
Int. J. Modelling, Identification and Control, Vol. 14, Nos. 1/2, 2011 133

Copyright © 2011 Inderscience Enterprises Ltd.

An interval partitioning algorithm for constraint
satisfaction problems

Chandra Sekhar Pedamallu*
New England Biolabs Inc.,
Ipswich, MA, 01938, USA
E-mail: pcs.murali@gmail.com
*Corresponding author

Arun Kumar
School of Aerospace, Mechanical and Manufacturing Engineering,
RMIT University,
124 LaTrobe Street,
Melbourne, Victoria 3000, Australia
E-mail: a.kumar@rmit.edu.au

Tibor Csendes
Department of Computational Optimisation,
University of Szeged,
H-6701 Szeged, P.O. Box 652, Hungary
E-mail: csendes@inf.u-szeged.hu

Janos Posfai
New England Biolabs Inc.,
Ipswich, MA, 01938, USA
E-mail: posfai@neb.com

Abstract: We propose an efficient interval partitioning algorithm to solve the continuous
constraint satisfaction problem (CSP). The method comprises a new dynamic tree search
management system that also invokes local search in selected subintervals. This approach is
compared with two classical tree search techniques and three other interval methods. We study
some challenging kinematics problems for testing the algorithm. The goal in solving kinematics
problems is to identify all real solutions of the system of equations defining the problem. In other
words, it is desired to find all object positions and orientations that satisfy a coupled non-linear
system of equations. The kinematics benchmarks used here arise in industrial applications.

Keywords: continuous constraint satisfaction problem; interval partitioning with local search;
tree search strategies; kinematics problems.

Reference to this paper should be made as follows: Pedamallu, C.S., Kumar, A., Csendes. T. and
Posfai, J. (2011) ‘An interval partitioning algorithm for constraint satisfaction problems’, Int. J.
Modelling, Identification and Control, Vol. 14, Nos. 1/2, pp.133–140.

Biographical notes: Chandra Sekhar Pedamallu received his BTech in Mechanical Engineering
from Nagarjuna University, India, in 1999, MTech in Industrial Management from Indian
Institute of Technology Madras, India, in 2001 and PhD from the Division of Systems
Engineering and Management, Nanyang Technological University, Singapore, in 2007. He
worked as a Visiting Scientist and Project Leader in New England Biolabs Inc., USA and Indonet
Global Limited (Division of Subuthi Overseas Inc., USA), India, respectively. He is currently
working as a Postdoctoral Research Fellow in Bioinformatics at New England Biolabs, Inc.,
USA. His research interests are in the areas of bioinformatics, computational biology, global
optimisation, parallel algorithms, interval-symbolic applications in non-linear programming and
applications of meta-heuristics on OR problems. He is an editorial board member of three
research journals and founding/active member of several European working groups on OR.

Arun Kumar is a Senior Lecturer of Manufacturing Engineering in the School of Aerospace,
Mechanical and Manufacturing Engineering at RMIT University, Melbourne, Australia. He was
previously employed as an Associate Professor of Systems and Engineering Management at
Nanyang Technological University in Singapore and Associate Professor of Decision Sciences at

134 C.S. Pedamallu et al.

the State University of New Jersey. He obtained his PhD in Operations Research from Virginia
Tech. His research interests are in the applications of probability to problems in reliability,
logistics and healthcare systems. He is a member of INFORMS, IEEE, and European Simulation
Society.

Tibor Csendes received his MSc and PhD in Mathematics from the Jzsef Attila University,
Hungary, in 1980 and 1985; Candidate of Sciences and Doctor of Science from the Hungarian
Academy of Sciences, Hungary, in 1993 and 2007. He is the Head of Department, Full Professor
in the Institute of Informatics; and at present, the General and Scientific Vice Dean of the Faculty
of Science and Informatics of the University of Szeged, Hungary. He is an expert in the areas of
interval methods, global optimisation, and scientific computing. He has co-authored over 70 peer
reviewed articles and some books, and edited several special issues of scientific journals. He is an
editor of five research journals, and the President of the Hungarian Operations Research Society.

Janos Posfai earned his degrees in Mathematics and Physics in Hungary. Since 1987, he has been
working on molecular biology related problems, applying the tools of mathematics and
computer science in the analysis of DNA and amino acid sequences. His main interests are
recognition of functional patterns in proteins and in DNA, identification and classification of
restriction-modification systems, genome analysis and genomic data mining. He held various
positions at EMBL Heidelberg, at University of California, San Francisco, at Cold Spring Harbor
Laboratory, New York. Currently, he is a Senior Scientist of New England Biolabs, USA.

1 Introduction

Continuous constraint satisfaction problems (CSPs) can
represent real world applications, ranging from chemical
engineering to aircraft design. A CSP is defined by:

• a set of variables, V = {x1, …, xn}

• a set of constraints, C = {c1, …, cr}, for the variables
xi of the problem: numeric constraints are linear or
non-linear equations or inequalities. Let us denote
them as

()1, ..., 0 1, ..., ,i ng x x i k≤ =

()1, ..., 0 1, ..., ,i nh x x i k r= = +

and

• variable domains [,]i i iD D D= for xi, i = 1, …, n.

A solution of a CSP is an element (x∗) of the search space
(X = D1 × ⋅⋅⋅ × Dn), that satisfies all equations and
inequalities simultaneously.

We aim at identifying all real feasible solutions (x∗) for
C and propose an interval partitioning (IP) method to
achieve this goal. Neumaier et al. (2005) compared the
performance of major complete/global and incomplete/local
solvers using an extensive set of CSPs. In particular,
interval methods are complete because they never discard a
sub-domain that possibly contains feasible solutions. This is
a consequence of the proper use of interval arithmetic; see
Alefeld and Herzberger (1983) for a complete description of
interval extension, and Hansen (1992), Neumaier (1990),
and Ratschek and Rokne (1995) for descriptions of
interval methods. Conventionally, interval and non-interval
partitioning methods use local search procedures to identify
good feasible solutions. By principle, an IP method
continues to subdivide a given box (sub-domain) until either
it becomes infeasible and discarded by the cut-off test, or it

becomes a small enclosure with the potential to contain a
feasible solution. During the partitioning process, an
increasing number of distinct feasible solutions are
identified within promising boxes. A box is subject to local
search only once, because after that it gets re-partitioned
again and feasible solutions are searched in its child boxes.
Therefore, it is not important whether or not a box contains
multiple solutions, because the partitioning will continue
until it is verified that the child box does not contain
any other solutions. Lebbah (2003) described an interval
method, interval constraints solver (ICOS) that is praised for
its reliability in finding solutions of CSPs. However, a note
is made on its slow convergence by Neumaier et al. (2005).
Furthermore, results for ICOS are reported for the
identification of a first feasible solution rather than for all
feasible solutions.

An important issue in enhancing the convergence rate of
an interval method is the selection of the subinterval to
explore. This relates to the box ranking decision in the
search tree. Here, we propose a new dynamic stage-wise
tree search algorithm for box ranking. The latter approach
also integrates a local search procedure feasible sequential
quadratic programming, FSQP (Lawrence et al., 1997), in
IP. We compare this approach to classical depth-first and
best-first tree search techniques. Further, we propose a
simple parallel variable domain bisection scheme to
accelerate convergence. The minimum number of variables
that are partitioned in parallel is two and the rule for
bisecting the given subinterval along a variable is as
follows. Every interval component whose calculated weight
is more than the average weight of all candidate variables is
bisected. These weights are determined according to certain
criteria related to the number of constraints in the
expression of which that the variable appears and the type of
mathematical functions that it takes place. This partitioning
scheme seems to be quite effective in reducing CPU time

 An interval partitioning algorithm for constraint satisfaction problems 135

and it makes IP a viable method for identifying all solutions
of the CSP.

To evaluate the proposed IP, we conduct tests on a
number of kinematics benchmarks published in COPRIN
(2004). We compare the proposed tree management
approach with the two classical strategies and also compare
our results with ALIAS (COPRIN, 2004), a comprehensive
set of C++ libraries that include 2B/3B box and hull
consistency variants), ICOS (Lebbah, 2003) and QUAD [for
two problems reported in Lebbah et al. (2003)]. ALIAS and
QUAD results are provided for identifying all solutions,
whereas ICOS results are reported for identifying a single
solution.

2 The IP algorithm

An IP algorithm is basically a branch and bound procedure,
and the domain X is partitioned into smaller boxes Y to be
investigated. All such boxes Y are placed in a pending list.
When the leading box is taken from the pending list, the
lower and upper bounds of each interval constraint are
calculated using interval arithmetic. The following criteria
hold for assessing the feasibility of a box Y.

• Infeasible boxes: When a constraint’s interval bounds
indicate infeasibility: If () 0iG Y > or 0 ∉ Hi(Y) for
any i, then box Y is called an infeasible box and it is
discarded. Here, ()iG Y denotes the lower bound for the
inclusion function of gi and ()iG Y denotes its upper
bound. Gi(Y) denotes the range of the inclusion function
for gi. A similar notation holds for hi.

• Feasible boxes: When all constraints are consistent over
a given box Y, the box is deleted from the pending list
and stored as a feasible box (or as a feasible enclosure
of a small tolerance limit).

• Indeterminate boxes: When at least one constraint is
indeterminate: If (() 0iG Y < and () 0)iG Y > or
0 ∈ Hi(Y) ≠ 0 for any i and all other constraints
are consistent or indeterminate, then box Y is
indeterminate.

In equations (1) and (2) we provide the definition of the
uncertainty degree (,i

YPG or)i
YPH related to a constraint i

that is indeterminate over the box Y.

(),i
Y iPG G Y= (1)

and

()() .i
Y i iH YPH H Y= + (2)

We also define the total uncertainty degree of a box, IFY, as
the sum of the uncertainty degrees of equalities and
inequalities that are indeterminate over Y.

Indeterminate boxes are partitioned by dividing at least
two variables that have the largest width component
intervals in the box. The resulting child boxes are placed in

the pending list to be investigated. The search stops either
when the theoretical number of solutions is identified (if it is
known a priori) or when the pending list is exhausted.
Below we provide the basic IP algorithm.

2.1 Basic IP procedure

Step 0 Set the starting box Y = X. Set list of pending
boxes, B = {Y}.

Step 1 If 0,B = / or if the a priori known number of
solutions are found, then STOP and report all
feasible solutions found. Else, pick the first box
Y ∈ B.
1.1 If Y is infeasible, remove Y from B and repeat

Step 1.
1.2 If Y is sufficiently small, store it as a possible

feasible solution enclosure. Remove Y from
B and repeat Step 1.

Step 2 Select directions to partition. Set v to be the
number of interval components to partition.

Step 3 Subdivide Y into 2v non-overlapping child
boxes.

Step 4 Remove Y from B, add the 2v child boxes to B. Go
to Step 1.

We want to identify those boxes in the pending list that
contain consistent solutions while the branch and bound tree
expands. Therefore, it is important to manage the pending
list of boxes (i.e., the branch and bound tree) efficiently and
investigate them in proper order so as to improve the
convergence rate of the algorithm and discover as many
feasible solutions as possible in the early stages of the
search. Here, we propose a new tree management scheme
and describe it as follows.

The tree management system in the proposed
IP maintains a stage-wise branching scheme that is
conceptually similar to the iterative deepening approach
(Korf, 1985). The iterative deepening approach explores all
nodes generated at a given tree level (stage) before it starts
assessing the nodes at the next stage. Exploration of boxes
at the same stage can be done in any order, the sweep may
start from the best-first box, from the one on the most right,
or most left of that stage. On the other hand, in the proposed
adaptive tree management system, it is permitted to grow a
sub-tree forming partial succeeding tree levels from a node
(a parent box) at the current stage and to explore nodes in
this sub-tree before exhausting the nodes at the current
stage. That is, a box is selected from the children of the
same parent with the maximal IFY value as a criterion (this
is actually the worst-first rule, but in classical terms we
name it as best-first), and the child box is partitioned again
continuing to build the same sub-tree. This sub-tree grows
until the total area deleted (TAD) value fails to improve by
discarding boxes in two consecutive partitioning iterations
in this sub-tree.

136 C.S. Pedamallu et al.

Such failure triggers a call to local search where all
boxes out of which no local search were started are
processed by the procedure FSQP, after which they are
placed back in the list of pending boxes. Exploration is then
resumed among nodes at the current stage. Feasible
solutions found by FSQP are stored. As mentioned
previously, whether or not FSQP fails to find a solution IP
continues to partition the box since it passes the cut-off test
(test for feasibility) as long as it may contain a solution.
Finally, the algorithm encloses potential solutions in
sufficiently small boxes where local search can identify
them. In IP, FSQP acts as a catalyst that occasionally scans
larger boxes to identify solutions at earlier stages of the
search. The proposed IP algorithm is described below.

2.2 IP with adaptive tree management

Step 0 Set tree stage, s = 1, and future stage index, r = 1.
Set non-improvement counter for TAD: nc = 0. Set
Bs, the list of pending boxes at stage s be equal to
{X}, and 1 0.sB + = /

Step 1 If 0sB = / and the current lower bound, CLB has
not improved compared to the stage s – 1, or, both

0sB = / and 1 0,sB + = / then STOP.

Else, if 0sB = / and 1 0,sB + = / then set s ← s + 1,
r ← s, and continue. Pick the first box Y in Bs and
continue.
1.1 If Y is infeasible or suboptimal, discard Y,

and go to Step 1.
1.2 If Y is sufficiently small, evaluate m, its

midpoint, and if it is a feasible improving
solution, update CLB, reset nc ← 0, and store
m. Remove Y from Bs and go to Step 1.

Step 2 Select coordinate direction(s) along which partition
is to be made (use the subdivision direction
selection rule IIR). Set v = number of variables to
partition.

Step 3 Subdivide Y into 2v non-overlapping child boxes.
Check TAD, if it improves, then reset nc ← 0, else
set nc ← nc + 1.

Step 4 Remove Y from Bs, add the 2v new boxes to Br.
4.1 If nc > 2, apply FSQP to all (previously

unprocessed by FSQP) boxes in Bs and Bs+1,
and reset nc ← 0. If FSQP is called for the
first time in stage s, then set r ← s + 1.

4.2 Go to Step 1. The adaptive tree management
system in IP is illustrated in Figure 1 on a
small tree where node labels indicate the
order of visiting the nodes.

As shown in the algorithm above, the adaptive tree
management scheme maintains two lists of boxes, Bs and
Bs+1 that are the lists of boxes to be explored at the current
stage s and the next stage s + 1, respectively. Initially, the
set of indeterminate boxes in the pending list Bs consists

only of X and Bs+1 is empty. As child boxes of a selected
parent box are added to a list, they are ordered in
descending order of IFY. We choose this ranking strategy,
because the algorithm aims to delete as many boxes as
possible in the early stages of the search. Boxes in the
sub-tree stemming from the selected parent at the current
stage are explored and partitioned until there is no
improvement in TAD in two consecutive partitioning
iterations. At that point, partitioning of the selected parent
box is stopped and all boxes that have not been processed
by local search are sent to FSQP module and processed to
identify feasible point solutions if possible. From that
moment onwards, child boxes generated from any other
selected parent in Bs are stored in Bs+1 irrespective of further
calls to FSQP in the current stage. When all boxes in Bs
have been assessed (discarded, stored as feasible boxes, or
partitioned), the search moves to the next stage, s + 1,
starting to explore the boxes stored in Bs+1. In this manner, a
smaller number of boxes (those in the current stage) are
maintained in primary memory and the search is allowed to
go down to deeper levels within the same sub-tree,
increasing the chances to discard boxes. On the other hand,
by enabling the search to explore horizontally across boxes
at the current stage, it might be possible to find feasible
solutions faster by not partitioning parent boxes that are not
so promising.

Figure 1 Implementation of the adaptive iterative deepening
procedure

The tree continues to grow in this manner taking up the list
of boxes of the next stage after the current stage’s list of
boxes is exhausted. The algorithm stops when there are no
more boxes in Bs and Bs+1. As mentioned earlier, in case the
exact number of solutions is known, the performance
measure of the algorithm might then be the amount of CPU
time taken to identify them all. Otherwise, the number of
solutions found within limited CPU time would indicate the
success of the algorithm.

 An interval partitioning algorithm for constraint satisfaction problems 137

3 Background of kinematics problems

3.1 Description of the problems

The continuous CSP is a core topic in many real world
engineering applications including kinematic analysis.
Kinematics is fundamental in the design and control of
robot manipulators (used particularly in contact analysis,
assembly planning, position analysis, and path planning)
since performance is achieved through the movement of
links/legs whose geometry is crucial. Geometric kinematics
calculates the state of a robot from measurements (direct
kinematics) or poses (inverse kinematics), and provides
answers for associated questions on accuracy and
singularities. These problems require the identification of all
object positions and orientations that satisfy a coupled
non-linear system of equations (Dietmaier, 1998; Tsai and
Morgan, 1985; Fu et al., 2006; Loudini et al., 2007). As a
brief introduction, we provide a description of the inverse
position problem for a six-revolute-joint problem. The
inverse position problem for a six-revolute-joint problem in
mechanics (referred to as test problem Kin2 later on) is
illustrated in Figure 2.

Figure 2 A general 6-R manipulator

Figure 3 The basic notation used in the optimisation problem

A 6R manipulator has six moving links, numbered
sequentially from 2 to 6, as shown in Figure 2 (Tsai and
Morgan, 1985). Link 1 is designated as the base (fixed to
ground) and link 6 as the hand or the manipulator. Every
two neighbouring links are connected by a joint that is
associated with a joint axis Zi, i = 1 to 6. Let Zi, and Zi+1 be
two adjacent joint axes and HiOi+1 be the directed common
normal between Zi, and Zi+1. Hi is the intersection of HiOi+1
and Zi, and Oi+1 is the intersection of HiOi+1 and Zi+1. Then
one can define the following link parameters shown in
Figure 3 (Hartenberg and Denavit, 1964):

ai The offset distance from the common normal HiOi+1.

αi The angle to rotate the axis Zi about the common
normal HiOi+1 so that Zi is parallel to Zi+1. The sign of
the rotation is given by the right hand screw rule with
the screw taken along the normal HiOi+1.

di The distance between the two normal Hi–1Oi and HiOi+1
measured from Zi. The sign of di is positive if OiHi
points to the positive Zi direction. Otherwise, di is
negative.

Θi The angle with which to rotate the extended line of
Hi–1Oi about Zi so that the extended line of Hi–1Oi is
parallel to HiOi+1. The sign of rotation is given by the
right hand screw with the screw pointing along the
positive Zi-axis.

If the ith joint is revolute, then ai, di, and i are constant while
i is variable. If the ith joint is prismatic, then ai, αi, and Θi
are constant while di is a variable.

A coordinate system (Xi, Yi, Zi) is attached to each link
of the manipulator as shown in Figure 2. In each coordinate
system, the Zi-axis is defined to align with the ith joint axis,
the Xi-axis is the one along the extended line of Hi–1Oi; and
the Yi-axis is defined according to the right-hand screw rule.
The first coordinate system is fixed to ground. Since the
common normal H0O1 does not exist, the X1-axis is chosen
perpendicular to Z1, in an arbitrary manner. Also, a seventh
coordinate system is attached to the free-end to specify the
position of the hand. The Z7-axis lies in the direction from
which the hand would approach an object as shown in
Figure 2. The X7-axis is defined by the common normal
between the Z6 and Z7 axes, and the Y7-axis is defined
according to the right-hand screw rule again.

The equations representing the 6R problem are
derived by first defining the coordinates of a point P in the
ith and (i + 1)st coordinate systems as (, ,)

i i ix y zp p p and

1 1 1
(, ,),

i i ix y zp p p
+ + +

 respectively. These two vectors are

related to the hand position and orientation vectors by the
equations of the form: pi = Aipi+1, where Ai is a matrix whose
elements are ci = cosΘi, si = sinΘi, λi = cos αi, and μi = sin
αi. The inverse transformation is written as: 1

1 .i i ip A p−
+ =

By applying matrix transformation to each pair of
coordinate systems between two successive links and
proceeding from link 7 to link 1, the following equation
is obtained: p1 = A1A2A3A4A5A6p7. Since an equivalent
transformation matrix defines the relationship between the

138 C.S. Pedamallu et al.

coordinates of any point in the seventh system p7, and that
of the same point expressed in the first system, p1, the
matrix Aeq = A1A2A3A4A5A6 is known when the position and
orientation of the hand is specified. Let ρ (ρx, ρy, ρz) be the
position vector from the origin of the first system to the
origin of the seventh system as shown in Figure 2; and
l(lx, ly, lz), m(mx, my, mz) and n(nx, ny, nz) be three mutually
perpendicular unit vectors aligned with the X7, Y7, and Z7
axes, respectively. Then, when ρ, l, m, and n are given in the
first system, the equivalent A matrix consists of the elements
ρ, l, m, and n. By applying coordinate transformation and
variable elimination, one can obtain a system of eight
non-linear equations with eight unknowns expressed in the
system of equations as given below (Tsai and Morgan,
1985), where 1 ≤ i ≤ 4.

2 2
1

1 1 3 2 1 4 3 2 3 4 2 4

5 5 7 6 5 8 7 6 7 8 6 8 9 1

10 2 11 3 12 4 13 5 14 6 15 7

16 8 17 8

1 0

0
1 1

i i

i i i i

i i i i i

i i i i i i

i i

i

x x
a x x a x x a x x a x x

a x x a x x a x x a x x a x
a x a x a x a x a x a x

a x a x
x

++ − =

+ + +

+ + + + +

+ + + + + +

+ + =

− ≤ ≤

 (3)

The variables xi and xi+1 represent the cosine (c) and sine (s)
of the angle of the ith revolute joint to rotate (extended line
of Hi–1Oi about Zi so that the extended line Hi–1Oi is parallel
to HiOi+1) as illustrated in Figure 2. (The variables x1, x2, x3,
x4, x5, x6, x7, and x8 actually represent the c1, s1, c2, s2, c4, s4,
c5, and s5, respectively). In equation (1), the coefficients

ika

are defined as the manipulator parameters. For more details,
we refer to Morgan and Sommese (1987).

4 Numerical evaluation

4.1 Test problems: kinematics applications

As stated before, kinematics is fundamental in the design
and control of robot manipulators (used in contact analysis,
assembly planning, position analysis, path planning) since
performance is achieved through the movement of links/legs
whose geometry is crucial. Geometric kinematics calculates
the state of a robot from measurements (direct kinematics)
or poses (inverse kinematics), and answers associated
questions of accuracy and singularities. These problems
require the identification of all object positions and
orientations that satisfy a coupled non-linear system of
equations (Dietmaier, 1998; Lebbah et al., 2003). Two main
classes of interval-based methods have been applied in the
robotics field: interval Newton (see Castellet, 1998; Merlet,
2001; Rao et al., 1998; Pedamallu, 2007); and box
consistency techniques (Merlet, 2004; Van-Hentenryck
et al. (1997a, 1997b). Both methods are used within the
basic IP. Researchers have applied these methods to solve
problems such as the 6R inverse kinematics problem, the
direct kinematics of the Stewart-Gough platform, the
general single-loop inverse kinematics and singularity
analysis/mechanism design of parallel manipulators.

Six kinematics-robotics problems are used in the
comparison, some of which are quite challenging. Here, we
discuss some of their features. Direct kinematics (COPRIN,
2004) has two close solutions that are hard to isolate. This
problem determines the pose parameters of a parallel
robot platform and involves eight highly non-linear
and inter-dependent trigonometric equations with three
independent quadratic equations. Other difficult kinematics
problems included here and not covered in COPRIN (2004)
but solved by QUAD (Lebbah et al., 2003) are 6R (Kin2)
and Stewart-Gough. Kin2 is a quadratic problem with ten
real solutions and it describes the inverse position problem
for six-revolute-joint. The Stewart-Gough is a manipulator
configuration problem that has three independent constraints
that might make constraint propagation based filtering
methods such as 2B ineffective [as demonstrated in Lebbah
et al., (2003)]. Numerica (described in Van-Hentenryck
et al., 1997a), in which a box consistency technique is
included) made more than 10,000,000 narrowing iterations
to solve this problem. Another benchmark is the
trigonometric Kin1-modified problem that describes the
inverse kinematics of an elbow manipulator. Puma
represents the inverse kinematics of a 3R robot whereas the
KinCox is the simple inverse position problem. In Table 1,
all test problems are listed with their details (number of
dimensions, non-linear and linear equations, number of
known feasible solutions), and providing their source
references.

Table 1 Characteristics of the kinematics test problems

Problem Size # of sol. Source

8, 8, 0 10 Lebbah et al.
(2003)

Kin2

 Van-Hentenryck
et al. (1997a)

Kin1-modified 6, 6, 0 16 COPRIN (2004)
KinCox 4, 4, 0 2 COPRIN (2004)
Direct kinematics 11, 11, 0 2 COPRIN (2004)
Stewart-Gough 9, 6, 3 2 Lebbah et al.

(2003)
Puma 8, 7, 1 16 COPRIN (2004)

Notes: The size of the problem is expressed as the
number of dimensions, the number of non-linear,
and linear equations, respectively. The problems
called Kin1-modified and direct kinematics are
trigonometric, the others are quadratic.

4.2 Results

The impact of the adaptive tree management approach in IP
is measured against depth-first and best-first branching
strategies. The best-first strategy used here also ranks boxes
according to maximum IFY criterion, because IP aims to
discard infeasible boxes as soon as possible. To allow a
wider comparison, we also provide the published results of
the following symbolic-interval methodologies: ALIAS
(COPRIN, 2004), QUAD (Lebbah et al., 2003), and ICOS

 An interval partitioning algorithm for constraint satisfaction problems 139

(Lebbah, 2003) wherever results are available (Neumaier
et al., 2005; Shcherbina et al., 2002). As mentioned
previously, ALIAS is an extensive interval-symbolic
software library where many of the local and global interval
and symbolic filtering methods co-exist with special tools
for univariate polynomials. QUAD is designed for filtering
quadratic systems, its first stage involves linearisation, and
the second stage uses a simplex algorithm to narrow the
bounds on variables in the resulting linear programme. The
authors show for their two illustrative examples (also
included here) that QUAD is more efficient than the 2B and
3B consistency techniques and they compare their method
with Numerica. ICOS is reported to be the most reliable
method for the CSP among those compared by Neumaier
et al. (2005), however, the published results are only for
finding a single solution rather than all solutions.

We provide the summary of results in Table 2. In the
first row, we convey the average CPU times necessary
measured in standard time units. We restricted IP’s run time
by 1.31 standard time units [STU as defined in Shcherbina
et al., 2002). One STU is equivalent to 318.369 seconds on
our machine. All runs are executed on a PC with 256 MB
RAM, 1.7 GHz P4 Intel CPU, on Windows platform. The IP
code is developed with Visual C++ 6.0 interfaced with the
PROFIL interval arithmetic library (Knüppel, 1994) and
FSQP.

The second row shows the average number of tree
stages in which the complete set of solutions is found. The
third row conveys the number of FSQP calls. In the fourth
row, we provide the average percentage of feasible solutions
found with regard to the complete solution set. The fifth row
indicates the average number of function calls. In the sixth
row, we indicate the number of problems whose complete
feasible solution set could not be identified within the given
time limit. The seventh row shows the number of problems
where the complete solution set is obtained within the
shortest CPU time. From these results, it is observed that the
proposed stage wise tree management strategy is quite
effective as compared to other methods. Although the
best-first strategy requires less function calls and FSQP
calls, it is slower than the proposed adaptive method due its
long pending list of boxes that need to be re-arranged at
each update and also due to memory usage. The depth-first
approach is quite inefficient in all respects as expected.
ALIAS/QUAD had the best results for PUMA and Kin2.
The reason for it is that these problems have ladder type
constraints that are very suitable for constraint propagation,
and the domain of one variable is reduced each time. For
trigonometric expressions the filtering methods do not
produce good results. It is interesting that QUAD, which is
particularly developed for quadratic problems, is not as
successful as IP solving the quadratic Stewart-Gough
problem. ICOS is slower than ALIAS/QUAD in the four
problems where it is comparable. When comparing IP with
other interval methods it should be kept in mind that they all
have a single common ground: the use of interval
assessment. The proposed IP and these methods better
complement each other rather than compete.

5 Conclusions

A generic collaborative methodology that integrates basic IP
with local search (FSQP) is developed here to solve the
CSP. The call for FSQP in IP is organised by an adaptive
tree management system developed here. The latter system
involves a stage-wise tree search: after the box to be
partitioned is selected, the investigation is carried out only
within the sub-tree under the selected parent box until it is
decided that the infeasible area discarded does not improve
in a number of consecutive iterations. At that point, all
boxes under the sub-tree are sent as a batch to FSQP. The
search then goes back to unexplored boxes in the current
stage. In this sense, the depth of the sub-tree is bounded by
the area removal performance criterion and its width is
restricted by the number of parallel boxes in the sub-tree
that grows under the selected box.

Table 2 Summary of results

Indicator Adapative Best-first Depth-first ALIAS/
QUAD ICOS

CPU 0.169 0.423 0.664 0.437 0.705
NTS 1.667 - - - -
NF 852.83 241.83 2,021.50 - -
PSF 100.00 96.00 65.00 - -
NFE 20,540 3,159 316,609 - -
NPF 0 1 3 1 2
NMT 5 0 0 3 0
NUP 0 0 0 0 2

Notes: CPU stands for the average CPU time needed (in
STU), NTS for the average number of tree stages,
NF for the average number of FSQP calls, PSF for
the average percents of cases when the solution has
been found, NFE for the average number of function
evaluations, NPF for the number of problems with
all feasible solutions found within the given time
limit, NMT for the number of problems solved with
the shortest CPU time, and NUP for number of
reported unsolved problems.

Computational test results on a number of kinematics
benchmarks show that the collaborative method is able to
converge faster than best-first and depth-first tree search
strategies. The proposed IP seems to be a promising
approach with a potential for further improvement by the
application of advanced symbolic-interval techniques such
as the ones used in ALIAS. The presented methodology can
be used efficiently for solving constrained optimisation
problems (see also Pedamallu et al., 2007a, 2007b).

Acknowledgements

We wish to thank Professor Andre Tits (Electrical
Engineering and the Institute for Systems Research,
University of Maryland, USA) for providing the source
code of CFSQP. Also, we wish to thank Professor Linet
Ozdamar and Dr. Tamás Vinkó for their valuable comments
and suggestions.

140 C.S. Pedamallu et al.

References
Alefeld, G. and Herzberger, J. (1983) Introduction to Interval

Computations, Academic Press Inc., New York, USA.
Castellet, A. (1998) ‘Solving inverse kinematics problems using an

interval method’, PhD Thesis, Universitat Politechnica de
Catalunya, Barcelona, Spain.

COPRIN (2004) Available at
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/.

Dietmaier, P. (1998) ‘The Stewart-Gough platform of general
geometry can have 40 real postures’, Proceedings of ARK,
pp.7–16, Strobl, Austria.

Fu, S., Yao, Y., and Shan, T. (2006) ‘Non-linear robust control
with partial inverse dynamic compensation for a Stewart
platform manipulator’, International Journal of Modelling,
Identification and Control, Vol. 1, No. 1, pp.44–51.

Hansen, E. (1992) Global Optimization Using Interval Analysis,
Marcel Dekker, New York, USA.

Hartenberg, R.S. and Denavit, J. (1964) Kinematic Synthesis of
Linkages, McGraw-Hill, New York, USA.

Knüppel, O. (1994) ‘PROFIL/BIAS – a fast interval library’,
Computing, Vol. 53, Nos. 3–4, pp.277–287.

Korf, R.E. (1985) ‘Depth-first iterative deepening: an optimal
admissible tree search’, Artificial Intelligence, Vol. 27, No. 1,
pp.97–109.

Lawrence, C.T., Zhou, J.L. and Tits, A.L. (1997) ‘User’s guide for
CFSQP version 2.5: a code for solving (large scale)
constrained nonlinear (minimax) optimization problems,
generating iterates satisfying all inequality constraints’,
Institute for Systems Research, University of Maryland,
College Park, MD.

Lebbah, Y. (2003) ‘ICOS (interval constraints solver)’,
WWW-document, available at
http://sites.google.com/site/ylebbah/icos.

Lebbah, Y., Rueher, M. and Michel, C. (2003) ‘A global filtering
algorithm for handling systems of quadratic equations and
inequalities’, Lecture Notes Computer Science, Vol. 2470,
pp.109–213.

Loudini, M., Boukhetala, D. and Tadjine, M. (2007)
‘Comprehensive mathematical modelling of a lightweight
flexible link robot manipulator’, Int. J. of Modelling,
Identification and Control, Vol. 2, No. 4, pp.313–321.

Merlet, J-P. (2001) ‘An improved design algorithm based on
interval analysis for parallel manipulator with specified
workspace’, Proc. of the IEEE Int. Conf. on Robotics and
Automation, pp.1289–1294, Seoul, South Korea.

Merlet, J-P. (2004) ‘Solving the forward kinematics of a
Gough type parallel manipulator with interval analysis’,
The International Journal of Robotics Research, Vol. 23,
No. 3, pp.221–235.

Morgan, A.P. and Sommese, A. (1987) ‘Computing all solutions to
polynomial systems using homotopy continuation’, Appl.
Math. Comput., Vol. 24, No. 2, pp.115–138.

Neumaier, A. (1990) Interval Methods for Systems of Equations
Encyclopedia of Mathematics and its Applications,
Cambridge University Press, Cambridge.

Neumaier, A., Shcherbina, O., Huyer W. and Vinkó, T. (2005)
‘A comparison of complete global optimization solvers’,
Mathematical Programming, Vol. 103, No. 2, pp.335–356.

Pedamallu, C.S. (2007) ‘New interval partitioning algorithms
for global optimization problems’, PhD thesis, Nanyang
Technological University, Singapore.

Pedamallu, C.S., Ozdamar, L. and Csendes, T. (2007a) ‘An
interval partitioning approach for continuous constrained
optimization’, in Models and Algorithms in Global
Optimization, Springer, USA.

Pedamallu, C.S., Ozdamar, L. and Csendes, T. (2007b) ‘Symbolic
interval inference approach for subdivision direction selection
in interval partitioning algorithms’, J. Global Optimization,
Vol. 37, No. 2, pp.177–194.

Rao, R.S., Asaithambi, A. and Agrawal, S.K. (1998) ‘Inverse
kinematic solution of robot manipulators using interval
analysis’, ASME Journal of Mechanical Design, Vol. 120,
No. 1, pp.147–150.

Ratschek, H. and Rokne, J. (1995) ‘Interval methods’, in Horst, R.
and Pardalos, P.M. (Eds.): Handbook of Global Optimization,
pp.751–828, Kluwer Academic Publisher, The Netherlands.

Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X-H. and
Nguyen, T-V. (2002) ‘Benchmarking global optimization and
constraint satisfaction codes’, Global Optimization and
Constraint Satisfaction: First International Workshop on
Global Constraint Optimization and Constraint Satisfaction,
Valbonne-Sophia Antipolis, France.

Tsai, L.W. and Morgan, A.P. (1985) ‘Solving the kinematics
of the most general six and five-degree-of-freedom
manipulators by continuation methods’, Journal of
Mechanisms, Transmissions, and Automation in Design,
Vol. 107, No. 18, pp.189–200.

Van-Hentenryck, P., Michel, L. and Deville, Y. (1997a) Numerica:
a Modeling Language for Global Optimization, MIT Press,
London, England.

Van-Hentenryck, P., McAllester, D. and Kapur, D. (1997b)
‘Solving polynomial systems using branch and prune
approach’, SIAM Journal on Numerical Analysis, Vol. 34,
No. 2, pp.797–827.

