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Abstract
Feasibility study on batch extractive distillation is based on analysing profile maps. Existence and loci of singular points and separatrices in these maps depend on the process parameters; and the limiting flows of the process belong to those parameter values at which the map changes shape. These data can be roughly estimated by graphical tools, but cannot be determined with certainty. One cannot be sure if a singularity exists or not, if not found. Reliable computation of all the zeroes or all the minima of real functions, on the other hand, is provided by applying interval arithmetic. Therefore, the problems of finding the singular points and the bifurcation points are solved by an interval arithmetic based branch and bound optimizer. All the singular points of the maps have been found in this way at specified process parameters. Limiting flows are determined with the same methodology by finding the bifurcation points and the corresponding parameter values.
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1. Introduction

Interval arithmetic has been developed in the last two decades to such a stage that it can successfully be applied to reliably solve small scale problems of root finding, minimization, integration, etc. Interval methodology can be applied to find all the solutions of an equation in a given region, or all the global minimizers of a multivariate real function over a domain. Reliable solution means that the methodology does not lose a solution in the studied region. If no solution is found then no solution exists there. 
That is why interval methodology can be quite useful in some chemical engineering applications where knowledge about existence or non-existence of some solutions, i.e. existence or non-existence of some points with special property, is the key for decision. One of such chemical engineering problems is feasibility and limiting flows of extractive distillation and, particularly, batch extractive distillation (BED). 

In the present article, first a short overview is provided about the BED process, its feasibility, the graphical feasibility method, what kind of numerical problems occurred when application of mathematical programming was being developed in order to avoid using graphical methodology, and why our attention turned to the methods of interval arithmetic.
The basic ideas of interval root finding and minimizing procedures are then outlined, and application of an interval minimization software to our chemical engineering problem is shown in details. Here we show how the problems are formulated, and what kind of transformations were needed for a successful solution. How the interval tool proceeds in solving the problem is also indicated.
The singular points characterizing pinch points of column liquid profiles can be found relative easily with interval arithmetic. The singular point paths computed in this way has shed light to a phenomenon, unknown earlier, that prompted us to revise our previous idea about the way of determining the minimal feed ratio of BED. 

An other result is that although minimum flow rates can be approximately parenthesized with finding the singular points belonging to systematically changed process parameters, a precise value of the minimum cannot be determined in this way. Instead, minimum ratios belong to bifurcation points. How the search for bifurcation is formulated is also shown in this article.

2. BED and the known feasibility methods
2.1. Batch extractive distillation
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Figure 1. BED in a rectifier
There are several variants of batch extractive distillation (BED). BED can be applied to separate close boiling binary mixtures, and binary mixtures forming minimum or maximum boiling azeotrope, with applying a third liquid component, called entrainer. The entrainer can be either the least volatile (highest boiling, or heavy), most volatile (lowest boiling, or light), or even the intermediately volatile (intermediate boiling, or middle) component in the ternary system. BED can be performed in a conventional batch rectifier column, or in a batch stripper, or in a middle vessel column.

Here we deal with the most important variant: separation of a binary mixture of components A and B, forming minimum boiling azeotrope, with applying a heavy entrainer, and performing the process in a batch rectifier unit, shown in Figure 1.
Batch extractive distillation is a fed-batch, or semibatch, or semicontinuous process. The charge is first put to the still, and the column is heated up while total reflux is maintained. As a result, the top composition approaches the azeotrope. As is shown in Figure 2, the column profiles lies on the binary AB edge, because there is no entrainer in the unit.
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Figure 2. Entrainer-free profile after warm-up

In the next step continuous feeding of the entrainer (component E) to one stage of the column is started, but distillate is not yet removed. As a result, a column profile similar to that shown in Figure 3 is formed. The composition in the still moves toward the entrainer vertex.
Once the top composition reaches its specified value, producing distillate (D) with a well designed reflux ratio (R=L/D) is started with maintaining continuous entrainer feeding with a well designed ratio of its flow rate (F) to the vapour flow rate (V). Almost pure component A is produced in this step. As a result of distillate removal, the still composition turns toward the BE edge of the composition triangle. Two instantaneous column profiles are shown in Figure 4. During this step, the distillate composition roughly remains constant.
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Figure 3. An instantaneous profile (sketch) during run-up
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Figure 4. Two instantaneous profiles during the main production step
Once the distillate purity cannot be more maintained (because of some intristic constraint of the process, explained below), feeding of the entrainer is stopped, the receiver is changed, and an off-cut is produced. As a result, the still will become free of component A.

Finally, component B is distilled out with conventional batch distillation, and the entrainer remains in the still as residue.
Feasibility of the process is rather sensitive on R and F/V. Simulation or experimental trials with randomly selected, or not well designed, parameter values will give rise, with a great chance, to virtual infeasibility of the process even if the process is, in fact, feasible with appropriately selected process parameters. That is why feasibility methodology is of great importance.

2.2. Graphical feasibility method
The appropriate (feasible) range of R and F/V, as well as the feasible region of still compositions can be estimated by analysing the profile maps (Lelkes et al, 1998; Lelkes et al, 2002, Rev et al, 2003, Stéger et al, 2005). 
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Figure 5. Rectifying (enriching) profile counted down from xD
Such a map includes a curve (see Figure 5) approaching the rectifying profile started from a specified distillate composition xD as initial value and calculated by numerically solving the differential equation (1) 
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where h is dimensionless height, L is liquid flow rate, y*(x) is equilibrium vapour composition, and y(x) is actual vapour composition according to the column's component balance (operating line) above the feed
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The map also includes a sequence of curves (see Figure 6) approaching the extractive profiles started from potential still compositions xS as initial values and calculated by numerically solving the same differential equation (1) in the reverse direction and with the actual vapour composition determined according to the balance (operating line) below the feed:
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xS is feasible if the corresponding extractive profile meets the rectifying profile.

The checking of feasibility is usually started with computing and visualizing the profile maps at total reflux, with several different feed ratios. 
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Figure 6. Extractive profiles map at total reflux and finite feed ratio
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Figure 7. Residue curves map (RCM)

When feed flow rate F or the feed ratio F/V approaches zero in equation (3) at total reflux (R=∞), a limit map is formed. This limit map is equivalent to the residue curves map (RCM) shown in Figure 7; the only difference is the direction of the curves. All these limit curves start from the neighbourhood of vertex E, pass either vertex B or vertex A, and approach the azeotropic composition. That is, vertex E is an unstable node UN, the azeotrope is a stable node SN, and the vertices A and B are saddle points S1 and S2, respectively.
At positive feed ratios genuine extractive profiles form, and both saddle points move along the binary AE or BE edge, respectively. The unstable node UN remains in place, but SN moves into the interior of the triangle. Such a map is shown in Figure 8. As is shown numerically by Safrit el al, 1995, and proven by Lelkes et al, 1998, the stable node SN moves along the isovolatility curve, and reaches the BE edge at some feed ratio.
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Figure 8. Extractive profiles map with a feed ratio below the minimum.
Consider again, please, the rectifying profile belonging to the specified distillate composition as is shown in Figure 5. In order to get a feasible column profile, the extractive profile computed from the still composition should meet the rectifying profile. In order to obtain such an intersection between the two profiles, the stable node SN should move down very near to the AE edge. If it actually reaches the edge then all the extractive profiles meet the rectifying profile, as is shown in Figure 9. 
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Figure 9. A profiles map with total reflux and feed ratio above minimum

Even if the still composition moves away, toward the BE edge, the extractive profile will approach SN if there is enough stages in the extractive section. Thus, practically constant distillate purity can be maintained while component A is gradially boiled out from the still. Consequently, the process is feasible (with great reflux ratio) if the feed ratio is greater than some minimum. That minimum can be determined by computing and visualizing the extractive profiles from a single still composition with increasing F/V, as is shown in Figure 10, because all the extractive profiles approach the same stable node at a given F/V.
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Figure 10. The path of the stable node SN as the feed ratio F/V is varied can be determined by computing extractive profiles initiated from the same single point. Feed ratios F/V belonging to the profiles(all with total reflux) change 0 to 100000.
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Figure 11. Sudden change in the length of the rectifying profile

Feasibility of the BED process is more complicated at finite reflux ratio. First, there is a reflux ratio, below which the rectifying profile is too short. This is shown in Figures 11ab. There is a sudden change in the length of the rectifying profile at some reflux ratio. Second, saddle point S2 moves inside the interior of the triangle, and four separatrices form along the extractive profile curves started in the directions belonging to the eigenvalues of the linearized system around S2. This is shown in Figure 12. The two separatrices connecting the BE edge with SN through S2 does not involve any obstacle against feasibility, but the other two separatrices together form a feasibility border because the extractive profiles to their left do not move toward SN. The still composition cannot be shifted across this border if the distillate purity is to be maintained. Thus, these pair of separatrices constitutes a constraint against the recovery of component A. Once the still composition reaches this border, producing pure distillate cannot be followed, and off-cut is to be started.
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Figure 12. Profiles map at finite reflux ratio (feed ratio is above minimum)

2.2. Feasibility method by mathematical programming
Batch extractive distillation is a complicated process characterized by several parameters to optimize, namely reflux ratio, feed flow rate, time periods, number of stages, feed location, heat state of the feed, and all the parameters of the process used to recover the solvent and produce the second component. Moreover, the optimal design always depends on the actual market parameters. Conventional solvers provide global optimum in case of convex equations and convex search space only. Rigorous models usually contain strongly nonconvex equations; thus, finding global optimum is in general not guaranteed. 
However, if the most important limiting parameters are known then they can be used to restrict the search space and, in this way, increase the chance for finding the global optimum.

Development of a short-cut methodology that applies mathematical programming for determining the main limiting parameters of design and operational parameters of batch extractive distillation was targeted by Lelkes et al, 2003, and Lelkes et al, 2005. These parameters are the set {Fmin, Nmin,extr, Nmin,rect} at R=∞ (D = 0), and Rmin at {N=∞ and given F/V}. (Not all the limiting parameters need to be determined before design.) 

All the short-cut computation was performed by using GAMS DICOPT++ (Brook et al., 1992) on a Sun SparcStation. One of the main targets was determining the minimum reflux ratio, and another was determining the minimum feed ratio at total reflux.
The minimum reflux ratio in the present version of BED is determined according to the location of the feasibility region’s boundary (shown in Figure 12). This boundary changes with R, as well with F/V; and this sensitivity was utilized for short-cut computing an approximating minimum reflux ratio.
The minimum feed ratio (F/V)min depends on the actual reflux ratio R. The greater R applied involves a greater (F/V)min; thus, (F/V)min at total reflux (R=∞) is a proper limit. This limit is determined by mathematical programming, based on the location of SN.

2.3. Motivation to applying interval arithmetic
As is explained in section 2.1 about the graphical feasibility method, feasibility of BED, and the appropriate process parameters can be estimated by analysing profile maps. Location of the singular points, and the parameter values at which some singular points appear or disappear, play a key role in assessing feasibility. Appearance and disappearance of singular points are called bifurcations. The singular points, especially saddle points, cannot always be determined with satisfactory precision; moreover, some details of the map are missed because unstable nodes are not searched for (saving time), and singular points out of a physically interpretable region are not studied. Bifurcation cannot always be recognized because the computed maps are not detailed enough. More precise determination of these loci and values involves extensive calculations. This means applying finer mesh in the composition domain and in the parameters’ domain, computing the profiles, and visualising of the results. Existence of a singular point cannot be excluded merely on the basis of not finding it with a given mesh over the studied domain. In contrast to that, interval arithmetic has the potential of excluding the existence of some solutions, and finding the bifurcation points according to their mathematical criteria.

The feasibility method with mathematical programming (section 2.2) works well, and provides us with applicable results, useful for design. From theoretical point of view, on the other hand, we are also interested in determining the reflux ratio at which the length of the rectifying profile suddenly jumps. Here the number of pinch points changes from one to three, through a single point where this number is just two. We were not able to find all the solutions at given R with the available solver even if several different parameterizations were tried. We were also interested in finding (F/V)min at finite R; this also has proven to be impossible with the above methodology. Now we already know what we did not know then, that we searched for a singular point that does not exist in the given domain. However, this non-existence could not be proven, or even recognized merely on the base of missing convergence. These findings also motivated us to apply interval methods because they are capable to find multiple solutions, and exclude non-existing solutions with mathematical certainty.

3. Interval arithmetic and interval tools
Conventional search for zeros of a real function f(x), i.e. solutions of the equation f(x)=0, leads to a sequence of real numbers x(0), x(1), …, x(k), …etc., each of which is considered as an approximation of the root x*. Such a sequence is either convergent or not, depending on the properties of the function and on the initial value x(0). If the sequence is convergent, we say that it has a limit point x*. Even if it is convergent, it may alternatively converge to several different limit points x*(1), x*(2), … depending on the initial value x(0), if several zeroes exist. Moreover, it may happen that the sequence converges to a limit cycle of points x*(1), x*(2), …, x*(n); i.e., it may be attracted by a finite set of points in a way that these points are visited in a fixed order in an infinite loop. Even more complex attractor sets may also exist. Dependence of the convergence properties on the initial value and on some parameters of f(x) may show up fractal properties, as is pointed out by Feigenbaum, 1978, and subsequently by others, e.g. Lucia et al, 1990. 
The same problem occurs when zeroes of a system of equations f(x)=0 are looked for, or when extrema (minima or maxima) of single or multivariate real functions f(x) are searched for. In the latter cases we deal with a sequence of real arrays, x(0), x(1), …, x(k)… etc.
By contrast, interval algebra does not compute or approximate the point values of real functions but approximates the range of the real function over an interval. The value of a so-called interval extension F(X) of a real function f(x) over an interval is also an interval. Point values are then parenthesized in as narrow intervals as possible. In practice, interval methods try to compute the lowest upper bound and the highest lower bound of the function over a given interval. Such a computation is not always possible or economic; in that case good bounds are looked for. In any way, the value of an interval function should be an outer bounding of the range of f over X:
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Equation (4) is called ‘inclusion’ property. Any well defined real function can be extended so that its interval version is defined over some interval domain, and the result interval is an outer bounding of the range of f over X. Multivariate intervals are rectangular sets, called boxes.
The picture is complicated with the technical difficulty that the set of real numbers are approximately represented by a finite subset of rational numbers when digital computers are applied, as usual. Care should be exercised to compute rounding always to outwards (outside rounding); i.e. round up for the upper bound, and round down for the lower bound, in order not to lose a solution by excluding it from the studied interval just because of improper rounding.
Bounding is a very useful, and elementary idea of several mathematical approaches in searching for roots or extrema. Root search of monotonic functions by bisection is the simplest, and best known, case. Branch and bound is another well known strategy. Thus, interval methodology is most fit to such applications.

The usual operations of addition, subtraction, multiplication, and division are well defined on interval sets. Division with an interval that contains zero can also be defined by resulting in two semi-infinite intervals (a positive and a negative one). Elementary functions can be defined over intervals, as well. Some interval methods need the knowledge of differentiated functions, more precisely the interval versions of the studied function and its first and second (or even higher) derivatives are also required. Just as it is possible to apply automatic differentiation in point computations over real numbers, automatic differentiation can be applied with interval algebra, as well. Automatic differentiation is an algorithmic tool that produces the value of the derivative function parallel to the computation of the original function. Thus, the user need not apply analytical differentiation before the computation starts, neither has he/she to rely on numerical differentiation based on finite differences. 
Interval algebra has been developed in the last decades to such a stage that it can successfully be applied to reliably solve small scale problems of root finding, minimization, integration, etc. Middle scale problems have also been solved in some particular cases. Interval methodology can be applied to find all the solutions of an equation (or system of equations) in a given region, or all the global minimizers of a multivariate real function over a region. Finding multiple solutions is achieved by systematically partitioning the studied interval (either according to the intristic properties of interval algebra, e.g. as a result of dividing by an interval that contains zero, or according to some arbitrary branching strategy), and then evaluating the subintervals obtained in this way.

Reliable solution means that the methodology does not lose a solution in the studied region. If no solution is found then no solution exists there. This is a result of inclusion and outside rounding.

Modern development of interval methodologies goes back to Moore, 1966. Several good introductions to interval algebra, interval root search, interval minimization, etc. are already available. See, for example, Hansen et al, 1992, or Hammer et al, 1993.
Interval software tools have also been developed, see for example the home page http://www.cs.utep.edu/interval-comp/intsoft.html.
The idea of applying interval methodology for determining global optima and roots has already found its way to the community of chemical engineering, as well. Most of the chemical engineering applications are published by Stadtherr and co-workers, for example Hua et al, 1996, 1998; Maier et al, 1998, 2000; Tessier et al, 2000; Stradi et al, 2001; Gau et al, 2002; Scurto et al, 2003; Lin and Stadtherr, 2004.
At starting our research, we did not strive for numerical efficiency in the sense of computation time. Instead, our target was applying an already developed, and available interval tool for our engineering problems. Thus, we have implemented an interval arithmetic based optimization algorithm (Csendes, 2001; Csendes and Ratz, 1997). The principal steps of the algorithm are as follow:
Step 1: Let L be an empty list, the leading box A:=X (the total studied domain), and the iteration counter k:=1. Set the upper bound of the global minimum f u to be the upper bound of F(X). 

Step 2: Subdivide A into s subsets. Evaluate the inclusion function F(.) for all the new subintervals, and update the upper bound of the global minimum f u as the minimum of the old value and the minimum of the upper bounds on the new subintervals. 

Step 3: Delete parts of the new subintervals that cannot contain a global minimizer point. 
Step 4: Add the remaining new subintervals to the list L.
Step 5: Set A to be that subinterval from the list L which has the smallest lower bound on f, and remove the related item from the list. 

Step 6: While termination criteria do not hold let k:=k+1 and go to Step 2.

This is a branch-and-bound algorithm. Interval arithmetic and the interval extension of the used standard functions were realized by the PROFIL library (Knüppel, 1993). The algorithm itself is a customized version of the global optimization procedure published in Hammer et al, 1993, and improved in several steps. 
This algorithm can be applied to solve both minimization problems and root finding problems, because any root finding problem
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can be re-formulated as a minimizing problem
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If (5) has a solution x* then it is a minimizer of (6) because the sum of squares cannot be negative. All over our study we apply this formulation for determining zeroes of equations, in spite of the fact that this formulation is inherently less efficient as a direct root-search formulation.
The computational environment was a Pentium IV PC (1 Gbyte RAM and 1.4 MHz) with a Linux operation system.
4. Model and data of the BED problem
We consider separating acetone (component A) from methanol (component B), a mixture forming minimum boiling azeotrope at about xacetone=0.821, with the use of water (component E) as entrainer, applying batch extractive distillation process in a rectifying unit.

The vapour-liquid phase equilibrium is modelled by a modified Raoult-Dalton equation in the form of
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where pio vapour pressure of the pure components is modelled with the three-parameter Antoine equation
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and the activity coefficients are computed with the three-parameter NRTL model in the form of
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Here Uij are the binary interaction parameters (energy differences), and ij=ji are the binary non-randomness parameters. For mathematical completeness, the above well-known model is supplemented with the requirements of summing up the mole fractions to unity:
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The model parameters are collected in Tables 1-2. 
Table 1. Antoine parameters Ai, Bi, and Ci
	i
	Ai
	Bi
	Ci

	A
	7.11714
	1210.595
	229.664

	B
	8.08097
	1582.271
	239.726

	E
	8.07131
	1730.63
	233.426


Table 2. NRTL parameters Uij, and ij
	i
	j
	Uij
	Uji
	ij = ji

	A
	B
	399.395
	-16.784
	0.292

	A
	E
	-47.613
	1919.523
	0.291

	B
	E
	-347.817
	-347.817
	0.302


All over our study, the specified distillate composition is xD = [0.94, 0.025, 0.035] (acetone, methanol, water). Pure water is applied in the entrainer feed, i.e. xF = [0.0, 0.0, 1.0].
Note also, please, that the system of Equations

(1), (2), and (7) to (13),
(RP)

as well as the system of Equations

(1), (3), and (7) to (13)
(EP)

are differential equations with algebraic constraints, i.e. differential-algebraic equations (DAE-s). This note will have significance in formulating a search for bifurcation.
Note also, please, that although we can compute fixed points even outside of the composition triangle, this opportunity is constrained to a small neighbourhood around the triangle because of the mathematical form of the model, equations 7 to 13. Thus, we searched for fixed points till xMethanol = -0.1; but no farther.

5. Search for singular points with interval methodology

Singular points of (RP) and (EP) are characterised by a zero value of the differentials in Equation (1). This is fulfilled when the right hand side equals zero, i.e. when
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Thus, singular points of (RP) satisfy the following algebraic equation system:


(2), and (7) to (14).
(SRP)

Singular points of (EP) satisfy the following algebraic equation system:


(3), and (7) to (14).
(SEP)
To demonstrate how the solver works, consider the following problem data: xD = [0.94, 0.025, 0.035], xF = [0, 0, 1], R = 4 , and F/V = 0.2. A stable node of the extractive profiles exists in this case at about xSN ( [[0.572164 to 0.572274], [0.09436 to 0.094491], [0.33344 to 0.33368]]. First, a solution was found to exist in the middle lower subdomain of the triangle. How the subdomain was successively subdivided into smaller subdomains in course is (partially) illustrated in Figures 14a-14c. The horizontal axis is molfraction xAcetone, the vertical axis is molfraction xMethanol. Temperature intervals are not visualized.

A set of boxes is shown in Figure 14a, with box borders along constant xA and constant xB, but without indicating the box borders constituted by inequality constraints applied on xE=1-(xA+xB). That is, wider boxes are shown in the figure, for the sake of lucidity, than really used. The box containing a bold point is found as a candidate for containing a solution. All the other boxes were examined and then discarded because the method excluded the existence of a solution there. The box where solutions could not be excluded were further subdivided. 
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Figure 14a. Subdivision in course
A later subdivision sequence is illustrated in Figure 14b; and an even later one in Figure 14c. The box containing a bold point frames a solution, and the existence of a solution in that box is proven by the method.
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Figure 14b. A later subdivision sequence
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Figure 14c. Subdivision a bit later 

5.1. Singular points of the rectifying profile (SRP)
Pinch points of the rectifying (enriching) profiles described by (RP), i.e. solutions of (SRP), can relative easily be found by the solver. 
Variables V, L, D, xE, y, po, , G, y*, and T can be considered as functions of xA and xB via the equation system (SRP) if xD and R are specified. If T were known then V, L, D, xE, y, po, , G, and y* could be expressed as functions of xA, and xB. In the same way, the square residual can also be considered as a function of xA and xB. Thus, xA and xB can be considered as independent variables, and their domain will be denoted by (x. However, the solver considers all the unknown variables simultaneously.
The interval arithmetic tool was able to find all the pinch points at any specified R. As a result, a bifurcation diagram was plotted, as is shown in Figure 15. The squares, lined up along imagined curves of negative slope, denote stable points. The triangles, lined up along an imagined curve of positive slope, denote unstable points. The unstable points are those that could not be determined using conventional solvers for mathematical programming.
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Figure 15. Plot of xAcetone component of the found singular points in function of R
This bifurcation diagram explains the sudden change in the length of the rectifying profile. As the profile starts at a high xA value, and evolves with decreasing xA, the profile stops in the higher stable branch if R is low. At higher reflux ratio, the profiles stop in the lower stable branch.
The rightmost standing square at about R ( 0.63 and xAcetone ( 0.7 was not found by this method. The nearer R was specified to this value, the longer time was consumed by the solver. The reason of this phenomenon must be that we encounter a bifurcation here. That is, there is at least one direction in (x. along which the square residue of (SRP) has zero slope in the solution point. 
5.2. Singular points of the extractive profiles map

Pinch points of the extractive profiles described by equation system (EP), i.e. solutions of (SEP) can relative easily be found by the solver. 

Variables V, L, D, xE, y, po, , G, y*, and T can be considered as functions of xA and xB via the equation system (SEP) if xD, R, and F/V are specified. If T were known then V, L, D, xE, y, po, , G, and y* could be expressed as functions of xA, and xB. In the same way, the square residual can also be considered as a function of xA and xB. Thus, they can be considered as independent variables. However, the solver considers all the unknown variables again simultaneously.

Four singular points of the extractive map are located in the arbitrary small neighbourhoods of the three vertices, and the arbitrary small neighbourhood of the azeotrope, if total reflux is applied and F/V approaches zero. How these points are shifted with increasing F/V is shown in Figure 16. These points are determined by the interval arithmetic optimization tool with stepwise incremented F/V parameters. The stable node originated from the azeotrope moves along the isovolatility curve (as is shown by Safrit and Westerberg, 1995, and proven by Lelkes at al, 1998), and meets just at the acetone/water edge an other point originated from the acetone vertex. The F/V value at which this meeting happens is (F/V)min. At higher values the stable point moves on the same edge toward the water vertex. As a result, all the extractive profiles (in case of total reflux) arrive to this point and cross the rectifying profile, with the consequence of feasibility.
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Figure 16. Singular point paths with evolving F/V at total reflux
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Figure 17a. Singular point paths with evolving F/V at R=10

All the singular points move into the interior of the triangle at decreasing R. Singular point path maps are show in Figure 17 with R=10, R=4, and R=3. At such high reflux ratios, the unstable node UN originated from the water vertex is shifted so little that it practically remains located there. The stable node SN does not move more along the isovolatility curve, but seems coming from a point on the acetone / methanol edge, nearer the methanol vertex. Saddle S1 originated from the acetone vertex does not move more on the base line. SN and S1 meet at F/V, depending on R.
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Figure 17b. Singular point paths with evolving F/V at R=4
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Figure 17c. Singular point paths with evolving F/V at R=3

For example, there is a bifurcation at appr. F/V=0.207, this is (F/V)min, if R=4 is specified (Figure 17b). Above this value the extractive profiles are directed toward a point somewhere outside the triangle. A second bifurcation happens at about F/V=0.55. A new stable point SN- appears outside the composition triangle and moves toward the water vertex. There is also an other saddle, S-, as its counterpart. 
The most striking result, a novelty, is that the stable node originated from the azeotrope does not reach the acetone/water edge. Whereas the minimum feed ratio at total reflux (R=() can be determined by tracing the location of SN in function of F/V to the A/E edge, this method cannot be applied in case of finite reflux ratio because SN never touches the base line. Instead, that F/V is looked for at which SN and S2 meet to disappear, because above this value the attractive point is outside the triangle.
All the mentioned singular points were determined by the use of the interval arithmetic optimization tool with stepwise incremented F/V parameters. The bifurcation points could not be exactly determined in this way. The nearer F/V was specified to this value, the longer time was consumed by the solver. The reason of this phenomenon must be that we encounter a bifurcation here. That is, there is at least one direction in (x. along which the square residue of (SEP) has zero slope in the solution point. 
6. Search for bifurcation points with interval methodology

One mole fraction of SN and S2 are plotted against F/V at specified R in Figures 19a-b. The curves do not meet exactly, but they have to do so at a little bit higher F/V. Note also that stationary points far outside the triangle are not computed; that is why some sequences are imperfect. A saddle is missing, for example, in Figure 19c at high F/V.
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Figure 19a. Bifurcation diagram at R=10
The meeting point could not be well approximated by simply determining the singular points with stepwise incremented feed ratio, as mentioned in section 6, because the computation time diverges to infinity as the bifurcation point is approximated. Instead, the criteria of bifurcation is applied as a new constraint in the model.

The character of a singular point can be analysed by linearizing the differential equation in its neighbourhood. Accordingly, Equation (1) is approximated by 
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where matrix A is the Jacobian computed at x:
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Figure 19b. Bifurcation diagram at R=4
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Figure 19c. Bifurcation diagram at R=3
Regular (non-bifurcating) singular points are characterised by non-zero real parts in all the eigenvalues of the coefficient matrix A. Bifurcation points are characterised by zero real parts of the eigenvalues. Fortunately, we have such simple singular points here that are characterised with real eigenvalues only and, consequently, irregularity is indicated simply by having a zero determinant of A. In this case, the criterion of bifurcation is:
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Thus, the equation systems to be solved is, in principle, the following:

(3), and (7) to (14), and (16)
(17)

with F/V considered as a variable.
However, the entries of the Jacobian (Equation 15) cannot be simply computed, because the function to be differentiated by xA and xB cannot be expressed in them. This is because the equilibrium temperature T cannot be algebraically discarded. In practice, we have the following relations:
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where T is a (bubble point) function of xA and xB:
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In order to determine the partial derivatives, the chain rule can be applied:
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The above partial derivatives of f according to the mole fractions can be expressed analytically, and are given in the Appendix. The partial derivative of  according to the mole fractions are also difficult to determine, because the function  is not known explicitly. However, the implicit function theorem can be applied. The bubble temperature T is determined according to the criterion of equilibrium, expressed as Equations (7) and (13). Combination of these two equations leads to the criteria
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(That is, the sum of the partial pressures should equal the total pressure.) The differential of P according to mole fraction xA or xB should be zero, because P is specified as a constant:
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From here, the array of the derivatives of T can be determined as
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Thus, the bifurcation points can be determined by finding the roots of the system (RP) – or (EP) - and Equations (19) and (20) simultaneously. The results are summarised in Tables 3 and 4. The numbers shown in these Tables are lower and upper bounds to the exact values, respectively, according to the applied model. The upper bounds are shown below the lower bounds; the identical leading digits are underlined, for easy comparison.
Table 3. Bifurcation point interval of the specified rectifying profile
	R
	0.6290669441223144
0.6290836334228516

	F/V
	0

	xacetone
	0.6932788372039798
0.6932974338531500

	xmethanol
	0.0201442718505859
0.0201454162597657

	T [K]
	333.1959158182144165
333.1962019205093384


Table 4. Bifurcation point intervals of the extractive profiles map at to reflux ratios
	
	R=4
	R=10

	F/V
	0.2063720703125000
0.2069946289062501
	0.1578170891437115
0.1585855111005144

	xacetone
	0.5877075195312502
0.5881469726562504
	0.7042266845703127
0.7047851562500003

	xmethanol
	0.0673706054687500
0.0677490234375001
	0.0400826140894999
0.0404432357242396

	T [K]
	333.9262008666992187
333.9355468750000001
	332.6806640624999999
332.6953125000000001


Conclusions
An interval arithmetic based branch and bound optimization tool has been applied to analyse feasibility of batch extractive distillation. Using this tool, we are able to reliably find all the singular points of the profile maps. The tool has also successfully been applied to find bifurcation points.
Studying the extractive profiles map of the acetone (A) – methanol (B) – water (E) system, we find that there are four singular points (two saddles, a stable node, and an unstable node) at higher reflux ratios. At total reflux and increasing feed ratio, the two saddles move along the AE and the BE edges, respectively, toward the water vertex (component E); the stable node meets the saddle on the AE edge, and they change stability. At finite reflux ratio, the singular points are found inside the triangle; the stable node and the saddle point initiated from vertex A collide inside the triangle, and bifurcation occurs. After the bifurcation, both colliding singular points vanish, and the profiles lead out from the triangle through the AE edge. The minimal feed ratio can be determined via computing the bifurcation point. The reflux ratio at which the rectifying profiles suddenly changes its length can be found in the same way.
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