is no theoretically based guarantee of stability. 

In the present paper, which is a fresh attempt to solve the phase stability problem, we use a modified TPDF and advocate an efficient stochastic global optimisation method.  Though the method is general-purpose, we focus our developments on its application to cubic equations of state (CEOS).

The objective function and the new method

The objective function

We use a modified TPDF [11], given by:  
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where:
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and 
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From Eq. 2 it follows directly, that when 
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then 
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, which is its minimum value.
The zeros 
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 of the function 
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 are its minima, and that was one of the reasons originally to introduce the modified TPDF [11], since from a computational point of view it is advantageous to search for minima with known zero minimum value.  (However, it should be pointed out that the present method does not need and use this information.)  The zeros 
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of the objective function (Eq. 2) correspond with points on the Gibbs energy surface, where the local tangent hyperplane at each 
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 is parallel to that at 
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To each 
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, a quantity 
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 corresponds, such that: 
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This quantity can be either positive or negative.  When all calculated [image: image28.wmf]k
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 are positive, the system is stable [11].

In order to guarantee stability/instability of the system under investigation all local minima of 
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 must be found, and we apply a stochastic method to solve this problem.  

The global optimisation method 

Most stochastic methods start from a sample of points drawn randomly from a bounded set 

, containing the global optimum in its interior.  These methods offer an asymptotic guarantee that the probability that the global optimum will be found approaches 1 as the sample size increases.  In addition to a sampling or a global phase, most stochastic methods contain a local phase, in which the sample is manipulated to yield a candidate solution value to the optimisation problem.  

In the present work the global optimisation method of Boender et al. [12] has been implemented in two versions.  We will begin with a brief outline of the original method [12], and then will present our modifications and the algorithm employed.

The method of Boender et al. [12], as well as those suggested in [13-15], find the local minima by means of a local search procedure, starting from appropriately chosen points in the sample.  They define the region of attraction of a local minimum 
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 to be the set of all points in 
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starting from which the local search procedure will arrive at 
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.  In order to identify these regions of attraction, the algorithm initiates a clustering procedure.  Before every application of the clustering procedure, the current sample is transformed by removing a pre-specified percentage 
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 of the sample points with the highest function values, and by performing a steepest descend step from the remaining ones.  Thus, groups of relatively close points, each of which surrounds a promising local minimum, will be formed.  

The aim of the clustering procedure is to identify the clusters of points, which are grown around appropriately chosen seed points.  This is done by adding selected points of the transformed sample to the cluster one by one until a termination criterion is satisfied.  If in the process one or more local minima are found that have not been discovered before, the sample is increased by an additional, fixed number of 
[image: image34.wmf]M

 points.  The extended sample is transformed in the way described above and the clustering procedure is repeated.  

If during any clustering phase no new local minima are found, the sampling is terminated.

The method to grow and terminate a cluster around a given seed point uses local information on the objective function and relies on properties of the sampling distribution.  

A modification of the global optimisation method of Boender et al [12] was first advocated in [16].  Its algorithm GLOBAL, applied in this work to find all local minima of the modified TPDF (Eq. 2), can be described concisely as follows: 

Step 1.

Draw 
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 points with uniform distribution in the region of interest 
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, and add them to the current sample 
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.  Construct the transformed sample 
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 by taking the 
[image: image39.wmf]c

 percent of the points in 
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 with the lowest function values. 

Step 2. 
Apply the clustering procedure to 
[image: image41.wmf]D

.  If all points of 
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 can be assigned to a cluster, go to Step 4.
Step 3. 
Apply the local search procedure to the points in 
[image: image43.wmf]D

 not yet clustered.  Repeat Step 3 until every point has been assigned to a cluster.  If a new local minimiser has been found, go to Step 1.
Step 4. 
Determine the smallest local minimum values found, and stop.
The algorithm applied to find a local minimiser (local search procedure) in Step 3 is either a quasi-Newton procedure with the Davidon-Fletcher-Powell (DFP) update formula [17] or a random walk direct search method UNIRANDI [18].  Both are derivative-free, i.e. they do not use the partial derivatives of the objective functions (although in the case of the DFP method an assumption of differentiability is made). 

The UNIRANDI algorithm has two main parts: random direction generation and linear search.  In the first part, a line, with a direction determined at random, is laid through the starting point obtained from sampling.  If any one of the two points on that line at distance 
[image: image44.wmf]d

 from the base point is better than the base point, a linear search is performed in the most promising direction.  If two lines are tried without success, the distance 
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 is halved and a new random direction is generated.  In the linear search part of the UNIRANDI algorithm points at distance 2
[image: image46.wmf]d

, 4
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, 8
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, … on the line are tried as long as better and better points are obtained.  The best point of distance 
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 from the base point for example, is then taken as the new base point and a new random search is initiated with 
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.  In the many examples solved, the UNIRANDI method proved to be robust but less efficient, whereas the quasi-Newton method was rather sensitive to the initial points but more accurate.  

Further, we chose the single linkage clustering procedure as being the more promising of the two discussed in [12].  The aim of this procedure is to recognise a priori those sample points starting from which the local search would possibly result in an already determined local minimiser.  

A distance 
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 is defined [16] for the clustering between two points 
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 in the neighbourhood of a local minimiser 
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The quasi-Newton method gives a good approximation to the Hessian 
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 of the objective function, while in the case of UNIRANDI the identity matrix replaces 
[image: image59.wmf](

)

*

x

H

 [16].  A new point x is added to a cluster if there is a point 
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 in this cluster for which:
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Here 
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 denotes the determinant of 
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 is a measure of the set 
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, 
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 is the total number of sampled points, and 
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 is a parameter of the clustering procedure [12].

Another important change introduced by us in the original algorithm [12] is that we do not use a steepest descent step to transform the correct sample.  Its efficiency was examined in the early phase of the implementation of our method, and it turned out that it could be omitted. Furthermore, for small size problems we use a 
[image: image69.wmf]c

 = 100 set and we keep all random points in the transformed sample.  We choose this set because it proved not only to be more appropriate in terms of reliability, but also more efficient for those cases, as will be demonstrated further on.  The stopping condition follows the original suggestion of [12]: the procedure is stopped when no new local minimiser has been found in the last iteration cycle.  According to our experience it fits the studied problem class quite well: although the number of local minima is unknown, we expect to have local minimiser points with relatively large size of regions of attractions.

Application of the method 

Owing to a lack of space, the robustness and efficiency of our method will be demonstrated by two systems only taken from the literature, namely the hydrogen sulfide + methane system, and the nitrogen+ethane+propane system.  The thermodynamic model applied in both cases is the SRK CEOS.  

The hydrogen sulfide + methane system at 
[image: image70.wmf]T

= 190 K, and 
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= 40.53 bar

We have chosen this particular example because it illustrates that the stability problem can be quite difficult even for very small systems, and because it provides grounds for a comparison on the basis of the found roots between our algorithm and other algorithms [1,4-7,10].  However, we would like to emphasize that a direct comparison with global optimisation methods [4–6] regarding computational cost requirements cannot and will not be made.  Thus, in the Tables that follow we give the number of function evaluations and CPU time required to find all roots for a given feed composition as an information rather than as a basis for comparison. 

The feed compositions studied and the information about the local minima determined are given in Table 1.  For all candidate phases tried, the locations of the zeros of 
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 are identical to those reported in [4,5].

We have set the number of the independent executions of the program to 3000.  The average number of function evaluations and the total average CPU time is obtained on a single processor Pentium III, 500 MHz machine with 256 MB RAM and a Linux operation system.

Since our method is a stochastic one it does not provide a theoretical guarantee that all local minima will be found by all independent program executions.  We consider a search to be a failure if even one of the local minima is missed, and the reliability of the algorithm in this sense is shown in the columns “success rate” of the tables for the Quasi-Newton routine and the UNIRANDI method, respectively.

The direct application of the method requires that the number of the significant digits (nsig) is fixed.  We fixed nsig in to five, and this value was used in all executions.  This guarantees that the precision with which a root is located is at least 4 digits.  Secondly, it guarantees that the precision of the approximation of the zero function value is at least 8 digits for the quasi-Newton type local search procedure, and at least 7 digits for the UNIRANDI local search method. 

As discussed in the previous section of the paper, for small size problems the value of 
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 was set to 100 %, since it proved to be the most appropriate.  We arrived at this conclusion applying the following procedure:

1. We fixed nsig = 5.

2. We set 
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= 100.  

3. We changed the size of the transformed sample 
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 subsequently to 10/25/50/75/100, since the value of 
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 changes in the same manner as 
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, and studied the influence of the rate of 
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 on the success rate, number of function evaluations, and CPU requirements on a number of small size test examples.  Owing to a lack of space, only a part of the results obtained for the methane+hydrogen sulphide system is given in Table 2. 

Next, we analysed the influence of 
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 and 
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, but at 
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 = 100, on the success rate, number of function evaluations, and CPU time requirements.  The results for two sets of parameters – nsig = 5; 
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 = 200 and 
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= 200 (set A), and nsig = 5; 
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 = 300 and 
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= 300 (set B) for the Quasi-Newton method and the UNIRANDI routine are given in Table 3. 

From the analysis made it is evident, that both the parameter set and the required precision can be specified and tuned by the user depending on the nature of the problem and whether a higher reliability is sought rather than time efficiency. 

As pointed out in the previous paragraphs, in order to improve the efficiency and reliability of our algorithm we have changed some parameters of the global program, recommended in [16].  For example, the suggested size of 
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 was limited to 20. For the hydrogen sulphide+methane system, the most challenging minima to locate proved to be the 0.01 ... roots.  The reason behind this is that the width of the valley of these minima is relatively very small.  For example, for the 0.89/0.11 feed the first 28 points with the lowest function values from the 10 000 uniformly chosen points on the [0,1] interval are from the valleys of the other roots.  Only the 29-th point is from the narrow valley of the 0.019206/0.980794 root but it does not provide a good chance to locate this particular root.  In view of the above, it was necessary to change the recommended parameter-values of the program to successfully find the relatively difficult roots, so that all roots are located.  Thus, after a thorough analysis, we have increased the above mentioned limits to allow the program to find minimiser points with small region of attraction. 

Nitrogen+methane+ethane system

Harding and Floudas [4] and Hua et al. [5] examined four candidate feeds for the nitrogen+methane+ethane system at 
[image: image87.wmf]T

= 270 K, and 
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= 76 bar.  We have used the same candidate phase compositions to test our algorithm.  The feed compositions and the roots obtained are given in Table 4.  For this three-dimensional problem GLOBAL was applied with the quasi-Newton local search method, and the UNIRANDI routine. 

The results were obtained applying the same hardware environment and the number of independent sample executions was set to 3000. 

For all four feeds tested, the number of the local minima determined is identical to those reported in [5], but the actual compositions of the local minima (Table 4) are slightly different owing to the fact that we apply the SRK CEOS as the thermodynamic model of the system, while the PR CEOS is used in [4, 5].  

Unlike the local solver applied in [4] and the interval-Newton method advocated in [5] our algorithm GLOBAL does not experience any difficulties in locating all minima (including the zero located in a very close proximity to the trivial solution) for the challenging 0.15/0.3/0.55 candidate feed.  Moreover, the function evaluations and the total average CPU time are not significantly higher than those required for the other three feeds. 

Analogously to the two-component example, we recommend 
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 = 100 %, and either the 
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 = 200/200 (set A) or the 
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 = 300/300 set (set B), depending on the user’s priorities: less computational cost, or higher robustness, respectively.  Table 5 displays the results obtained with the Quasi-Newton local search routine and with the UNIRANDI method for three sets of algorithm parameters.  As in the case of the two-component system, we did not apply other sets (for example 
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 = 400/400, 
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 = 500/500, etc) since the number of function evaluations and CPU time requirements will increase unnecessarily without gaining a further improvement of the results reliability. 

Conclusions and future developments


The present paper advocates a new stochastic global optimisation technique for the solution of the phase stability problem.  The method proved to be capable to solve small to moderate size problems in an efficient and reliable way, and does not require a priori knowledge of the location of the possible solutions.  The reliability of GLOBAL expressed as the percentages of independent runs that could locate all the global minimizer points can easily be tuned by the algorithm parameters.  The first tests on larger dimensional phase equilibrium problems (5-9 components) were also promising.  However, since the computational complexity of large dimensional problems is big, we plan to parallelise the code, and to run it on parallel machines with a few (8, 16 or 32) processors.

In addition, the future developments of the method will include more reliable interval-arithmetic computations, and a new, faster root finding algorithm.  
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	0.9885
	0.0
	Feed No. 4: 

0.5            0.5
	0.018441
	0.981559
	-0.07934

	
	0.02369
	0.97631
	0.01361
	
	0.074615
	0.925385
	-0.08252

	
	0.03258
	0.96742
	0.01276
	
	0.5
	0.5
	0.0

	
	-
	-
	-
	
	0.881860
	0.118140
	-0.05689

	
	-
	-
	-
	
	0.031103
	0.968897
	-0.07132

	Feed No. 2:
0.0187    0.9813
	0.0187
	0.9813
	0.0
	Feed No. 5:

0.888           0.112
	0.019005
	0.980995
	0.00241

	
	0.076676
	0.923324
	-0.0039
	
	0.079183
	0.920817
	-0.00244

	
	0.490569
	0.509431
	0.07302
	
	0.479658
	0.520342
	0.06823

	
	0.884774
	0.115226
	0.01098
	
	0.888
	0.112
	0.0

	
	0.031304
	0.968696
	0.00789
	
	0.031598
	0.968402
	0.01034

	Feed No. 3:
0.07     0.93
	0.017837
	0.982163
	0.00145
	Feed No. 6:

0.89             0.11
	0.019206
	0.980794
	0.01108

	
	0.07
	0.93
	0.0
	
	0.080873
	0.919127
	0.00563

	
	0.522896
	0.477104
	0.09649
	
	0.472618
	0.527382
	0.07235

	
	0.874264
	0.125736
	0.05128
	
	0.89
	0.11
	0.0

	
	0.030431
	0.969569
	0.00998
	
	0.031905
	0.968095
	0.01879


Table 2. Hydrogen Sulphide + Methane System at 
[image: image130.wmf]T

= 190 K, and 
[image: image131.wmf]P

= 40.53 bar

Analysis of the influence of 
[image: image132.wmf]c

 

	Method
	Quasi-Newton 
	UNIRANDI 

	
	Success rate (%)
	Evalu-ations
	CPU time (s)
	Success rate (%)
	Evalu-ations
	CPU time (s)

	Set of parameters: nsig = 5; 
[image: image133.wmf]M

 = 100 and 
[image: image134.wmf]D

= 25

	Feed No. 1
	54.35
	515
	0.0287
	51.65
	600
	0.0340

	Feed No. 2
	34.50
	456
	0.0300
	40.75
	666
	0.0401

	Feed No. 3
	40.55
	451
	0.0290
	29.65
	687
	0.0379

	Feed No. 4
	35.45
	435
	0.0292
	35.30
	678
	0.0399

	Feed No. 5
	38.85
	459
	0.0314
	36.80
	677
	0.0436

	Feed No. 6
	28.15
	454
	0.0301
	39.15
	687
	0.0375

	Set of parameters: nsig = 5; 
[image: image135.wmf]M

 = 100 and 
[image: image136.wmf]D

= 50

	Feed No. 1
	84.90
	944
	0.0547
	67.20
	1197
	0.0605

	Feed No. 2
	58.80
	748
	0.0453
	55.10
	1255
	0.0714

	Feed No. 3
	45.00
	803
	0.0478
	49.05
	1205
	0.0620

	Feed No. 4
	56.90
	758
	0.0487
	48.75
	1236
	0.0658

	Feed No. 5
	55.90
	849
	0.0559
	52.15
	1228
	0.0756

	Feed No. 6
	60.20
	874
	0.0599
	58.30
	1260
	0.0812

	Set of parameters: nsig = 5; 
[image: image137.wmf]M

 = 100 and 
[image: image138.wmf]D

= 75

	Feed No. 1
	80.75
	1042
	0.0619
	88.00
	1543
	0.0789

	Feed No. 2
	65.50
	932
	0.0586
	68.80
	1754
	0.0977

	Feed No. 3
	74.15
	993
	0.0599
	66.70
	1868
	0.0923

	Feed No. 4
	69.90
	916
	0.0595
	67.85
	1757
	0.0954

	Feed No. 5
	68.00
	1068
	0.0710
	68.75
	1922
	0.1157

	Feed No. 6
	73.50
	1073
	0.0737
	68.45
	1682
	0.1046t

	Set of parameters: nsig = 5; 
[image: image139.wmf]M

 = 100 and 
[image: image140.wmf]D

= 100

	Feed No. 1
	92.00
	1162
	0.0712
	93.85
	1963
	0.0975

	Feed No. 2
	91.60
	1060
	0.0693
	93.55
	2202
	0.1207

	Feed No. 3
	88.15
	1088
	0.0681
	87.45
	2403
	0.1211

	Feed No. 4
	90.30
	1057
	0.0671
	89.20
	2155
	0.1140

	Feed No. 5
	91.65
	1176
	0.0790
	93.00
	2389
	0.1408

	Feed No. 6
	91.30
	1215
	0.0811
	94.00
	2407
	0.1484


Table 3. Hydrogen Sulphide + Methane System at 
[image: image141.wmf]T

= 190 K, and 
[image: image142.wmf]P

= 40.53 bar 

Analysis of the influence of 
[image: image143.wmf]D

 and 
[image: image144.wmf]M

 at 
[image: image145.wmf]c

 = 100

	Method
	Quasi-Newton 
	UNIRANDI 

	
	Success rate (%)
	Evalu-ations
	CPU time (s)
	Success rate (%)
	Evalu-ations
	CPU time (s)

	Set A: nsig = 5; 
[image: image146.wmf]M

 = 200 and 
[image: image147.wmf]D

= 200

	Feed No. 1
	99.90
	2 730
	0.1959
	99.65
	3244
	0.1755

	Feed No. 2
	99.90
	2 646
	0.1989
	99.80
	4124
	0.2270

	Feed No. 3
	99.85
	2 704
	0.1945
	100
	3950
	0.2283

	Feed No. 4
	99.95
	2 596
	0.2006
	99.85
	4123
	0.2202

	Feed No. 5
	99.95
	2 649
	0.2360
	100
	4040
	0.2778

	Feed No. 6
	99.90
	2 627
	0.2359
	100
	4225
	0.2850

	Set B: nsig = 5; 
[image: image148.wmf]M

 = 300 and 
[image: image149.wmf]D

= 300

	Feed No. 1
	100
	3584
	0.2585
	100
	5261
	0.3298

	Feed No. 2
	100
	3671
	0.2800
	100
	6129
	0.3674

	Feed No. 3
	100
	3689
	0.2688
	100
	6120
	0.3366

	Feed No. 4
	99.85
	3409
	0.2641
	100
	6122
	0.3394

	Feed No. 5
	100
	3848
	0.3126
	100
	6543
	0.4213

	Feed No. 6
	100
	3862
	0.3168
	100
	6442
	0.4307


Table 4. Feeds Studied and Zeros of 
[image: image150.wmf]F

(

)

y

Obtained for the Nitrogen + Methane + Ethane System at 
[image: image151.wmf]T

 =270 K and 
[image: image152.wmf]P

 = 76 bar

	Feed (z)
	Composition of

     N2         CH4       C2H6
	Zeros  of 
[image: image153.wmf]F

(

)

y


N2        CH4       C2H6
	
[image: image154.wmf]*
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	No. 1
	
	
	
	0.3344
	0.1044
	0.5612
	-0.00015

	
	0.3
	0.1
	0.6
	0.3000
	0.1000
	0.6000
	0.0

	
	
	
	
	0.1481
	0.0724
	0.7795
	-0.01225

	No. 2
	
	
	
	0.1629
	0.3107
	0.5264
	-0.00002

	
	0.15
	0.3
	0.55
	0.1500
	0.3000
	0.5500
	0.0

	
	
	
	
	0.1070
	0.2581
	0.6349
	-0.00082

	No. 3
	0.08
	0.38
	0.54
	0.0800
	0.3800
	0.5400
	0.0

	No. 4
	0.05
	0.05
	0.9
	0.0500
	0.0500
	0.9000
	0.0


Table 5. Nitrogen + Methane + Ethane System at 
[image: image155.wmf]T

 =270 K and 
[image: image156.wmf]P

 = 76 bar

Analysis of the influence of 
[image: image157.wmf]D

 and 
[image: image158.wmf]M

 at 
[image: image159.wmf]c

 = 100

	Method
	Quasi-Newton 
	UNIRANDI 

	
	Success rate (%)
	Evalu-ations
	CPU time (s)
	Success rate (%)
	Evalu-ations
	CPU time (s)

	Set of parameters: nsig = 5; 
[image: image160.wmf]M

 = 100 and 
[image: image161.wmf]D

= 100

	Feed No. 1
	100
	3938
	0.2964
	100
	7653
	0.5707

	Feed No. 2
	95.65
	3444
	0.2680
	99.70
	7473
	0.5716

	Feed No. 3
	100
	3705
	0.2994
	99.60
	8903
	0.6892

	Feed No. 4
	100
	2915
	0.2134
	100
	3467
	0.2605

	Set A: nsig = 5; 
[image: image162.wmf]M

 = 200 and 
[image: image163.wmf]D

= 200

	Feed No. 1
	100
	8124
	0.7057
	100
	15012
	1.1581

	Feed No. 2
	100
	7117
	0.6535
	100
	14791
	1.1297

	Feed No. 3
	99,55
	7080
	0.5539
	100
	15958
	1.4085

	Feed No. 4
	100
	7789
	0.6318
	100
	7456
	0.5635

	Set B: nsig = 5; 
[image: image164.wmf]M

 = 300 and 
[image: image165.wmf]D

= 300

	Feed No. 1
	100
	9660
	0.7525
	100
	17 340
	1.3679

	Feed No. 2
	100
	10337
	0.8272
	100
	17 666
	1.3741

	Feed No. 3
	100
	9869
	0.8037
	100
	18 681
	1.5394

	Feed No. 4
	100
	8186
	0.6080
	100
	9872
	0.7548
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PAGE  
11

_1084107468.unknown

_1085826420.unknown

_1108807142

_1109059982.unknown

_1109410331.unknown

_1109410856.unknown

_1109494135.unknown

_1109494314.unknown

_1109419980.unknown

_1109410356.unknown

_1109146786.unknown

_1109146820.unknown

_1108979245

_1108979314.unknown

_1108986819.unknown

_1108807177.unknown

_1108898593.unknown

_1085826843.unknown

_1108469911.unknown

_1108562779.unknown

_1108807056.unknown

_1108473295.unknown

_1086689847.unknown

_1086699046.unknown

_1086782894.unknown

_1108461496.unknown

_1086767857.unknown

_1086689886.unknown

_1086696308.unknown

_1086696514.unknown

_1086689869.unknown

_1085826946.unknown

_1086689794.unknown

_1085833946.unknown

_1085826886.unknown

_1085826675.unknown

_1085826729.unknown

_1085826789.unknown

_1085826803

_1085826778.unknown

_1085826684.unknown

_1085826639.unknown

_1085822561.unknown

_1085823494.unknown

_1085824278.unknown

_1085824515.unknown

_1085824578.unknown

_1085824380.unknown

_1085823636.unknown

_1085824181.unknown

_1085823510.unknown

_1085822955.unknown

_1085823014.unknown

_1085823097.unknown

_1085822690.unknown

_1085822865.unknown

_1085822572.unknown

_1084277623.unknown

_1084625817.unknown

_1085822288.unknown

_1085822400.unknown

_1085822409.unknown

_1084367028.unknown

_1084625801.unknown

_1084367008.unknown

_1084188978.unknown

_1084275835.unknown

_1084189174.unknown

_1084107536.unknown

_1084188898.unknown

_1084107524.unknown

_1084103625.unknown

_1084106855.unknown

_1084106977.unknown

_1084107090.unknown

_1084106933.unknown

_1084106953.unknown

_1084106886.unknown

_1084106776.unknown

_1084106827.unknown

_1084104284.unknown

_1084103224.unknown

_1084103571.unknown

_1084103594.unknown

_1084103282.unknown

_1084103551.unknown

_1084103240.unknown

_1084103250.unknown

_1084102861.unknown

_1084103104.unknown

_920108032

_1073986209.unknown

_1073986224.unknown

_1074000667.unknown

_1038225352.unknown

_1005636191.unknown

_919866490

