Influence of Pure and Unit-Like Tests on SBFL
Effectiveness: An Empirical Study

Attila Szatmdri
Software Engineering Department
University of Szeged
Szeged, Hungary
szatma@inf.u-szeged.hu

Abstract—One of the most challenging and time-consuming
aspects of debugging is identifying the exact location of the bug.
We propose the concept of a Pure Unit Test (PUT), which, when
fails, can unambiguously determine the location of the faulty
method. Based on developer experience, we established three
heuristics to evaluate the degree to which a test can be considered
a unit test, if it cannot be considered as a PUT (we call these
Unit-Like Tests, or ULTs). We examined how and when PUTs
and ULTs affect Spectrum-Based Fault Localization efficiency.
The results demonstrate that, for more complex systems, a higher
proportion of unit tests in the relevant test cases can enhance
the effectiveness of fault localization. When the number of PUTs
is high enough, fault localization becomes trivial, in that case
running SBFL is not necessary. Moreover, our findings indicate
that different kinds of ULTs can have a large impact on the
efficiency of fault localization, particularly for simpler bugs where
they can quickly and effectively pinpoint the problem areas.

Index Terms—Fault localization, Spectrum-Based Fault Local-
ization, unit testing, test levels.

I. INTRODUCTION

A technique called Spectrum-based Fault Localization [1]—
[5] (SBFL) aims to automatically identify the exact origin of
the bug. By analyzing statistical data on different program
elements, this technique generates an ordered list of suspi-
cious elements, which can guide developers during debugging.
This paper deals with function-level granularity for analysis,
meaning functions or class methods serve as the basic fault
localization elements. This approach offers granularity higher
than the commonly used statement-level; however, focusing
on method-level granularity aligns with the scope of unit
testing. The paper analyzes the influence of unit tests, which
typically cover individual methods, and their variations (PUTs
and ULTs) on SBFL efficiency. Furthermore, some argue that
method-level granularity is more beneficial to users [5], [0].

There are cases where fault localization at method level
granularity may not always be the best technique for fault
detection. A particular scenario arises when the test suite of
a software program contains only unit tests, which simplifies
fault detection. The faulty method would be identified by a
single failed test that calls it directly. However, the cost of
creating and maintaining a unit-only test suite could easily
outweigh the benefits. This would require extensive mocking,
since very few methods operate completely in isolation. In
general, industrial applications cover multiple levels of testing,

Tamas Gergely
Software Engineering Department
University of Szeged
Szeged, Hungary
gertom @inf.u-szeged.hu

Arpid Beszédes
Software Engineering Department
University of Szeged
Szeged, Hungary
beszedes @inf.u-szeged.hu

even bug datasets consisting of real projects and bugs have
different levels of testing in their test suites [7]-[10]. In
addition, developers often do not fully follow the ISTQB rules
when writing unit tests [1], leaving the test suite with only
a small fraction of tests that strictly follow the definition of
unit tests. This creates the challenge of recognizing tests that
meet the unit test criteria and separating them from tests with
similar features that do not meet the strict criteria. Many of
these “unit-like” tests are helpful in fault localization because
they provide the benefits of unit testing, such as isolated
coverage of specific functionality, without fully adhering to
the formal definitions. To address this challenge, we introduce
the concept of Pure Unit Tests (PUTs) as a precise criterion
for identifying unit tests in the context of fault localization.
In addition, we propose three other heuristics: Single Method
Chain Test (SMC), Limited Method Chain Test (LMC) and
Short Multichain Test (SMT) to evaluate how much of the
test suite can be considered Unit-Like Tests (ULT).

The goal of this study is to determine what proportion
of tests must be PUT or ULT for SBFL to achieve optimal
effectiveness, that is, to place the faulty method near the top of
the suspect list. By analyzing the role of both strict and relaxed
unit test definitions, we aim to provide actionable insights into
test suite design and offer practical guidance to developers on
balancing test coverage and granularity to make debugging
easier for developers. Our research is guided by the following
key questions.

1) RQ1: What percentage of tests should consist of pure
unit tests to optimize the effectiveness of SBFL? This
question aims to determine the minimum proportion of
PUTs necessary in relevant test cases which cover the
same methods as the analyzed test, to maximize the
accuracy of SBFL.

2) RQ2: What is the relationship between the density
of ULTs and the fault localization precision? This
question examines the optimal percentage of Unit-like
tests required for SBFL to achieve optimal performance.

Our results indicate that more PUTs typically improve
defect localization. However, when the test set consists entirely
of PUTs or contains a failed test case that is a PUT, the
faulty method can be clearly identified even without using
complex techniques such as SBFL. As a recommendation for

future researchers, bugs revealed solely by failed PUTs could
be excluded from bug benchmarks used for SBFL, as these
cases do not benefit from fault localization techniques because
they do not pose a meaningful challenge for SBFL to solve.
As a result, including them in evaluations could obscure the
true potential of novel methods, hindering their progress and
validation.

II. BACKGROUND
A. Test Levels

According to the ISTQB CTFL syllabus [12], which is
a generally accepted source for testers, there are 5 levels
of testing, i.e. Component testing, Component integration
testing, System testing, System integration testing, and
Acceptance testing. In this paper, we focus on component/unit
tests. In addition to ISTQB, IEEE [13] defines a unit as:

o a separately testable element specified in the design of a

computer software component,

« a logically separable part of a computer program, or

o a software component that is not subdivided into other

components.
Therefore, a unit, by its very definition, cannot be divided
into further components. Each unit test must individually
cover only one such distinct unit. Usually in object-oriented
programming languages, a unit is considered as a method/-
function.

Several articles have been presented on what makes a good
unit test [14]-[17]. Although these indicators and guidelines
are helpful, the ambiguous and strict definition of unit tests
often leads developers to relax the unit test rules to ensure
that the system is tested. They prioritize having the system
tested over strictly following the principles of unit tests.

B. Fault Localization

SBFL is a well-known technique for software fault local-
ization that relies solely on test coverage and test results to
calculate suspiciousness scores for program elements. The
execution of test cases on program elements is documented
to derive the spectra (i.e., test coverage and test results) for
the program being tested. Using program spectra, for each
program element e the following basic statistical numbers,
called the spectrum metrics, are then computed:

o ep: number of passed tests covering e.

e ef: number of failed tests covering e.

o np: number of passed tests not covering e.

« nf: number of failed tests not covering e.

score(e) = % @

After that, these spectrum metrics can be utilized by an
SBFL formula which assigns a score to each program element
e. In this study, we will use the Barinel [18] formula for evalu-
ation (Equation 1). Then, the elements are sorted in descending
order by their score. The rank (position in the sorted list) of
the faulty element provides an effective comparison of the

efficiency of various SBFL methods, as it clearly indicates
the effort required by developers to examine the items in the

list. Various studies [19], [20] have evaluated the reliability of
fault localization and concluded that software engineers often
examine only the top 3 or 5 positions on the list.

IIT. MOTIVATION

Each unit test is designed to isolate a specific piece of
functionality, ensuring that when a test fails, the issue can be
pinpointed directly to the code under test. However, in real-life
settings, test suites contain various levels of tests [21], [22].
Real-world software systems are inherently complex due to
the numerous relationships and interactions between different
components.

Although spectrum-based fault localization (SBFL) has
proven useful for debugging, its statistical nature makes it
inherently imprecise. As a result, developers often seek to
optimize the composition of the test suite to ensure a balance
that enhances the effectiveness of fault location. In particular,
finding the right balance of unit tests is critical. These tests, by
their very nature, simplify fault isolation, potentially reducing
the need for complex SBFL techniques; if a failed test is
a (true) unit test, it will isolate the faulty method and the
developer can easily identify it.

In software testing, the concept of code coverage is often
used to evaluate the effectiveness of tests. Using code coverage
and call stack traces, we can identify the call chain of a test.
A call chain is a sequence of methods in which each method
calls the next in the list. Typically, code coverage and call
chains help determine whether a test is a unit test or not. [23]

public class PythagoreanTheorem {

1

2 private double a, b;

3 public PythagoreanTheorem() {

4 this.a = 1.0;

5 this.b = 1.0;

6 }

7 public PythagoreanTheorem(double a, double b) {
8 this.a = a;j

9 this.b = b;

10 }

11 public double calculateHypotenuse () {

12 return Math.sqrt (square(a) + square(b));
13 }

14 public double calculateRightTriangle() {

15 return (square(a) + square(b));

16 }

17 public double square (double x) {

18 return x + x; //bug, should be x * x

19 }

Listing 1. Example buggy code (Pythagorean Theorem)

1 PythagoreanTheorem theorem = new PythagoreanTheorem();

2 final double EPSILON = 0.05;

3 @Test

4 public void testCalculateHypotenuse() {

5 assertEquals(1.41, theorem.calculateHypotenuse ()
EPSILON) ;

6 }

7 Q@Test

8 public void testIsRightTriangle() {

9 assertEquals (theorem.square (13), new
PythagoreanTheorem (5, 12).calculateRightTriangle
(), EPSILON);

10 }

11 @Test

12 public void testSquare() {

13 assertEquals (9.0, theorem.square(3), EPSILON);

14 }

15 @Test

16 public void testSquareWithParameterizedConstructor() {

17 assertEquals (9.0, new PythagoreanTheorem(3,4) .square

(3), EPSILON);
18 }

Listing 2. Example tests (with various test levels)

To illustrate the problem and clarify the concepts of PUT
and ULTs, we present Listing 1, which includes a working
example of the Pythagorean theorem, and Listing 2, which
shows the associated tests. In this scenario, the bug exists in
the square method, which mistakenly computes the square of
a number as z+z instead of the correct = x z. This error has a
domino effect, causing all tests that rely on the square method
to fail. The three test cases provided exemplify different ULT
categories, emphasizing the importance of PUTs to quickly
and effectively pinpoint faults without SBFL.

The testSquare test case exemplifies a PUT by exclusively
covering and validating the square method. Its failure directly
identifies the faulty method without requiring additional analy-
sis, demonstrating how PUTs simplify debugging. Conversely,
tests like festCalculateHypotenuse and testIsRightTriangle rep-
resent higher-level tests, where the faulty method’s location
is less immediately apparent and would typically require
SBFL to prioritize suspicious methods. Typically, minor helper
methods like square are made private and static to signal to
developers that they will not change the object’s state. In such
a case, the testSquare test would not exist, and other tests
would reveal the fault. Even without unit tests in the suite,
the defective method is still easily traceable by ULTs. Thus,
understanding the role and proportion of PUTs and ULTs in
test suites is essential to optimize fault localization processes.

IV. METHOD FOR IDENTIFYING TESTS

Call chains in software engineering refer to a sequence of
function or method calls where one function calls another,
which in turn calls another, forming a chain of calls. These
chains can be simple, involving just a few functions, or com-
plex, including multiple modules and layers within a software
system. In our approach, we collect all the distinct call chains
that occur during the execution of 7' (a set of test cases),
called the call chain set C'. Furthermore, we maintain a chain
set C(¢) for each individual test case ¢ € T (indicating that ¢
produces c if ¢ € C(t)). We consider ¢ a single chain of a test
if ¢ € C(t). The collection of functions found within a chain
c is represented by F'(c), where F(C(t)) = Ucec) F(c).

To identify the relevant test cases for a given test case,
we define R(t) = {r € T|F(C(t)) N F(C(r)) # 0}, so a
list of test cases that cover the same methods as the given
test. For example, one of the relevant test cases for festSquare
in Listing 2 would be the testIsRightTriangle, since they both
cover the square method.

Figure 1 represents the heuristics, specifically the PUT and
ULT, which show the depth and structure of the call chain.
Each arrow represents an invocation of a method, indicating
its source and destination. Although the “Test” is shown in the
figure, they do not belong to the call chains. With a falling
PUT, SBFL and its measurements are unnecessary. ULTs are
disjoint from PUT as the study focuses on the ratio of relevant
tests. In ULTs only, LMC and SMC are not disjoint, as LMC
is a subset of SMC. A PUT represents a stricter variation of
unit testing, targeting only a single method, therefore, we can
decide whether a test is PUT by using PUT(t) < |C(t)| =

1AVe e C(t) : len(c) = 1. The key feature of a PUT is that
its call chain length is exactly one, which means that the test
triggers only the method being tested without involving any
other methods, such as the festSquare in Listing 2.

Pure Unit Test
(PUT)

Limited Method

Single Method Chain
(sMc) Chain (LMC)

Short Multichain Test
(sMm)

E

3

Method Method Method

Fig. 1. Pure Unit Test (PUT) and Unit-Like Test (ULT) heuristics

Based on developer experience, we have established three
heuristics to evaluate the degree to which a test can be consid-
ered a unit test. Due to the ambiguity of unit test definitions,
only the PUT strictly meets the unit test requirements. Hence,
the necessity for heuristics.

The Single Method Chain (SMC) focuses on minimizing
the infection route of a bug to just one pathway. This implies
that the developer only needs to examine a single sequence
of method calls, which must surpass the length of the PUT,
otherwise we would consider it classified as a PUT. Therefore,
to decide whether a test is SMC, we use SMC(t) < |C(t)| =
1AYe € C(t) : 1 < len(c). Due to the limited scope that needs
investigation, this is seen as a more relaxed interpretation of
the unit test rules.

The Limited Method Chain (LMC) is a stricter rule than the
SMC. Within this approach, we limit the sequence of method
calls to three. Therefore, to decide whether a test is LMC, we
use LMC(t) < |C(t)] = 1AVe e C(t) : 1 < len(c) < 3.
This rule is based on the idea that if the method is reasonably
close to the test, it is considered a good estimate of a unit
test. When software is refactored using the Extract Method
design pattern, a single unit is often split into several smaller
units. The festCalculateHypotenuse from Listing 2 falls into
the SMC and LMC categories, because it calls the calculate-
Hypotenuse method, which then invokes the square method
(Listing 1).

Lastly, the Short Multichain Test (SMT) is based on the
notion that while a test may involve multiple method calls,
if these calls are at a single depth, they are likely related,
making the area to be investigated manageable. For instance,
when a test calls a constructor of an object and then interacts
with that object (e.g., calling one of its methods), it tests the
object but would not be considered a pure unit test by strict
definition. Therefore, to decide whether a test is SMT, we
use SMT(t) < |C(t)] > 1 AVe € C(t) : len(c) = 1. The
testSquareWithParameterizedConstructor test from Listing 2
falls into this category, while the test invokes the Param-
eterized Constructor and square methods. Consequently, to
decide whether a test is Unit-Like, we use the ULT(t) =
SMC(t) vV LMC(t) v SMT(t) formula.

V. EVALUATION
A. Benchmark

For our evaluation, we selected Defects4] (v2.0.0) [24], a
widely recognized benchmark of Java programs and curated
bugs used in fault localization research. This benchmark in-
cludes 17 open-source Java projects that contain 835 manually
validated non-trivial real bugs. However, 45 bugs had to be
omitted from the study due to instrumentation issues due to
conflicts with specific versions of the programming language
and libraries or inconsistent test results, such as flakiness. The
whole project, Closure (160 bugs), was omitted because it had
considerably higher testing levels than the other projects [7],
i.e. the number of unit tests makes it an insufficient sub-
ject program for this study. Additionally, for 13 out of 835
bugs, the modification was limited to method addition (i.e.,
the committers did not alter an existing method during the
rectification). We omitted these bugs from the study, because
SBFL cannot localize the non-existent method in the buggy
version.

TABLE I
PROPERTIES OF SUBJECT PROGRAMS

Subject Number Size Number Number Number | Number | Number | Number ‘

of bugs (KLOC) of tests of methods of PUT of SMC | of LMC of SMT
Chart 25 96 2.2k 5.2k 36.8 57.6 53.6 2413
Cli 39 4 0.1k 0.3k 1.4 24 24 85
Codec 16 10 0.4k 0.5k 45.6 722 69.8 140.9
Compress 47 11 0.4k 1.5k 20.5 347 34.6 81.3
Csv 16 1 0.2 0.1k 4.9 18.3 15.9 379
Gson 15 12 0.9k 1.0k 32 9.2 9.2 20.5
JacksonCore 25 31 0.4k 1.8k 528 6.92 6.88 17.52
JacksonDatabind 101 4 1.6k 6.9k 72 10.2 10.2 252
JacksonXml 5 6 0.1k 0.5k 0 0 0 0.2
Jsoup 89 14 0.5k 1.4k 58 10.8 10.8 27.8
JxPath 21 21 0.3k 1.7k 0 0 0 0.2
Lang 61 22 2.3k 2.4k 366.1 644.6 608.7 956
Math 104 84 4.4k 6.4k 41.7 98 91.4 246.7
Mockito 27 11 1.3k 1.4k 4.5 6.5 6.5 22.8
Time 26 28 4.0k 3.6k 26.2 39.9 39.9 208.6
All 617 355 19.1k 34.7k 5753 1011.4 959.8 2035.7

In total, 617 defects were incorporated into the final dataset.
Table I presents each project alongside its main attributes. For
each bug, the average number of tests, methods, PUTs, SMCs,
LMCs, and SMTs are provided for the project.

B. Generating Suspiciousness Rank Lists

To determine the suspiciousness values of code elements,
we relied on the Barinel metric, as discussed in Section II-B.
Our implementation adopts the average position tie-breaking
strategy, which is the most commonly chosen approach com-
pared to best-case and worst-case scenarios. To address the
division by zero issue that can impact many formulas, we ap-
plied the ¢+ € method [25], where c represents any coefficient
in the formula and e is the smallest representable floating-point
number.

Several studies indicate that developers typically examine
only the initial 5 or 10 entries in the recommendation lists
(rank) when employing fault localization algorithms, before
stopping their ranking evaluation [19], [20]. The group of
metrics that differentiates bugs with the minimum rank of
faulty elements being less than or equal to N is often referred
to as topN or accQN [26]. This metric signifies the number

of bugs accurately pinpointed within the top N elements of the
ranking lists. As the value of N decreases, the performance of

SBFL improves. Common selections for N include 1, 3, 5, and
10. Code elements placed beyond the top 10 are categorized
as Other.

VI. RESULTS

A. Optimal Proportion of Pure Unit Tests for Fault Localiza-
tion Effectiveness (RQI)

The main goal of this research question is to find out what
is the percentage of pure unit test ratio in the relevant test
cases where Spectrum-based Fault Localization is needed. To
address this research question, we examine only the ranks of
those bugs for which the PUT percentage in relevant test cases
is above 0, indicating that at least one PUT test case covers the
buggy method. The reason for this is that test cases that are
not unit-level have varying success in detecting bugs. Certain
bugs e.g. bugs in program workflow can be easily revealed by
integration and system tests, while others cannot.

10 ’
9 .
°
" °
2
:
o
a6
H ®
g ®
d 0
a4 []
© ‘. ®
AR 4
2 [] :. ®
1 e o o® o []

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Percentage of PUT in Relevant tests

Fig. 2. Percentage of PUT in relevant test cases top 10

300

Barinel ranks

100 .

0.1
Percentage of PUT in Relevant tests

Fig. 3. Percentage of PUT in relevant test cases Others

We analyze the PUT percentage distributions in disjoint top
N rank categories in order to see how much of the relevant
test cases need to be pure unit tests so that SBFL provides
accurate localization. Figure 2 shows the percentage of PUTs
in relevant test cases where buggy methods rank in the top 10
category on the list of suspicious elements. Several data points
show high PUT percentages in the top 1 category, suggesting
that a high percentage of relevant unit test cases contribute to
effective fault localization.

However, there are also instances where the PUT percentage
is near 0%, indicating that while a high PUT percentage

often suggests precise fault localization, SBFL can effectively
identify faulty methods at different test levels. Transitioning
from top 1 to top 3, with relatively high PUT percentages in
the relevant tests, SBFL always ranks the buggy methods in
the top-3 positions.

The number of PUTs decreases drastically as we move
towards lower ranks, which means that SBFL will not rank
buggy methods with high PUT rate of relevant tests in top-5
and top-10 or worse. Finally, Figure 3 shows the distribution of
PUT percentages for tests ranked outside the top 10. Most data
points are concentrated below 5%, with very few exceptions;
therefore, buggy methods that are not accurately localized
have a low percentage of containing pure unit tests in their
relevant test case set. Combining these results, for the SBFL
to consistently place buggy methods in the top 3, at least 20%
of the relevant tests must be PUT. Achieving this requires
categorizing each test based on defined heuristics and ensuring
that for every method, at least 20% of its relevant test cases
are PUT. For example, if a method has 5 relevant test cases,
at least 1 of them should be a PUT to maximize the likelihood
that SBFL places it in the top 3. If this threshold is not met,
developers may need to write additional PUTs to improve
fault localization accuracy. However, pure unit tests are not
all feasible or inexpensive to create and maintain, as many
methods do not operate completely in isolation. Developers
should weigh the effort invested in the significant amount of
work they put into making a pure unit test against the cost of
maintainability later, e.g. debugging costs.

Answer to RQ1: Having over 20% pure unit tests in the
relevant test cases enhances SBFL’s precision, making sure
buggy methods consistently ranked in the top 3. However,
when there is a failing test that is a PUT, the buggy method
can be easily pinpointed.

B. Assessing the Impact of Relaxed Unit Tests on Fault
Localization Efficiency (RQ2)

Although a high proportion of the PUT in the test suite
indicates accurate SBFL, it is very strict and tests are rarely
written to follow it exactly, especially when unit testing meth-
ods require extensive mocking. Therefore, using heuristics to
approximate unit tests is a logical choice.

10)

® o
s ® @
) °
) °®
i 8 8
g °
a4 ¢
.
g 5
g 4 ® .0) :
oy P ® [] ®
e fo A o o § o o0 p]
1 000 g o® 0 04 o °® ()
o 0 0.1 0.2 0. 0.4 0.5 0.6 0.7 0.8 0.9

Percentage of SMC in Relevant tests
Fig. 4. Percentage of SMC in relevant test cases top 10

Figure 4 shows that the proportion of SMCs within the
relevant test cases of faulty methods ranked between the

top 10 bugs is overall considerably higher. This means that,
compared to Figure 2, more faulty methods with a relatively
low percentage are placed in the top 1 and 3 than in the case
of PUT.

Barinel ranks

o®

[

100 ® ®

0 ’.... [

0 0.1 0.2 0.3

Percentage of SMC in Relevant tests

Fig. 5. Percentage of SMC in relevant test cases Others

On the other hand, Figure 5 shows the SMC percentages in
the relevant test cases, when SBFL ranked the faulty methods
outside the top 10. Overall, the percentages here are relatively
low except for a few outliers with approximately 30%. When
comparing these results, if faulty methods are covered by at
least 50% of the SMC tests, SBFL will always place them in
the top 3, as relevant tests of lower-ranked erroneous methods
never reach that proportion.

10 w
R
’ °®
. & ® °
F f ®
H o6
.
g o °®
ol
y @
qod @ .~ ®
[Y .. P
) ® e o ®
2 ' Q .: @ ® @
1 00e 8 ®® o o o °)
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Percentage of LMC in Relevant tests
Fig. 6. Percentage of LMC in relevant test cases top 10
1200
1100 (]

700 @

500 ®

Barinel ranks

@
100 ’.)
o ... ®
0

Percentage of LMC in Relevant tests

0.1 0.2 0.3

Fig. 7. Percentage of LMC in relevant test cases Others

The LMC is a stricter rule than the SMC, where only short
single-method chain tests are categorized. Similarly to the

SMC plots, the faulty methods in the top 10 are spread over
different percentages of LMC (Figure 6). High percentages of
LMC can be associated with a higher likelihood of bugs being
ranked in the top 1 and top 3, similar to what was observed for
SMC. However, the percentages of LMC in the tests for those
bugs ranked outside the top 10 are generally low (Figure 7).
Comparing the results of the LMC percentages, we can see
that at least 50% of the relevant test cases need to be LMCs
for SBFL to always place them in the top 3, just as with SMCs.

Barinel ranks

W
'..
s %2
®
[]
]
® @ @
[]
o0 0 @
..
[}
[}
(]
[]
aoo

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Percentage of SMT in Relevant tests

Fig. 8. Percentage of SMT in relevant test cases top 10

The SMT graphs in Figure 8 demonstrate a broader distri-
bution compared to the SMC and LMC graphs, as SMT has
less similarity to PUT than the other heuristics, resulting in a
larger number of tests falling into this category.

Barinel ranks

[]
300 ' [
o §5008008ee oo o ° °

=100
0.1 0.2 0.3 0.4

Percentage of SMT in Relevant tests
Fig. 9. Percentage of SMT in relevant test cases Others

Figure 9 shows the SMT percentages for bugs that are not
ranked in the top 10. The percentages are generally lower,
with the highest point around 40%. This shows that when
the SMC percentage in the relevant tests is sufficiently high
(> 60%), SBFL will rank them within the top 3. Unit-like
tests are also more feasible than pure unit tests for complex
software because they are based on less strict rules, but retain
the benefits of unit testing. Although methods need to be
covered by a higher percentage of ULTs to ensure that SBFL
always gives good results (top 3), it is more sustainable and
less expensive than creating pure unit tests, since less mocking
is required. With these results in mind, we answer the second
research question.

Answer to RQ2: ULTs are vital for improving SBFL
efficiency. Notably, when ULTs exceed 50% for SMC and

LMC, and 60% for SMT, SBFL consistently ranks faulty
methods in the top 3.

VII. RELATED WORKS
A. Spectrum-based Fault Localization

SBFL techniques are still striving to be utilized in real-
world scenarios [20], [27]-[29]. Although many SBFL suspi-
ciousness measures have been suggested, we used Barinel in
this work, which has been shown to perform exceptionally
well [29]. Wu et al. integrate the call stack with static
call graph data and subsequently compute the suspiciousness
scores for the functions [30]. Analogous ideas about function
call chains have been investigated by other researchers [31],
[32], although not at this level of detail and not centered
on SBFL applications. Beszédes et al. [33], [34] used call
chains to help improve SBFL’s fault localization accuracy.
Additionally, Vancsics et al. [35], [36] used the frequency of
method calls in call chains to improve SBFL.

B. Unit test categorization

Beck et al. [37] suggest that using isolated tests can
simplify debugging simpler and create systems with strong
cohesion and loose coupling. Nierstrasz et al. [38] developed
a classification system for unit tests. Van Deursen et al. [39]
specifically discuss unit tests focusing on a single method,
categorizing them using bad smells like indirect testing, which
we would classify as independent tests. In another study [40],
Van Deursen et al. investigate the connections between testing
and refactoring, suggesting that code refactoring should be
accompanied by test refactoring. Certain test smell refactorings
align with ULTs, such as “Indirect Testing,” where test class
methods test other objects. This aligns with SMTs and, despite
complicating the test-production code relationship, is useful
for narrowing the SBFL search space. Trautsch et al. [11]
performed a study on Python programs to examine whether
developers implement unit tests that follow the ISTQB and
IEEE standards in practical projects. They found that while
developers believe they are writing unit tests, in reality, they
are doing less than they think, with most projects having only
a minimal number of unit tests. This observation matches our
findings on the number of unit tests in projects. Orellana et
al. [41] investigated the difference between unit and integration
tests using the TravisTorrent dataset. They discovered that unit
tests detect a higher number of defects compared to integration
tests. This emphasizes the importance of maintaining a high
proportion of unit tests (PUT) in the relevant test cases and
ideally throughout the entire test suite.

C. Using test suite manipulation to improve Fault Localization

Perez et al. [42] introduced the DDU metric, which focuses
on diagnostic informativeness through a general test suite
evaluation, our work targets the specific impact of Pure Unit
Tests (PUTs) and Unit-Like Tests (ULTs) on SBFL efficiency.
Xuan et al. [43] transformed the tests into unit tests to en-
hance spectrum-based fault localization. Their empirical find-
ings demonstrate that test case purification can substantially

improve the original fault localization methods. The results
indicate that test case purification benefits six different fault
localization techniques. Our results support this, showing that
SBFL works better with a larger number of unit tests. Jiang
et al. [44] present an empirical evaluation of the effectiveness
of adequate test suites in supporting fault localization, with a
particular focus on the integration of test case prioritization
and statistical fault localization techniques.

VIII. THREATS TO VALIDITY

The main threat to the infernal validity of this study is
the heuristics we propose to define Pure Unit Tests (PUT)
and Unit-Like tests (SMC, LMC, SMT) that are based on
specific assumptions about what constitutes a “unit” in test-
ing. These definitions, while based on conclusions from the
existing literature, may not align perfectly with all developer
practices, potentially leading to incorrect classification of tests
and affecting our results. In addition, evaluating suspiciousness
rankings based on single-bug isolation might not be valid
for complex systems with multiple bugs. Moreover, setting
SBFL granularity to the method level can introduce biases, as
conclusions about not needing SBFL when a failing test is a
PUT may not apply to finer granularities like statements or
branches. For in-line or very short methods, the conclusion
remains valid, but otherwise, based on this result, researchers
can incorporate a new SBFL algorithm that has narrowed down
search spaces.

Regarding external validity, even though the study’s evalu-
ation was conducted on 617 real defects from Java programs,
it is still preferable to replicate the research using a larger
and potentially more varied dataset. Replicating this study on
various codebases from multiple domains and programming
paradigms would help verify the generalizability of our conclu-
sions. The bugs analyzed may not represent the full diversity
of real-world bugs, as they originate from open-source projects
that follow certain standards. Defects in other software types,
such as embedded systems or commercial software, may show
different results.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated how different heuristics for
unit tests correlate with the accuracy of SBFL. Therefore,
we proposed heuristics to approximate unit tests based on
their method call chains. These are the Pure Unit Test (PUT),
the Single Method Chain (SMC), the Limited Method Chain
(LMC), and the Short Multichain Test (SMT). To examine
the proportion of such tests in the relevant tests of defects
(tests covering the same methods as the analyzed tests), we
conducted a study on Defects4]. The results showed that
including more than 20% PUTs in the test cases significantly
improves the accuracy of the SBFL, placing the faulty methods
in the top 3 of the suspicion rankings. However, if one of
the failed tests is a PUT, then identifying the faulty method
becomes easy even without using SBFL. We also found that
ULTs developed with heuristics such as SMC, LMC, and SMT
greatly increase the efficiency of SBFL. When ULTs make up a

large fraction of the relevant tests (> 50% for SMC and LMC,
> 60% for SMT), SBFL will accurately rank faulty methods
in the top 3, providing accurate information to developers.

Our future research will look at cases where there are no
PUTs or ULTs in the test suite, especially in high-level tests
such as integration or system tests. Pure unit tests are rather
rare in the industry, making it difficult to maintain many in
the test suite. Our focus is on the role of PUTs and ULTs
in SBFL, providing insights for improving test design and
defect localization. Developers should aim for a balanced mix
of PUTs and ULTs. Furthermore, the heuristics allow these
tests to be identified by automated tools. Our findings suggest
that test suite analysis tools can use PUT and ULT heuristics
to improve SBFL processes, such as evaluating the presence of
PUTs during CI/CD to prioritize tests based on fault isolation
capability. Future studies could develop dynamic methods for
maintaining test suites in evolving software. Further research
could refine the heuristics to mimic unit tests using features
such as keywords or code patterns.

DATA AVAILABILITY

In order to encourage the reproducibility and replicability
of this study, we have made the algorithm implementations
and the qualitative evaluation results available in an online
appendix https://doi.org/10.5281/zenodo.13880592

REFERENCES

[1] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software
fault localization: A survey of techniques, advances, and challenges,”
2017. [Online]. Available: https://arxiv.org/abs/1607.04347

[2] P. Agarwal and A. P. Agrawal, “Fault-localization techniques for
software systems: A Literature Review,” ACM SIGSOFT Software
Engineering Notes, vol. 39, no. 5, pp. 1-8, sep 2014. [Online].
Available: https://dl.acm.org/doi/10.1145/2659118.2659125

[3] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey
on Software Fault Localization,” [EEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707-740, aug 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7390282/

[4] Jeongho Kim and Eunseok Lee, “Empirical evaluation of existing
algorithms of spectrum based fault localization,” in The International
Conference on Information Networking (ICOIN). IEEE, feb 2014,
pp- 346-351. [Online]. Available: http://ieeexplore.ieee.org/document/
6799702/

[5] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp. 332-347, 2021.

[6] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” 2016,
Conference paper, p. 177 — 188, cited by: 170; All Open Access,
Green Open Access. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-52.0-84984911582&doi=10.1145%2f2931037.
2931049&partnerID=40&md5=0adb9a1b8e9217bacb884fdf15aladea

[71 R. Abou Assi, C. Trad, M. Maalouf, and W. Masri, “Coincidental
correctness in the defects4j benchmark,” Software Testing, Verification
and Reliability, vol. 29, no. 3, p. 1696, 2019, e1696 STVR-18-
0045.R2. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/stvr.1696

[8] R. Widyasari, G. A. A. Prana, S. A. Haryono, S. Wang, and
D. Lo, “Real world projects, real faults: evaluating spectrum based
fault localization techniques on python projects,” Empirical Software
Engineering, vol. 27, no. 6, p. 147, Aug 2022. [Online]. Available:
https://doi.org/10.1007/s10664-022-10189-4

[9] M. Rezaalipour and C. A. Furia, “An empirical study of fault
localization in python programs,” Empirical Software Engineering,
vol. 29, no. 4, p. 92, Jun 2024. [Online]. Available: https:
/ldoi.org/10.1007/s10664-024-10475-3

https://doi.org/10.5281/zenodo.13880592
https://arxiv.org/abs/1607.04347
https://dl.acm.org/doi/10.1145/2659118.2659125
http://ieeexplore.ieee.org/document/7390282/
http://ieeexplore.ieee.org/document/6799702/
http://ieeexplore.ieee.org/document/6799702/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84984911582&doi=10.1145%2f2931037.2931049&partnerID=40&md5=0adb9a1b8e9217bacb884fdf15a1adea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84984911582&doi=10.1145%2f2931037.2931049&partnerID=40&md5=0adb9a1b8e9217bacb884fdf15a1adea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84984911582&doi=10.1145%2f2931037.2931049&partnerID=40&md5=0adb9a1b8e9217bacb884fdf15a1adea
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1696
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1696
https://doi.org/10.1007/s10664-022-10189-4
https://doi.org/10.1007/s10664-024-10475-3
https://doi.org/10.1007/s10664-024-10475-3

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Arpéd Beszédes,
R. Ferenc, and A. Mesbah, “BugJS: A benchmark of javascript bugs,” in
Proceedings of 12th IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2019.

F. Trautsch and J. Grabowski, “Are there any unit tests? an empirical
study on unit testing in open source python projects,” in 2017 IEEE In-
ternational Conference on Software Testing, Verification and Validation
(ICST), 2017, pp. 207-218.

International Software Testing Qualifications Board, “Cerfified tester
foundation level syllabus — v4.0.1,” 2024. [Online]. Available: https:
/Iwww.istgb.org/certifications/certified-tester-foundation- level-ctfl- v4-0/
“ISO/IEC/IEEE International Standard — Systems and software engi-
neering — Vocabulary,” ISO/IEC/IEEE 24765:2017(E), pp. 1-541, 2017.
P. Runeson, “A survey of unit testing practices,” IEEE Software, vol. 23,
no. 4, pp. 22-29, 2006.

E. Daka and G. Fraser, “A survey on unit testing practices and problems,”
in 2014 IEEE 25th International Symposium on Software Reliability
Engineering, 2014, pp. 201-211.

M. Aniche, C. Treude, and A. Zaidman, “How developers engineer
test cases: An observational study,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 4925-4946, 2022.

G. R. Bai and K. T. Stolee, “Improving students’ testing practices,” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), 2020, pp. 218-221.
R. Abreu, P. Zoeteweij, and A. J. van Gemund, “Spectrum-based multi-
ple fault localization,” in 2009 IEEE/ACM International Conference on
Automated Software Engineering, 2009, pp. 88-99.

X. Xia, L. Bao, D. Lo, and S. Li, ““automated debugging considered
harmful” considered harmful: A user study revisiting the usefulness of
spectra-based fault localization techniques with professionals using real
bugs from large systems,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2016, pp. 267-278.

P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p.
165-176. [Online]. Available: https://doi.org/10.1145/2931037.2931051
M. A. Umar, “Comprehensive study of software testing: Categories,
levels, techniques, and types,” International Journal of Advance
Research, Ideas and Innovations in Technology, vol. 5, pp. 32—
40, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
208534004

I. Hooda and R. Singh Chhillar, “Software Test Process, Testing Types
and Techniques,” International Journal of Computer Applications, vol.
111, no. 13, pp. 10-14, Feb. 2015.

T. Kanstrén, “Towards a deeper understanding of test coverage,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 1, pp. 59-76, 2008. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.362

G. Gay and R. Just, “Defects4j as a challenge case for the search-based
software engineering community,” in Search-Based Software Engineer-
ing: 12th International Symposium, SSBSE 2020, Bari, Italy, October
7-8, 2020, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2020, p.
255-261.

D. Vince, A. Szatmari, A. Kiss, and A. Beszédes, “Division by zero:
Threats and effects in spectrum-based fault localization formulas,” in
Proceedings of the 22nd IEEE International Conference on Software
Quality, Reliability, and Security (QRS’22), Dec. 2022, pp. 221-230.
C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA *11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
199-209. [Online]. Available: https://doi.org/10.1145/2001420.2001445
T.-D. B. Le, F. Thung, and D. Lo, “Theory and practice, do they match? a
case with spectrum-based fault localization,” in 2013 IEEE International
Conference on Software Maintenance, 2013, pp. 380-383.

(28]

[29]

(30]

[33]

[34]

[35]

(36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013. New York, NY, USA:
Association for Computing Machinery, 2013, p. 314-324. [Online].
Available: https://doi.org/10.1145/2483760.2483767

R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van Gemund, “A

practical evaluation of spectrum-based fault localization,” Journal
of Systems and Software, vol. 82, no. 11, pp. 1780-1792, 2009,

sI: TAIC PART 2007 and MUTATION 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121209001319
R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, ‘“Crashlocator:
locating crashing faults based on crash stacks,” in Proceedings
of the 2014 International Symposium on Software Testing and
Analysis, ser. ISSTA 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 204-214. [Online]. Available:
https://doi.org/10.1145/2610384.2610386

A. Rountev, S. Kagan, and M. Gibas, “Static and dynamic analysis of
call chains in java,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 4, p. 1-11,
jul 2004. [Online]. Available: https://doi.org/10.1145/1013886.1007514
G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” in Proceedings
of the ACM SIGPLAN 1997 Conference on Programming Language
Design and Implementation, ser. PLDI °97. New York, NY, USA:
Association for Computing Machinery, 1997, p. 85-96. [Online].
Available: https://doi.org/10.1145/258915.258924

A. Beszédes, F. Horvath, M. Di Penta, and T. Gyiméthy, “Leveraging
contextual information from function call chains to improve fault lo-
calization,” in Proceedings of the 27th IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER’20), Feb.
2020, pp. 468-479.

Q. I. Sarhan, B. Vancsics, and A. Beszédes, “Method calls frequency-
based tie-breaking strategy for software fault localization,” in Proceed-
ings of the 21st IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM’21), Sep. 2021, pp. 103-113.

B. Vancsics, F. Horvéth, A. Szatmari, and A. Beszédes, “Call frequency-
based fault localization,” in Proceedings of the 28th IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER’21), Mar. 2021, pp. 365-376.

——, “Fault localization using function call frequencies,” The Journal
of Systems and Software, vol. 193, p. 111429, 2022.

K. Beck and E. Gamma, Test-infected: programmers love writing tests.
USA: Cambridge University Press, 2000, p. 357-376.

M. Alli, M. Lanza, and O. Nierstrasz, “Towards a taxonomy of unit
tests,” 08 2004.

A. Deursen, L. M. Moonen, A. Bergh, and G. Kok, “Refactoring test
code,” NLD, Tech. Rep., 2001.

A. Deursen and L. Moonen, “The video store revisited - thoughts on
refactoring and testing,” 06 2002.

G. Orellana, G. Laghari, A. Murgia, and S. Demeyer, “On the differences
between unit and integration testing in the travistorrent dataset,” in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), 2017, pp. 451-454.

A. Perez, R. Abreu, and A. van Deursen, “A test-suite diagnosabil-
ity metric for spectrum-based fault localization approaches,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE), 2017, pp. 654-664.

J. Xuan and M. Monperrus, “Test case purification for improving fault
localization,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
52-63. [Online]. Available: https://doi.org/10.1145/2635868.2635906
B. Jiang, W. Chan, and T. Tse, “On practical adequate test suites for
integrated test case prioritization and fault localization,” in 2011 11th
International Conference on Quality Software, 2011, pp. 21-30.

https://www.istqb.org/certifications/certified-tester-foundation-level-ctfl-v4-0/
https://www.istqb.org/certifications/certified-tester-foundation-level-ctfl-v4-0/
https://doi.org/10.1145/2931037.2931051
https://api.semanticscholar.org/CorpusID:208534004
https://api.semanticscholar.org/CorpusID:208534004
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.362
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/2483760.2483767
https://www.sciencedirect.com/science/article/pii/S0164121209001319
https://doi.org/10.1145/2610384.2610386
https://doi.org/10.1145/1013886.1007514
https://doi.org/10.1145/258915.258924
https://doi.org/10.1145/2635868.2635906

	Introduction
	Background
	Test Levels
	Fault Localization

	Motivation
	Method for Identifying Tests
	Evaluation
	Benchmark
	Generating Suspiciousness Rank Lists

	Results
	Optimal Proportion of Pure Unit Tests for Fault Localization Effectiveness (RQ1)
	Assessing the Impact of Relaxed Unit Tests on Fault Localization Efficiency (RQ2)

	Related Works
	Spectrum-based Fault Localization
	Unit test categorization
	Using test suite manipulation to improve Fault Localization

	Threats to Validity
	Conclusions and Future Work
	References

