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1 Introduction 

Continuous constraint satisfaction problems (CSPs) can 
represent real world applications, ranging from chemical 
engineering to aircraft design. A CSP is defined by: 

• a set of variables, V = {x1, …, xn} 

• a set of constraints, C = {c1, …, cr}, for the variables  
xi of the problem: numeric constraints are linear or  
non-linear equations or inequalities. Let us denote  
them as 

( )1, ..., 0 1, ..., ,i ng x x i k≤ =  

( )1, ..., 0 1, ..., ,i nh x x i k r= = +  

and 

• variable domains [ , ]i i iD D D=  for xi, i = 1, …, n. 

A solution of a CSP is an element (x∗) of the search space  
(X = D1 × ⋅⋅⋅ × Dn), that satisfies all equations and 
inequalities simultaneously. 

We aim at identifying all real feasible solutions (x∗) for 
C and propose an interval partitioning (IP) method to 
achieve this goal. Neumaier et al. (2005) compared the 
performance of major complete/global and incomplete/local 
solvers using an extensive set of CSPs. In particular, 
interval methods are complete because they never discard a 
sub-domain that possibly contains feasible solutions. This is 
a consequence of the proper use of interval arithmetic; see 
Alefeld and Herzberger (1983) for a complete description of 
interval extension, and Hansen (1992), Neumaier (1990), 
and Ratschek and Rokne (1995) for descriptions of  
interval methods. Conventionally, interval and non-interval 
partitioning methods use local search procedures to identify 
good feasible solutions. By principle, an IP method 
continues to subdivide a given box (sub-domain) until either 
it becomes infeasible and discarded by the cut-off test, or it 

becomes a small enclosure with the potential to contain a 
feasible solution. During the partitioning process, an 
increasing number of distinct feasible solutions are 
identified within promising boxes. A box is subject to local 
search only once, because after that it gets re-partitioned 
again and feasible solutions are searched in its child boxes. 
Therefore, it is not important whether or not a box contains 
multiple solutions, because the partitioning will continue 
until it is verified that the child box does not contain  
any other solutions. Lebbah (2003) described an interval 
method, interval constraints solver (ICOS) that is praised for 
its reliability in finding solutions of CSPs. However, a note 
is made on its slow convergence by Neumaier et al. (2005). 
Furthermore, results for ICOS are reported for the 
identification of a first feasible solution rather than for all 
feasible solutions. 

An important issue in enhancing the convergence rate of 
an interval method is the selection of the subinterval to 
explore. This relates to the box ranking decision in the 
search tree. Here, we propose a new dynamic stage-wise 
tree search algorithm for box ranking. The latter approach 
also integrates a local search procedure feasible sequential 
quadratic programming, FSQP (Lawrence et al., 1997), in 
IP. We compare this approach to classical depth-first and 
best-first tree search techniques. Further, we propose a 
simple parallel variable domain bisection scheme to 
accelerate convergence. The minimum number of variables 
that are partitioned in parallel is two and the rule for 
bisecting the given subinterval along a variable is as 
follows. Every interval component whose calculated weight 
is more than the average weight of all candidate variables is 
bisected. These weights are determined according to certain 
criteria related to the number of constraints in the 
expression of which that the variable appears and the type of 
mathematical functions that it takes place. This partitioning 
scheme seems to be quite effective in reducing CPU time 
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and it makes IP a viable method for identifying all solutions 
of the CSP. 

To evaluate the proposed IP, we conduct tests on a 
number of kinematics benchmarks published in COPRIN 
(2004). We compare the proposed tree management 
approach with the two classical strategies and also compare 
our results with ALIAS (COPRIN, 2004), a comprehensive 
set of C++ libraries that include 2B/3B box and hull 
consistency variants), ICOS (Lebbah, 2003) and QUAD [for 
two problems reported in Lebbah et al. (2003)]. ALIAS and 
QUAD results are provided for identifying all solutions, 
whereas ICOS results are reported for identifying a single 
solution. 

2 The IP algorithm 

An IP algorithm is basically a branch and bound procedure, 
and the domain X is partitioned into smaller boxes Y to be 
investigated. All such boxes Y are placed in a pending list. 
When the leading box is taken from the pending list, the 
lower and upper bounds of each interval constraint are 
calculated using interval arithmetic. The following criteria 
hold for assessing the feasibility of a box Y. 

• Infeasible boxes: When a constraint’s interval bounds 
indicate infeasibility: If ( ) 0iG Y >  or 0 ∉ Hi(Y) for  
any i, then box Y is called an infeasible box and it is 
discarded. Here, ( )iG Y  denotes the lower bound for the 
inclusion function of gi and ( )iG Y  denotes its upper 
bound. Gi(Y) denotes the range of the inclusion function 
for gi. A similar notation holds for hi. 

• Feasible boxes: When all constraints are consistent over 
a given box Y, the box is deleted from the pending list 
and stored as a feasible box (or as a feasible enclosure 
of a small tolerance limit). 

• Indeterminate boxes: When at least one constraint is 
indeterminate: If ( ( ) 0iG Y <  and ( ) 0)iG Y >  or  
0 ∈ Hi(Y) ≠ 0 for any i and all other constraints  
are consistent or indeterminate, then box Y is 
indeterminate. 

In equations (1) and (2) we provide the definition of the 
uncertainty degree ( ,i

YPG  or )i
YPH  related to a constraint i 

that is indeterminate over the box Y. 

( ),i
Y iPG G Y=  (1) 

and 

( )( ) .i
Y i iH YPH H Y= +  (2) 

We also define the total uncertainty degree of a box, IFY, as 
the sum of the uncertainty degrees of equalities and 
inequalities that are indeterminate over Y. 

Indeterminate boxes are partitioned by dividing at least 
two variables that have the largest width component 
intervals in the box. The resulting child boxes are placed in 

the pending list to be investigated. The search stops either 
when the theoretical number of solutions is identified (if it is 
known a priori) or when the pending list is exhausted. 
Below we provide the basic IP algorithm. 

2.1 Basic IP procedure 

Step 0 Set the starting box Y = X. Set list of pending 
boxes, B = {Y}. 

Step 1 If 0,B = /  or if the a priori known number of 
solutions are found, then STOP and report all 
feasible solutions found. Else, pick the first box  
Y ∈ B. 
1.1 If Y is infeasible, remove Y from B and repeat 

Step 1. 
1.2 If Y is sufficiently small, store it as a possible 

feasible solution enclosure. Remove Y from 
B and repeat Step 1. 

Step 2 Select directions to partition. Set v to be the 
number of interval components to partition. 

Step 3 Subdivide Y into 2v non-overlapping child 
boxes. 

Step 4 Remove Y from B, add the 2v child boxes to B. Go 
to Step 1. 

We want to identify those boxes in the pending list that 
contain consistent solutions while the branch and bound tree 
expands. Therefore, it is important to manage the pending 
list of boxes (i.e., the branch and bound tree) efficiently and 
investigate them in proper order so as to improve the 
convergence rate of the algorithm and discover as many 
feasible solutions as possible in the early stages of the 
search. Here, we propose a new tree management scheme 
and describe it as follows. 

The tree management system in the proposed  
IP maintains a stage-wise branching scheme that is 
conceptually similar to the iterative deepening approach 
(Korf, 1985). The iterative deepening approach explores all 
nodes generated at a given tree level (stage) before it starts 
assessing the nodes at the next stage. Exploration of boxes 
at the same stage can be done in any order, the sweep may 
start from the best-first box, from the one on the most right, 
or most left of that stage. On the other hand, in the proposed 
adaptive tree management system, it is permitted to grow a 
sub-tree forming partial succeeding tree levels from a node 
(a parent box) at the current stage and to explore nodes in 
this sub-tree before exhausting the nodes at the current 
stage. That is, a box is selected from the children of the 
same parent with the maximal IFY value as a criterion (this 
is actually the worst-first rule, but in classical terms we 
name it as best-first), and the child box is partitioned again 
continuing to build the same sub-tree. This sub-tree grows 
until the total area deleted (TAD) value fails to improve by 
discarding boxes in two consecutive partitioning iterations 
in this sub-tree. 
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Such failure triggers a call to local search where all 
boxes out of which no local search were started are 
processed by the procedure FSQP, after which they are 
placed back in the list of pending boxes. Exploration is then 
resumed among nodes at the current stage. Feasible 
solutions found by FSQP are stored. As mentioned 
previously, whether or not FSQP fails to find a solution IP 
continues to partition the box since it passes the cut-off test 
(test for feasibility) as long as it may contain a solution. 
Finally, the algorithm encloses potential solutions in 
sufficiently small boxes where local search can identify 
them. In IP, FSQP acts as a catalyst that occasionally scans 
larger boxes to identify solutions at earlier stages of the 
search. The proposed IP algorithm is described below. 

2.2 IP with adaptive tree management 

Step 0 Set tree stage, s = 1, and future stage index, r = 1. 
Set non-improvement counter for TAD: nc = 0. Set 
Bs, the list of pending boxes at stage s be equal to 
{X}, and 1 0.sB + = /  

Step 1 If 0sB = /  and the current lower bound, CLB has 
not improved compared to the stage s – 1, or, both 

0sB = /  and 1 0,sB + = /  then STOP. 

Else, if 0sB = /  and 1 0,sB + = /  then set s ← s + 1,  
r ← s, and continue. Pick the first box Y in Bs and 
continue. 
1.1 If Y is infeasible or suboptimal, discard Y, 

and go to Step 1. 
1.2 If Y is sufficiently small, evaluate m, its 

midpoint, and if it is a feasible improving 
solution, update CLB, reset nc ← 0, and store 
m. Remove Y from Bs and go to Step 1. 

Step 2 Select coordinate direction(s) along which partition 
is to be made (use the subdivision direction 
selection rule IIR). Set v = number of variables to 
partition. 

Step 3 Subdivide Y into 2v non-overlapping child boxes. 
Check TAD, if it improves, then reset nc ← 0, else 
set nc ← nc + 1. 

Step 4 Remove Y from Bs, add the 2v new boxes to Br. 
4.1 If nc > 2, apply FSQP to all (previously 

unprocessed by FSQP) boxes in Bs and Bs+1, 
and reset nc ← 0. If FSQP is called for the 
first time in stage s, then set r ← s + 1. 

4.2 Go to Step 1. The adaptive tree management 
system in IP is illustrated in Figure 1 on a 
small tree where node labels indicate the 
order of visiting the nodes. 

As shown in the algorithm above, the adaptive tree 
management scheme maintains two lists of boxes, Bs and 
Bs+1 that are the lists of boxes to be explored at the current 
stage s and the next stage s + 1, respectively. Initially, the 
set of indeterminate boxes in the pending list Bs consists 

only of X and Bs+1 is empty. As child boxes of a selected 
parent box are added to a list, they are ordered in 
descending order of IFY. We choose this ranking strategy, 
because the algorithm aims to delete as many boxes as 
possible in the early stages of the search. Boxes in the  
sub-tree stemming from the selected parent at the current 
stage are explored and partitioned until there is no 
improvement in TAD in two consecutive partitioning 
iterations. At that point, partitioning of the selected parent 
box is stopped and all boxes that have not been processed 
by local search are sent to FSQP module and processed to 
identify feasible point solutions if possible. From that 
moment onwards, child boxes generated from any other 
selected parent in Bs are stored in Bs+1 irrespective of further 
calls to FSQP in the current stage. When all boxes in Bs 
have been assessed (discarded, stored as feasible boxes, or 
partitioned), the search moves to the next stage, s + 1, 
starting to explore the boxes stored in Bs+1. In this manner, a 
smaller number of boxes (those in the current stage) are 
maintained in primary memory and the search is allowed to 
go down to deeper levels within the same sub-tree, 
increasing the chances to discard boxes. On the other hand, 
by enabling the search to explore horizontally across boxes 
at the current stage, it might be possible to find feasible 
solutions faster by not partitioning parent boxes that are not 
so promising. 

Figure 1 Implementation of the adaptive iterative deepening 
procedure 

 

The tree continues to grow in this manner taking up the list 
of boxes of the next stage after the current stage’s list of 
boxes is exhausted. The algorithm stops when there are no 
more boxes in Bs and Bs+1. As mentioned earlier, in case the 
exact number of solutions is known, the performance 
measure of the algorithm might then be the amount of CPU 
time taken to identify them all. Otherwise, the number of 
solutions found within limited CPU time would indicate the 
success of the algorithm. 
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3 Background of kinematics problems 

3.1 Description of the problems 

The continuous CSP is a core topic in many real world 
engineering applications including kinematic analysis. 
Kinematics is fundamental in the design and control of 
robot manipulators (used particularly in contact analysis, 
assembly planning, position analysis, and path planning) 
since performance is achieved through the movement of 
links/legs whose geometry is crucial. Geometric kinematics 
calculates the state of a robot from measurements (direct 
kinematics) or poses (inverse kinematics), and provides 
answers for associated questions on accuracy and 
singularities. These problems require the identification of all 
object positions and orientations that satisfy a coupled  
non-linear system of equations (Dietmaier, 1998; Tsai and 
Morgan, 1985; Fu et al., 2006; Loudini et al., 2007). As a 
brief introduction, we provide a description of the inverse 
position problem for a six-revolute-joint problem. The 
inverse position problem for a six-revolute-joint problem in 
mechanics (referred to as test problem Kin2 later on) is 
illustrated in Figure 2. 

Figure 2 A general 6-R manipulator 

 

Figure 3 The basic notation used in the optimisation problem 

 

A 6R manipulator has six moving links, numbered 
sequentially from 2 to 6, as shown in Figure 2 (Tsai and 
Morgan, 1985). Link 1 is designated as the base (fixed to 
ground) and link 6 as the hand or the manipulator. Every 
two neighbouring links are connected by a joint that is 
associated with a joint axis Zi, i = 1 to 6. Let Zi, and Zi+1 be 
two adjacent joint axes and HiOi+1 be the directed common 
normal between Zi, and Zi+1. Hi is the intersection of HiOi+1 
and Zi, and Oi+1 is the intersection of HiOi+1 and Zi+1. Then 
one can define the following link parameters shown in 
Figure 3 (Hartenberg and Denavit, 1964): 

ai The offset distance from the common normal HiOi+1. 

αi The angle to rotate the axis Zi about the common 
normal HiOi+1 so that Zi is parallel to Zi+1. The sign of 
the rotation is given by the right hand screw rule with 
the screw taken along the normal HiOi+1. 

di The distance between the two normal Hi–1Oi and HiOi+1 
measured from Zi. The sign of di is positive if OiHi 
points to the positive Zi direction. Otherwise, di is 
negative. 

Θi The angle with which to rotate the extended line of  
Hi–1Oi about Zi so that the extended line of Hi–1Oi is 
parallel to HiOi+1. The sign of rotation is given by the 
right hand screw with the screw pointing along the 
positive Zi-axis. 

If the ith joint is revolute, then ai, di, and i are constant while 
i is variable. If the ith joint is prismatic, then ai, αi, and Θi 
are constant while di is a variable. 

A coordinate system (Xi, Yi, Zi) is attached to each link 
of the manipulator as shown in Figure 2. In each coordinate 
system, the Zi-axis is defined to align with the ith joint axis, 
the Xi-axis is the one along the extended line of Hi–1Oi; and 
the Yi-axis is defined according to the right-hand screw rule. 
The first coordinate system is fixed to ground. Since the 
common normal H0O1 does not exist, the X1-axis is chosen 
perpendicular to Z1, in an arbitrary manner. Also, a seventh 
coordinate system is attached to the free-end to specify the 
position of the hand. The Z7-axis lies in the direction from 
which the hand would approach an object as shown in 
Figure 2. The X7-axis is defined by the common normal 
between the Z6 and Z7 axes, and the Y7-axis is defined 
according to the right-hand screw rule again. 

The equations representing the 6R problem are  
derived by first defining the coordinates of a point P in the 
ith and (i + 1)st coordinate systems as ( ,  ,  )

i i ix y zp p p  and 

1 1 1
( ,  ,  ),

i i ix y zp p p
+ + +

 respectively. These two vectors are 

related to the hand position and orientation vectors by the 
equations of the form: pi = Aipi+1, where Ai is a matrix whose 
elements are ci = cosΘi, si = sinΘi, λi = cos αi, and μi = sin 
αi. The inverse transformation is written as: 1

1 .i i ip A p−
+ =  

By applying matrix transformation to each pair of 
coordinate systems between two successive links and 
proceeding from link 7 to link 1, the following equation  
is obtained: p1 = A1A2A3A4A5A6p7. Since an equivalent 
transformation matrix defines the relationship between the 
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coordinates of any point in the seventh system p7, and that 
of the same point expressed in the first system, p1, the 
matrix Aeq = A1A2A3A4A5A6 is known when the position and 
orientation of the hand is specified. Let ρ (ρx, ρy, ρz) be the 
position vector from the origin of the first system to the 
origin of the seventh system as shown in Figure 2; and  
l(lx, ly, lz), m(mx, my, mz) and n(nx, ny, nz) be three mutually 
perpendicular unit vectors aligned with the X7, Y7, and Z7 
axes, respectively. Then, when ρ, l, m, and n are given in the 
first system, the equivalent A matrix consists of the elements 
ρ, l, m, and n. By applying coordinate transformation and 
variable elimination, one can obtain a system of eight  
non-linear equations with eight unknowns expressed in the 
system of equations as given below (Tsai and Morgan, 
1985), where 1 ≤ i ≤ 4. 

2 2
1

1 1 3 2 1 4 3 2 3 4 2 4

5 5 7 6 5 8 7 6 7 8 6 8 9 1

10 2 11 3 12 4 13 5 14 6 15 7

16 8 17 8

1 0

0
1 1

i i

i i i i

i i i i i

i i i i i i

i i

i

x x
a x x a x x a x x a x x

a x x a x x a x x a x x a x
a x a x a x a x a x a x

a x a x
x

++ − =

+ + +

+ + + + +

+ + + + + +

+ + =

− ≤ ≤

 (3) 

The variables xi and xi+1 represent the cosine (c) and sine (s) 
of the angle of the ith revolute joint to rotate (extended line 
of Hi–1Oi about Zi so that the extended line Hi–1Oi is parallel 
to HiOi+1) as illustrated in Figure 2. (The variables x1, x2, x3, 
x4, x5, x6, x7, and x8 actually represent the c1, s1, c2, s2, c4, s4, 
c5, and s5, respectively). In equation (1), the coefficients 

ika  

are defined as the manipulator parameters. For more details, 
we refer to Morgan and Sommese (1987). 

4 Numerical evaluation 

4.1 Test problems: kinematics applications 

As stated before, kinematics is fundamental in the design 
and control of robot manipulators (used in contact analysis, 
assembly planning, position analysis, path planning) since 
performance is achieved through the movement of links/legs 
whose geometry is crucial. Geometric kinematics calculates 
the state of a robot from measurements (direct kinematics) 
or poses (inverse kinematics), and answers associated 
questions of accuracy and singularities. These problems 
require the identification of all object positions and 
orientations that satisfy a coupled non-linear system of 
equations (Dietmaier, 1998; Lebbah et al., 2003). Two main 
classes of interval-based methods have been applied in the 
robotics field: interval Newton (see Castellet, 1998; Merlet, 
2001; Rao et al., 1998; Pedamallu, 2007); and box 
consistency techniques (Merlet, 2004; Van-Hentenryck  
et al. (1997a, 1997b). Both methods are used within the 
basic IP. Researchers have applied these methods to solve 
problems such as the 6R inverse kinematics problem, the 
direct kinematics of the Stewart-Gough platform, the 
general single-loop inverse kinematics and singularity 
analysis/mechanism design of parallel manipulators. 

Six kinematics-robotics problems are used in the 
comparison, some of which are quite challenging. Here, we 
discuss some of their features. Direct kinematics (COPRIN, 
2004) has two close solutions that are hard to isolate. This 
problem determines the pose parameters of a parallel  
robot platform and involves eight highly non-linear  
and inter-dependent trigonometric equations with three 
independent quadratic equations. Other difficult kinematics 
problems included here and not covered in COPRIN (2004) 
but solved by QUAD (Lebbah et al., 2003) are 6R (Kin2) 
and Stewart-Gough. Kin2 is a quadratic problem with ten 
real solutions and it describes the inverse position problem 
for six-revolute-joint. The Stewart-Gough is a manipulator 
configuration problem that has three independent constraints 
that might make constraint propagation based filtering 
methods such as 2B ineffective [as demonstrated in Lebbah 
et al., (2003)]. Numerica (described in Van-Hentenryck  
et al., 1997a), in which a box consistency technique is 
included) made more than 10,000,000 narrowing iterations 
to solve this problem. Another benchmark is the 
trigonometric Kin1-modified problem that describes the 
inverse kinematics of an elbow manipulator. Puma 
represents the inverse kinematics of a 3R robot whereas the 
KinCox is the simple inverse position problem. In Table 1, 
all test problems are listed with their details (number of 
dimensions, non-linear and linear equations, number of 
known feasible solutions), and providing their source 
references. 

Table 1 Characteristics of the kinematics test problems 

Problem Size # of sol. Source 

8, 8, 0 10 Lebbah et al. 
(2003) 

Kin2 

  Van-Hentenryck 
et al. (1997a) 

Kin1-modified 6, 6, 0 16 COPRIN (2004) 
KinCox 4, 4, 0 2 COPRIN (2004) 
Direct kinematics 11, 11, 0 2 COPRIN (2004) 
Stewart-Gough 9, 6, 3 2 Lebbah et al. 

(2003) 
Puma 8, 7, 1 16 COPRIN (2004) 

Notes: The size of the problem is expressed as the 
number of dimensions, the number of non-linear, 
and linear equations, respectively. The problems 
called Kin1-modified and direct kinematics are 
trigonometric, the others are quadratic. 

4.2 Results 

The impact of the adaptive tree management approach in IP 
is measured against depth-first and best-first branching 
strategies. The best-first strategy used here also ranks boxes 
according to maximum IFY criterion, because IP aims to 
discard infeasible boxes as soon as possible. To allow a 
wider comparison, we also provide the published results of 
the following symbolic-interval methodologies: ALIAS 
(COPRIN, 2004), QUAD (Lebbah et al., 2003), and ICOS 
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(Lebbah, 2003) wherever results are available (Neumaier  
et al., 2005; Shcherbina et al., 2002). As mentioned 
previously, ALIAS is an extensive interval-symbolic 
software library where many of the local and global interval 
and symbolic filtering methods co-exist with special tools 
for univariate polynomials. QUAD is designed for filtering 
quadratic systems, its first stage involves linearisation, and 
the second stage uses a simplex algorithm to narrow the 
bounds on variables in the resulting linear programme. The 
authors show for their two illustrative examples (also 
included here) that QUAD is more efficient than the 2B and 
3B consistency techniques and they compare their method 
with Numerica. ICOS is reported to be the most reliable 
method for the CSP among those compared by Neumaier  
et al. (2005), however, the published results are only for 
finding a single solution rather than all solutions. 

We provide the summary of results in Table 2. In the 
first row, we convey the average CPU times necessary 
measured in standard time units. We restricted IP’s run time 
by 1.31 standard time units [STU as defined in Shcherbina 
et al., 2002). One STU is equivalent to 318.369 seconds on 
our machine. All runs are executed on a PC with 256 MB 
RAM, 1.7 GHz P4 Intel CPU, on Windows platform. The IP 
code is developed with Visual C++ 6.0 interfaced with the 
PROFIL interval arithmetic library (Knüppel, 1994) and 
FSQP. 

The second row shows the average number of tree 
stages in which the complete set of solutions is found. The 
third row conveys the number of FSQP calls. In the fourth 
row, we provide the average percentage of feasible solutions 
found with regard to the complete solution set. The fifth row 
indicates the average number of function calls. In the sixth 
row, we indicate the number of problems whose complete 
feasible solution set could not be identified within the given 
time limit. The seventh row shows the number of problems 
where the complete solution set is obtained within the 
shortest CPU time. From these results, it is observed that the 
proposed stage wise tree management strategy is quite 
effective as compared to other methods. Although the  
best-first strategy requires less function calls and FSQP 
calls, it is slower than the proposed adaptive method due its 
long pending list of boxes that need to be re-arranged at 
each update and also due to memory usage. The depth-first 
approach is quite inefficient in all respects as expected. 
ALIAS/QUAD had the best results for PUMA and Kin2. 
The reason for it is that these problems have ladder type 
constraints that are very suitable for constraint propagation, 
and the domain of one variable is reduced each time. For 
trigonometric expressions the filtering methods do not 
produce good results. It is interesting that QUAD, which is 
particularly developed for quadratic problems, is not as 
successful as IP solving the quadratic Stewart-Gough 
problem. ICOS is slower than ALIAS/QUAD in the four 
problems where it is comparable. When comparing IP with 
other interval methods it should be kept in mind that they all 
have a single common ground: the use of interval 
assessment. The proposed IP and these methods better 
complement each other rather than compete. 

5 Conclusions 

A generic collaborative methodology that integrates basic IP 
with local search (FSQP) is developed here to solve the 
CSP. The call for FSQP in IP is organised by an adaptive 
tree management system developed here. The latter system 
involves a stage-wise tree search: after the box to be 
partitioned is selected, the investigation is carried out only 
within the sub-tree under the selected parent box until it is 
decided that the infeasible area discarded does not improve 
in a number of consecutive iterations. At that point, all 
boxes under the sub-tree are sent as a batch to FSQP. The 
search then goes back to unexplored boxes in the current 
stage. In this sense, the depth of the sub-tree is bounded by 
the area removal performance criterion and its width is 
restricted by the number of parallel boxes in the sub-tree 
that grows under the selected box. 

Table 2 Summary of results 

Indicator Adapative Best-first Depth-first ALIAS/
QUAD ICOS

CPU 0.169 0.423 0.664 0.437 0.705
NTS 1.667 - - - - 
NF 852.83 241.83 2,021.50 - - 
PSF 100.00 96.00 65.00 - - 
NFE 20,540 3,159 316,609 - - 
NPF 0 1 3 1 2 
NMT 5 0 0 3 0 
NUP 0 0 0 0 2 

Notes: CPU stands for the average CPU time needed (in 
STU), NTS for the average number of tree stages, 
NF for the average number of FSQP calls, PSF for 
the average percents of cases when the solution has 
been found, NFE for the average number of function 
evaluations, NPF for the number of problems with 
all feasible solutions found within the given time 
limit, NMT for the number of problems solved with 
the shortest CPU time, and NUP for number of 
reported unsolved problems. 

Computational test results on a number of kinematics 
benchmarks show that the collaborative method is able to 
converge faster than best-first and depth-first tree search 
strategies. The proposed IP seems to be a promising 
approach with a potential for further improvement by the 
application of advanced symbolic-interval techniques such 
as the ones used in ALIAS. The presented methodology can 
be used efficiently for solving constrained optimisation 
problems (see also Pedamallu et al., 2007a, 2007b). 
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