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tNowadays, the estimation of the load of servi
e networks be
omes moreand more important. Servi
e networks 
omprise here postal, transportationaland 
ommuni
ation networks. The 
ost of the measurement depends both onthe pla
e in the network, and on the amount to be measured. For example, forpostal servi
es the automatization provides an e�
ient fa
ility for 
ountingthe letters. Obviously, there are other, 
heaper and less pre
ise measurementmethods. Hen
e, there are di�erent ways to estimate the daily loads of thedeliverers. In su
h a network the nodes mark the operations of a �ow pro
ess,the edges represent the �ow dire
tions.The problem is how to plan the tra�
 measurement in the network withminimal 
ost, if we know the 
osts of possible measurements at the nodes. In
ase of a given output node, we are looking for those nodes, whi
h in�uen
ethe tra�
 of this output node. We want to ensure a set pre
ision for the out-put node values in terms of un
ertainty intervals. Our aim is to a
hieve theresult with the smallest measurement 
ost. The network's evaluation is 
al-
ulated by interval arithmeti
. In the paper we 
onsider a solution algorithmfor the presented problem and we test it on randomly generated networks.Keywords: servi
e networks, transportation networks, tra�
 �ow, measure-ment planning, interval arithmeti
MSC: 65K15, 90B06, 90C301. Introdu
tionThe estimation of the load of servi
e networks be
omes a more and more impor-tant task nowadays. In the past period, substantial resear
h has been 
ompletedto develop �ow predi
tion models, whi
h fore
ast the future of tra�
 �ows (seee.g. [2℄, [3℄, [4℄, [8℄). Servi
e networks 
omprise here postal, transportational, and1
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 model elements
ommuni
ation networks. Further servi
e network analysis details 
an be foundin [1℄. Like tele
ommuni
ations, transportation se
tor, postal servi
e is a networkindustry.The postal network has an obvious hierar
hi
al stru
ture. That is, mail enteringthe network tends to travel through fa
ilities serving larger and larger geographi
areas (outward sorting and transportation), until its �nal destination is 
ontainedin a fa
ility's servi
e area. Then it begins its inward journey, when this pro
ess isreversed: mail is transported and sorted at fa
ilities serving smaller and smallergeographi
 areas until it rea
hes the letter 
arrier's route. The postal transportation
hain 
an be represented by a dire
ted graph (see Figure 1). In su
h a network, thenodes mark the operations (
olle
tion, sorting, and delivery) of a �ow pro
ess, whilethe edges represent the �ow dire
tions. Those nodes whi
h 
ontain just outgoingedges, represent the 
olle
tion pla
es of the network, while the nodes whi
h haveonly input edges, represent the distribution (or delivery) pla
es.The non-negative values in the nodes and along the edges represent the tra�
data of some produ
t (e.g. the number of letters). The values in 
olle
tor nodesrepresent the 
olle
ted quantities, while the numbers in the distribution nodesdenote the delivery amounts. In the 
ase of the rest of the nodes, the 
rossingprodu
t quantity 
an be read from the 
ir
le. After des
ribing the basi
 elementsof the postal network, we des
ribe the 
onsidered problem in the next se
tion.2. The problem des
riptionWith the me
hanization of the post's logisti
 system, it is possible to estimateeasily the daily loads of the deliverers. This automatization provides an e�
ientfa
ility for 
ounting a large part of the letters.



3Our aim is to estimate the load in a node or in several nodes. The basi
element of the approximation is the possibility of the measurement in a node. Themeasurement has its 
ost, whi
h depends both on the pla
e in the network, andon the amount to be measured. In the postal network we distinguish two typesof the nodes: one with automated 
ounting and one with manual 
ounting. Themost important di�eren
e between them is the 
ost of the measurement. In the�rst 
ase, a measurement is obviously 
heaper per letter.The problem 
onsidered in this paper is now how to plan the tra�
 measurementin the network with minimal 
ost, when we know the 
ost of measurement in thenodes. In the 
ase of a given output node, we are looking for those nodes, whi
hin�uen
e the tra�
 of that parti
ular output node. We want to ensure a presetpre
ision level for the output node values in terms of un
ertainty intervals. Thequestion is, where should we measure in order to rea
h the given pre
ision for theoutput interval. Our aim is to a
hieve the result with the smallest measurement
ost. Similar optimization problems in postal networks are formulated in ([6℄, [7℄)
onsidering di�erent obje
tives like vehi
le fa
tors, time limit, frequen
y, 
ost, andso on. In the following part, we des
ribe two important te
hniques whi
h will beused during the problem investigation.2.1. Network evaluationAn important task of the investigated problem is the network evaluation. Basedon the known data in some node, we 
an evaluate the whole network in order toupdate the in�uen
ed node and edge values. The network evaluation is made withthe help of interval 
al
ulation [5℄. All the data in the nodes and along the edgesare represented by intervals. During the network evaluation the basi
 intervalarithmeti
 operations are used and the 
al
ulated values are propagated form theinput nodes to the output nodes.Usually interval arithmeti
 te
hniques are used in problems where 
ontrollingerrors of di�erent kind is important. The evaluation is made by 
al
ulating up-per and lower bounds on the given values and then developing suitable numeri
almethods. In the present 
ase, we do not have rounding errors, but we often haveun
ertain data represented by intervals. We list here the basi
 interval arithmeti
operations for better understanding of the later dis
ussion.
[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c],

[a, b] ∗ [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}],

[a, b] / [c, d] = [a, b] ∗ [1/d, 1/c], if 0 /∈ [c, d].We have in
luded here the multipli
ation and the division as well, but in thenetwork evaluation only the �rst two operations are needed. The addition and sub-tra
tion operations are illustrated in Figure 2. The 
orresponding interval arith-meti
 operations are the following: [0, 100] + [50, 150] + [20, 70] = [70, 320] and
[0, 100] − [20, 40] = [−40, 80]. In the postal network negative lower bounds does
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 two network operationsnot make sense. That is why we set the 0 as the respe
tive lower bound on the�gure. In both 
ases, the known data in the nodes and those along the edges aremarked with bold numbers. The remaining intervals are 
al
ulated values.On Figure 3 we 
an follow a network evaluation starting from the input nodes.We 
onsider the data in the input nodes as known. It 
an be imagined that thesevalues are based on earlier, re
orded data. The network evaluation is 
ompletedby using the previously presented rules. Starting from the input nodes, all nodesand edges are evaluated getting wider and wider intervals. In the output nodes weobtain then the widest intervals.2.2. Measurement in a nodeThe aim of the measurement in a node, is to redu
e the un
ertainty in thein�uen
ed output nodes. By 
ounting the letters in a node, we obtain the valuesat the outgoing edges too. Hen
e, we do not distinguish the node measurementfrom the respe
tive edge measurement and we 
onsider the edge measurement 
ostapproximately equal to the measurement 
ost in the given node. The 
ost of themeasurement in a node with manual 
ounting is in our study now equal to thenumber of the letters, while in the 
ase of automated 
ounting the 
ost is ten times
heaper per letter.After a measurement in a node, we always evaluate the network using thepreviously presented rules. On Figure 4 we 
an follow the e�e
ts of two nodemeasurements and a network evaluation. As a result, narrower intervals 
an beobserved in the output nodes. Our aim is to a
hieve the user set pre
ision in theoutput nodes with the smallest measurement 
ost. In the next se
tion, we des
ribea solution algorithm for this problem.
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63. Solution approa
hesWe have developed a greedy algorithm whi
h tries to �nd those nodes whi
hhave the highest in�uen
e to the given output node with minimal 
ost. The mainidea of the algorithm is the following: we 
hoose always that node from the network,where the measurement is 
heap, and the same time the un
ertainty is the largestone temporarily. As it 
an be expe
ted, this pro
edure 
an result in the largestimprovement in the pre
ision of the output node value. The main steps are:Algorithm 1: A greedy algorithm for the determination of the measuringnode1. fun
tion GreedyAlg()2. tCost = 03. mNodes = {∅}4. IntializeNetwork5. Evaluate(network)6. w = width(outputnode.interval)7. while w > a prescribed value do8. nodelist = getList(outputnode)9. node = �ndNode(nodelist)10. mNodes = mNodes ∪ node11. cost = Measure(node)12. tCost = tCost+ cost13. Evaluate(network)14. w = width(outputnode.interval)15. end16. return mNodes, tCostAt the beginning of the algorithm (lines 2 and 3) we initialize the total 
ost ofthe measurements and the measured nodes list. In line 4, the input nodes of thenetwork are initialized with respe
tive intervals, based on earlier re
orded data,while in line 5 the network is evaluated starting from these input nodes.The algorithm 
ontains a main iteration 
y
le, and the steps from line 8 to line14 will be repeated until a suitable 
ondition will 
ome true. At the beginning ofthe iteration (line 8) we a
tualize the available nodes whi
h have in�uen
e to thegiven output node. The getList fun
tion takes as parameter the output node andreturns those nodes whi
h are not measured yet and may in�uen
e the output node.In the se
ond step of the iteration 
y
le (line 9) we sele
t the most promising nodeusing the �ndNode fun
tion whi
h takes as parameter the previously returned nodelist. We 
hoose here the automated node with the widest interval if it is available,otherwise a node with manual 
ounting having the widest interval. The reasonbehind the widest interval sele
tion is that it yields the largest improvement in thepre
ision of the output node value. The returned node is added to the measurednode list in line 10. After we have found the most promising node, we measure



7Test 
ase AlgCost NrNodes1 282.9 62 394.9 63 452.8 74 258.4 65 399.1 66 272.5 67 400.8 78 316.9 69 266.4 610 455.5 6. . . . . . . . .50 276.4 6Average 334.1 6.1Table 1: The measurements 
osts and the number of measured nodesit (line 11) by repla
ing the node's and the outgoing edge's interval data by thereal tra�
 data. The node measurement 
ost is 
al
ulated by dividing the repla
edinterval midpoint by ten, if it is an automated node, otherwise it is equal to themidpoint of the interval. In line 12, the total 
ost is updated. The last pro
edure ofthe main iteration is the network evaluation (line 13) using the previously des
ribedrules. We also re
al
ulate the width of the output node in line 14. The algorithm isstopped when the un
ertainty represented by width of the interval that belongs tothe output node be
ame smaller than a pres
ribed value. In line 16, the measurednodes and the total 
ost of the measurement is returned.4. Computational testWe have 
ompleted a numeri
al test whi
h is aimed to show the performan
eof the des
ribed algorithm. For testing purposes, we use a network with 23 nodes,from whi
h there are 4 input nodes (
olle
tion), 2 output nodes (delivery) and 5nodes with automatized 
ounting. The measured values in the nodes and alongthe edges are generated randomly with uniform distribution getting a 
onsistentnetwork. The input node values are generated from the interval [50, 200]. In thealgorithm we have tested just one output node. For ea
h 
ase of the generatednetwork, we set the un
ertainty interval width to 200. The algorithm was testedon 50 su
h networks generated randomly, and we re
orded the 
ost of measurementsand the number of measured nodes (see Table 1).In a parti
ular example problem, the input nodes have the following startingintervals: [0, 101], [0, 124], [0, 123], [0, 61]. The set pre
ision of the output node was200. As the result of the �rst evaluation of the network we get [0, 13455] in theoutput node. After a few iteration of the algorithm we get the [149, 312] intervalin the output node and we stop the algorithm. Usually the found pre
ision is



8better than the one set at beginning of the algorithm. The number of measurednodes during the algorithm in order to �nd the set pre
ision are six, with the totalmeasuring 
ost of 210. Among the six nodes there are four automated nodes andtwo with manual 
ounting.The 
on
lusion of the numeri
al test is that the greedy algorithm we designedwas 
apable to solve the randomly generated problems in a satisfa
tory way. Inthe future, we would like to extend the algorithm for more than one output nodeto be handled, and we also want to modify the network evaluation in order to getnarrower intervals in the output nodes. Furthermore, we will try other solutionapproa
hes and applying these methods on real life appli
ations.A
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